Tag Archives: H

Đường thẳng qua tâm đường tròn ngoại tiếp tứ giác.

Đề bài. Cho tứ giác $ABCD$ nội tiếp đường tròn $O$ với $\angle A > 90^\circ$. Đường thẳng qua $A$ vuông góc $AB$ cắt $CD$ tại $E$; đường thẳng qua $A$ vuông góc $AD$ cắt $CB$ tại $F$. Gọi $P$ là điểm đối xứng của $A$ qua đường thẳng $EF$. Cho tứ giác $ABCD$ nội tiếp đường tròn $O$ với $\angle A > 90^\circ$. Đường thẳng qua $A$ vuông góc $AB$ cắt $CD$ tại $E$; đường thẳng qua $A$ vuông góc $AD$ cắt $CB$ tại $F$. Gọi $P$ là điểm đối xứng của $A$ qua đường thẳng $EF$.

a. Chứng minh rằng 4 điểm $E,F , C, P$ cùng thuộc một đường tròn.

b. Chứng minh $P$ thuộc $(O)$ và $E, O, F$ thẳng hàng. \end{enumerate}

Gợi ý

a. Ta có $\angle DAB + \angle EAF = \angle DAB + \angle BAF + \angle EAF = \angle DAB + \angle BAE = 180^\circ$.

Ta có $\angle DAB + \angle EAF = \angle DAB + \angle BAF + \angle EAF = \angle DAB + \angle BAE = 180^\circ$.

Ta có $\angle DAB + \angle BCD = 180^\circ$, suy ra $\angle EAF = \angle BCD$.

Mặt khác $\angle EAF = \angle EPF$ (t/c đối xứng), do đó $\angle EPF = \angle BCD$, suy ra tứ giác $EFCP$ nội tiếp.

 

b. Do tứ giác $EFCP$ nội tiếp nên $\angle DCP = \angle EFP$. (1)

Ta có $\angle EFP = \angle EFE = 90^\circ – \angle FAE = \angle DAP$.(2)

Từ (1)  và (2), suy ra $\angle DAP = \angle DCP$, suy ra $ADPC$ nội tiếp, do đó $P \in (O)$ mà $EF$ là trung trực của $AP$ nên $O$ thuộc $EF$, hay $E, O, F$ thẳng hàng.

Bài giảng Tứ giác nội tiếp

Điểm Migle, trực tâm, trung điểm thẳng hàng.

Đề bài. Cho tam giác $ABC$ nhọn $(AB < AC)$ nội tiếp đường tròn $(O)$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. Gọi $M$ là trung điểm cạnh BC và $N$ là trung điểm đoạn thẳng CH.Cho tam giác $ABC$ nhọn $(AB < AC)$ nội tiếp đường tròn $(O)$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. Gọi $M$ là trung điểm cạnh BC và $N$ là trung điểm đoạn thẳng CH.

  1. Chứng minh rằng 5 điểm $D, E, F, M, N$ cùng thuộc một đường tròn.
  2. $EF$ cắt $BC$ tại $K$, $AK$ cắt $(O)$ tại $Q$. Chứng minh $AQFE, KQFB$ là các tứ giác nội tiếp.
  3. Chứng minh 3 điểm $Q, H, M$ thẳng hàng.
Gợi ý
  1. Ta có $BFHD, BFEC$ nội tiếp, suy ra $\angle DFE = \angle DBE = \angle CFE$.
    Suy ra $\angle DFE = 2\angle DBE$.
    Tam giác $EMB$ cân tại $M$, suy ra $\angle EMC = 2\angle DBE$.
    Do đó $\angle EMC = \angle DFE$, suy ra $EFDM$ nội tiếp.
  2. Ta có $BFHD, BFEC$ nội tiếp, suy ra $\angle DFE = \angle DBE = \angle CFE$.  Suy ra $\angle DFE = 2\angle DBE$.
    Tam giác $EMB$ cân tại $M$, suy ra $\angle EMC = 2\angle DBE$.
    Do đó $\angle EMC = \angle DFE$, suy ra $EFDM$ nội tiếp.
    Tam giác $CBH$ có MN là đường trung bình, suy ra $MN||BH$, suy ra $\angle CMN = \angle CBH$,
    mà $\angle CBH = \angle DFC$, suy ra $\angle CMN =\angle DFC$ nên tứ giác $FDMN$ nội tiếp.
    Do đó 5 điểm $D, E, F, M, N$ cùng thuộc một đường tròn. Vì các tứ giác $AQBC, EFBC$ nội tiếp nên $KQ.KA = KB.KC$ và $KB.KC = KE.KF$, suy ra $KQ.KA = KF.KE$, từ đó ta có $AQFE$ nội tiếp.
    Ta có $\angle KQF = \angle AEF$ (AQFE nội tiếp) và $\angle AEF = \angle ABC$ ($BFEC$ nội tiếp), suy ra $\angle KQF = \angle ABC$, do đó tứ giác $KQFB$ nội tiếp.
  3. Ta có $Q$ thuộc đường tròn ngoại tiếp tam giác $AEF$,nên $Q$ thuộc đường tròn đường kính $AH$, suy ra $\angle AQH = 90^\circ$.  (1)
    Vẽ đường kính $AA’$, khi đó ta có $BHCA’$ là hình bình hành, nên $M$ thuộc $HA’$. (2)
    Mặt khác $\angle AQA’ = 90^\circ$. (3)
    Từ (1), (2) và (3) ta có $Q, H, M$ thẳng hàng.

Bài Giảng Tứ giác nội tiếp