Bài toán. (PoP 1.1) Cho đường tròn $(O)$. $A, B$ là hai điểm cố định đối xứng nhau qua $O$, $M$ là điểm chuyển động trên $(O)$. $MA, MB$ giao với $(O)$ tại $P$ và $Q$. Chứng minh rằng $\dfrac{{\overline {AM} }}{{\overline {AP} }} + \dfrac{{\overline {BM} }}{{\overline {BQ} }}$ nhận giá trị không đổi.
Gợi ý
- Ta có $\overline{AM}\cdot \overline{AP} = \mathscr{P}_{A/(O)} \Rightarrow \dfrac{\overline{AM}}{\overline{AP}} = \dfrac{AM^2}{\mathscr{P}_{A/(O)}}$. (1)
- Tương tự $\dfrac{\overline{BM}}{\overline{BQ}} = \dfrac{BM^2}{\mathscr{P}_{B/(O)}}$. (2)
- Mà $A, B$ đối xứng qua $O$ nên $\mathscr{P}_{A/(O)} = \mathscr{P}_{B/(O)}$ không đổi và $MA^2 + MB^2 = 2MO^2 + \dfrac{AB^2}{2}$ không đổi. (3)
- Từ (1), (2), (3) suy ra điều cần chứng minh.
Like this:
Like Loading...