Định lý Menelaus. Cho tam giác $ABC$ và ba điểm $A’,B’,C’ $trên các đường thẳng chứa các cạnh $BC,CA,AB$ sao cho: hoặc cả ba điểm $A’,B’,C’ $ đều nằm trên phần kéo dài của ba cạnh, hoặc một trong ba điểm đó nằm trên phần kéo dài của một cạnh còn hai điểm kia nằm trên hai cạnh của tam giác. Điều kiện cần và đủ để $A’,B’,C’ $ thẳng hàng là ta có hệ thức:
\begin{align}
\dfrac{AB’}{B’C} . \dfrac{CA’}{A’B} . \dfrac{BC’}{C’A} =1
\end{align}
Chú ý : Hệ thức (a) trong định lí Menelaus cũng là hệ thức trong định lí Ceva; nhưng do sự khác nhau trong giả thiết về vị trí của các điểm $A’,B’, C’$ mà ta có ba điểm thẳng hàng hay ba đường thẳng đồng quy (song song).
Ví dụ 1. Cho tam giác $ABC$, có $M, N$ là các điểm thuộc cạnh $AB, AC$ sao cho $AM = MB, AN = 2NC$. $MN$ cắt đường thẳng $BC$ tại $P$. Chứng minh $CP = CB$.
Ví dụ 2. Chứng minh rằng trong một tam giác, chân các đường phân giác trong của hai góc và chân của đường phân giác ngoài của góc thứ ba là điểm thẳng hàng.
Ví dụ 3. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, tiếp tuyến tại $A$ của $(O)$ cắt đường thẳng $BC$ tại $D$, tiếp tuyến tại $B$ cắt $AC$ tại $E$, tiếp tuyến tại $C$ cắt $AB$ tại $F$. Chứng minh rằng $D, E, F$ thẳng hàng.
Bài tập.
- Cho tam giác $ABC$, trên các cạnh $BC, AC$ lấy các điểm $M,N$ thỏa $BM = 2CM, CN = 3CA$, đường thẳng $MN$ cắt đường thẳng $AB$ tại $P$. Tính $\dfrac{PA}{PB}$.
- Chứng minh rằng chân 3 đường phân giác ngoài của một tam giác thì thẳng hàng.
- Cho tam giác $ABC$, đường tròn nội tiếp tam giác tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. Đường thẳng $EF$ cắt $BC$ tại $P$. Chứng minh $\dfrac{PB}{PC} = \dfrac{DB}{DC}$.
- Cho một tứ giác $ABCD$ ngoại tiếp một đường tròn tại các điểm $M,N,P,Q$ theo thứ tự trên các cạnh $AB,BC,CD,DA$. Chứng minh rằng $PN, QM$ và đường chéo $BD$ đồng quy.
- Trên trung tuyến $AD$ của một tam giác $ABC$, cho một điểm $K$ sao cho $AK = 3KD$; $BK$ cắt $AC$ tại $P$. Tính tỉ số diện tích của tam giác $ABP$ và $BCP$.
- Cho một tam giác $ABC$, một điểm $K$ trên $AB$ sao cho $\dfrac{AK}{KB}$=$\dfrac{1}{2}$, một điểm $L$ trên $BC$ sao cho $\dfrac{CL}{LB}$=$\dfrac{2}{1}$. Gọi $Q$ là giao điểm của các đường thẳng $AL$ và $CK$. Tìm diện tích tam giác $ABC$ nếu biết diện tích của tam giác $BQC$ bằng 1 (đơn vị diện tích).
- (*) Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với các cạnh $BC, AC, AB$ lần lượt tại $D, E, F$. Chứng minh rằng tâm đường tròn ngoại tiếp các tam giác $IAD, IBE, ICF$ thẳng hàng.
- (*) Cho tứ giác $ABCD$. Các đường thẳng $AD, BC$ cắt nhau tại $P$, $AB, CD$ cắt nhau tại $Q$; $AC, BD$ cắt nhau tại $I$, $PI$ cắt $BC$ tại $K$. Chứng minh $\dfrac{QC}{QD} = \dfrac{KC}{KD}$.
- (*) (Đường thẳng Gauss) Cho tứ giác $ABCD$. Các đường thẳng $AD, BC$ cắt nhau tại $P$, $AB, CD$ cắt nhau tại $Q$. Chứng minh trung điểm các đoạn thẳng $AC, BD, PQ$ thẳng hàng.