Bài 11. Chứng minh rằng
a) Trong 5 số nguyên thì có 3 số có tổng chia hết cho 3.
b) Trong 17 số nguyên thì có 9 số có tổng chia hết cho 9.
Giải
a) Một số khi chia cho 3 có các số dư là 0, 1, 2.
Nếu trong 5 số khi chia cho 3 số có đủ 3 số dư 0, 1, 2 thì tổng 3 số này chia hết cho 3.
Nếu có 2 loại số dư thì có 3 số khi chia cho 3 có cùng một số dư, tổng của chúng chia hết cho 3.
Nếu có 1 loại số dư, thì tổng 3 số bất kì đều chia hết cho 3.
b) Đặt các số đó là $a_1, a_2, \cdots, a_{16}, a_{17}$.
Trong 5 số $a_1, \cdots, a_5$ có 3 số có tổng chia hết cho 3, không mất tính tổng quát là $a_1, a_2, a_3$. Đặt $a_1 + a_2 + a_3 = 3b_1$.
Trong 5 số $a_4, \cdots, a_8$ có 3 số có tổng chia hết cho 3, giả sử $a_4, a_5, a_6$ và đặt $a_4 + a_5+ a_6 = 3b_2$.
Tương tự ta xây dựng được các số $b_3, b_4, b_5$.
Khi đó áp dụng tiếp cho 5 số $b_1, b_2, b_3, b_4, b_5$ có 3 số có tổng chia hết cho 3, giả sử $b_1, b_2,b_3$ có tổng chia hết cho 3. Khi đó 9 số $a_1, \cdots, a_9$ có tổng chia hết cho 9.
Bài 12. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 2018)\ Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.
a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $
Giải
a) \item Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $\\
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.\\
$ \Rightarrow A_n \ \vdots \ 3. $\\
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.\\
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.\\
$ \Rightarrow A_n \ \vdots\ 17. $\\
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$
b) Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
\item Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
Ta có \begin{align*}
A_n &\equiv 2^n + (-2)^n – 2^n – 4^n \quad \text { (mod 9)}\\\\
&\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do n chẵn).} \\\\
& \equiv 2^n(1-2^n) \quad \text { (mod 9)}
\end{align*}
Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1 \ \vdots \ 9$.
Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad \text { (mod 9)} \Rightarrow k$ chẵn
Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $
Bài 13. Tìm các nghiệm nguyên không âm $(x, y)$ của phương trình
${\left( {xy – 1} \right)^2} = {x^2} + {y^2}$
Giải
$(xy-6)^2 – (x+y)^2 = -13$.
$(xy-6-x-y)(xy-6+x+y) = -13$.
Ta có $xy – 6 +x+y \leq xy – 6 -x-y$ nên có các trường hợp.
$xy -6 -x-y = -13, xy -6 +x+y = 1$, giải ra được $(x;y)$ là $(7;0), (0;7)$;
$xy – 6 -x-y=-1, xy-6+x+y = 13$ (VN);
$Vậy phương trình có nghiệm $(0;7), (7;0)$.
Bài 14. Chứng minh rằng phương trình ${y^2} + y = x + {x^2} + {x^3}$ không có nghiệm nguyên dương.
Giải
Ta có $x^3 = (y-x)(y+x+1)$.
Gọi $d$ là ước nguyên tố chung lớn nhất của $y-x, y+x+1$, nếu $d$ là số nguyên tố thì $d|x, d|y$, suy ra $d|1$ (vô lý), Vậy $y-x, y+x+1$ nguyên tố cùng nhau.
Do đó $y -x = a^3, y+x+1 = b^3, ab=x$.
Ta có phương trình $b^3-a^3 = 2ab+1$ với $a, b$ nguyên dương và $b > a\geq 1$. Ta có $b^3-a^3 \geq a^2+b^2+ab > 2ab + 1$.
Vậy phương trình không có nghiệm trong tập các số nguyên dương.
Bài 15. Tìm tất cả các bộ ba số nguyên dương thỏa phương trình:
${\left( {x + y} \right)^2} + 3x + y + 1 = {z^2}$
Giải
Ta có $(x+y)^2 < z^2 < (x+y+2)^2$. Do đó $z^2 = (x+y+1)^2$ hay $(x+y+1)^2 = (x+y)^2+3x+y + 1 \Leftrightarrow y = x$.
\Vậy bộ nghiệm là $(n, n, 2n+1)$ với $n$ là số nguyên dương.
Bài 16. Tìm nghiệm nguyên dương của phương trình sau
$xy + yz + zx – xyz = 2$
Giải
Vai trò của $(x, y, z)$ là như nhau, giả sử $x \geq y \geq z$.
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} – 1 = \dfrac{2}{xyz} > 0$. Suy ra $\dfrac{3}{z} -1 > 0$, suy ra $z < 3$.
Nếu $z = 1$ thì $x+y = 2$ ta có $x = y = 1$.
Nếu $z=2$ thì $2(x+y)-xy = 2 \Leftrightarrow (x-2)(y-2) = 2$, giải ra được $x = 4, y = 3$.
Do tính đối xứng nên nghiệm của phương trình là $(1, 1, 1), (4,3,2)$ và các hoán vị.
Bài 17. Tìm tất cả các số tự nhiên x, y thỏa: ${5^x} = {y^4} + 4y + 1$
Giải
Có một nghiệm là $(0;0)$.
Dễ thấy $y$ chẵn nên $y^4+4y+1 \equiv 1 (\mod 8)$. Suy ra $x$ chẵn, $x = 2k$. Khi đó $(5^k)^2 = y^4 + 4y+1$ là số chính phương.
Ta có $y\geq 1$ nên $y^4 < y^4+4y + 1 < (y^2+2)^2$. Suy ra $y^4+4y + 1 = (y^2+1)^2 \Leftrightarrow y = 2$, suy ra $x = 2$.
Vậy có 2 cặp nghiệm $(0;0), (2;2)$.
Bài 18. Giải phương trình nghiệm tự nhiên $x – {y^4} = 4$ với $x$ là số nguyên tố.
Giải
$x = y^4+4 = (y^2-2y+2)(y^2+2y+2)$ là số nguyên tố khi và chỉ khi $y^2-2y + 2 = 1$ hay $y=1$. Từ đó $x=1$.
Bài 19. Tìm nghiệm nguyên của phương trình sau
${\left( {{x^2} – {y^2}} \right)^2} = 1 + 16y$
Giải
Dễ thấy nghiệm là $(-1;0), (1;0)$.
Ta có $y \geq 0$, vì $x$ thỏa pt thì $-x$ cũng thỏa nên có thể giả sử $x\geq 0$.
Ta có $(x^2-y^2)^2 = 1 + 16y >1$, suy ra $x^2 > y^2 \Rightarrow x \geq y + 1$.
Nếu $x \geq y + 2$, suy ra $x^2-y^2 \geq 4y + 4 \Rightarrow (x^2-y^2)^2 > 1+16y$.
Do đó $x = y + 1$, suy ra $(1+2y)^2 = 1+16y \Leftrightarrow 4y^2 – 12y = 0 \Leftrightarrow y = 3$. Suy ra $x = 4$.
Vậy nghiệm là $(-4;3), (4;3),(-1;0), (1;0)$.
Bài 20. Chứng minh rằng với mọi số tự nhiên $n > 1$ thì $n^5 + n^4 + 1$ không là số nguyên tố.
Giải
$n^5 + n^4 + 1 = n^5+n^4+n^3-n^3+1 = n^3(n^2+n+1) -(n-1)(n^2+n+1) = (n^2+n+1)(n^3-n+1)$
Mà $n^3-n+1 > 1, n^2+n+1>1$ với mọi $n>1$ nên $n^5+n^4+1$ không là số nguyên tố.
Like this:
Like Loading...