Tag Archives: TamGiacVuong

Hệ thức trong tam giác vuông – Bài 1

I. Lý thuyết và ví dụ

Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$.

Đặt $BC = a, AC=b, AB =c, AH=h, BH=c’, CH=b’$. Khi đó:

  • $a.h  =bc = 2S_{ABC}$
  • $c^2 = c’.a$
  • $b^2 = b’.a$
  • $h^2 = b’.c’$
  • $\dfrac{1}{h^2} = \dfrac{1}{b^2} + \dfrac{1}{c}$
 

Dạng 1. Các bài tính toán cơ bản

Ví dụ 1. Tính $a, b’,c’,h$ trong hình sau:

 

Gợi ý
 Tam giác vuông có cạnh huyền là $a$ nên:

  • $a^2 = 6^2 + 8^2 =100$
  • $a = 10 cm$ (vì $a > 0$)

Ta có

  • $ah = bc$
  • $10h = 6.8$
  • $h = \dfrac{24}{5} (cm) $.

 

 Ta có

  • $6^2 = c’.a$
  • $36  = c’.10$
  • $c’ = \dfrac{18}{5}(cm)$

Suy ra $b’ = a – c’ = 10 – \dfrac{18}{5} = \dfrac{32}{5} (cm)$

Ví dụ 2. Tính $b, b’,c$ trong hình sau:

Gợi ý

Tam giác $ABC$ có $h$ là độ dài đường cao, hình chiếu của $AB$ là $4$ nên:

  • $h^2 = 4.b$
  • $10^2 = 4b \Rightarrow b = 25 cm$.

Khi đó $a = b’+c’ = 4+ 25 = 29$.

  • $b^2 = b’.a$
  • $b^2 = 25.29$
  • $b^2 = 725$
  • $b = \sqrt{725} = 5\sqrt{29}$ (cm)(vì $b > 0$)

  • $b.c = ha$
  • $5\sqrt{29}c = 10.29$
  • $c = 2\sqrt{29}$ (cm)

Ví dụ 3. Tính $c, h, b’$ trong hình sau:

 

Gợi ý

Với bài toán này, các độ dài cho trước có vẻ rời rạc và chưa tính được độ dài nào được ngay.

Nhưng ta có thể thấy $h, b’$ có liên hệ với $c’ = 4cm, b = 10cm$. Từ đó nghĩ đến cách lập hệ ẩn $h, b’$.

Giải

Ta có

  • $h^2  = 4b’$ (1)
  • $h^2 + b’^2 = (\sqrt{45})^2=45$ (2)
  • Từ (1), (2) suy ra $b’^2 = 45 – 4b’$
  • $b’^2+4b’-45 = 0$
  • $(b’-5)(b’+9) = 0$
  • $b’ = 9$ (cm) (do $b’ > 0$)

Khi đó  $h^2 = 4.5= 20$ hay $h = \sqrt{20}$ (cm).

Và $c^2 = 4^2 + (\sqrt{20})^2 = 36$, $c = 6$ (cm).

III. Bài tập

1.Tính các yếu tố còn lại trong hình đã cho.

Gợi ý
a. Tam giác vuông có $h$ là chiều cao và 2 cạnh góc vuông có độ dài là: $2cm$ và $4cm$ ta có:
$\dfrac{1}{{{h^2}}} = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{4^2}}}$ (Hệ thức lượng)
$\dfrac{1}{{{h^2}}} = \dfrac{5}{{16}}$
$\dfrac{1}{h} = \dfrac{{\sqrt 5 }}{4}$
$h = \dfrac{{4\sqrt 5 }}{5} (cm)$
Ta có: $h.\left( {c’ + b’} \right) = 4.2$
$\dfrac{{4\sqrt 5 }}{5}\left( {b’ + c’} \right) = 8$
$\left( {b’ + c’} \right) = 2\sqrt 5 (cm) $
Và ${4^2} = c’.\left( {b’ + c’} \right)$
$16 = c’.2\sqrt 5 $
$c’ = \dfrac{{8\sqrt 5 }}{5} (cm)$
Và ${2^2} = b’.\left( {b’ + c’} \right)$
$4 = b’.2\sqrt 5 $
$b’ = \dfrac{{2\sqrt 5 }}{5} (cm) $
b. Tam giác vuông có đường cao $h$ và hai cạnh góc vuông lần lượt là $c$ và $b$
Ta có: ${h^2} = 4.9$
${h^2} = 36$
$h = 6 (cm)$
Và ${c^2} = 4.\left( {4 + 9} \right)$
${c^2} = 52$
$c = 2\sqrt {13} (cm) $
${b^2} = 9.\left( {4 + 9} \right)$
${b^2} = 117$
$b = 3\sqrt {13} (cm) $
c.Tam giác vuông có đường cao có độ dài $4cm$ và hai cạnh hóc vuông có độ dài $5cm$ và $c$
Ta có: $\dfrac{1}{{{4^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{1}{{{5^2}}}$
$c = \dfrac{{20}}{3} (cm)$
Và $5.\dfrac{{20}}{3} = 4.(b’ + c’)$
$(b’ + c’) = \dfrac{{25}}{3} (cm) $Ta có: ${5^2} = b’.\left( {b’ + c’} \right)$
$b’ = 3(cm)$
Và ${c^2} = c’\left( {b’ + c’} \right)$
$c’ = \dfrac{{16}}{3}$
Hay $c’ = \dfrac{{25}}{3} – b’ = \dfrac{{25}}{3} – 3 = \dfrac{{16}}{3}$
2. Tính $x, y$ trong hình dưới đây:

Gợi ý

Tam giác vuông cân có cạnh góc vuông có độ dài $3cm$
Suy ra cạnh huyền của tam giác đó có độ dài là: $3\sqrt 2 (cm) $ (Pytago)
Tam giác vuông có hai cạnh góc vuông có độ dài lần lượt là $\sqrt 2 cm;3\sqrt 2 cm$
Khi đó: ${\left( {x + y} \right)^2} = {\left( {\sqrt 2 } \right)^2} + {\left( {3\sqrt 2 } \right)^2}$
$ \Rightarrow x + y = 2\sqrt 5 (cm) $
Ta có: ${\left( {\sqrt 2 } \right)^2} = y.\left( {x + y} \right)$
$y = \dfrac{{\sqrt 5 }}{5}$
Và $x = 2\sqrt 5 – \dfrac{{\sqrt 5 }}{5} = \dfrac{{9\sqrt 5 }}{5}$

3. Tìm $x, y$ trong hình cho dưới đây.
Gợi ý

Ta có: ${3^2} = x.\left( {x + \frac{{16}}{5}} \right)$
$\Rightarrow \left[ {\begin{array}{*{20}{c}}
{x = \dfrac{9}{5}(cm)(n)}\\
{x = – 5(cm)(l)}
\end{array}} \right.$
Và 4{y^2} = \dfrac{{16}}{5}\left( {\dfrac{{16}}{5} + x} \right)$
$\Rightarrow y = 4(cm)$

4.Tìm độ dài các cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng $25cm$ và đường cao ứng với cạnh huyền bằng $12 cm$.

Gợi ý
Gọi hình chiếu hai cạnh góc vuông trên cạnh huyền là $x, y$. Ta có $x + y = 25, xy = 12^2 = 144$. Giải ra được $x = 9, y = 16$.
Suy ra độ dài 2 cạnh là $15, 20 (cm)$.
5. Tìm độ dài hai cạnh góc vuông của tam giác vuông biết đường cao bằng $4cm$ và độ dài trung tuyến ứng với cạnh huyền bằng $6cm$.
Gợi ý
Cạnh huyền là $12$. Làm tương tự bài 4.
6. Tính $x, y$ trong hình sau:

Gợi ý
Xét hình chữ nhật có độ dài 2 cạnh lần lượt là $3cm$ và $4cm$
Khi đó đường chéo của hình chữ nhật có độ dài là $5cm$
Xét tam giác vuông có 2 cạnh góc vuông là $5cm$, $ycm$ và có chiều cao là $3cm$ ta có:
$\dfrac{1}{{{3^2}}} = \dfrac{1}{{{y^2}}} + \dfrac{1}{{{5^2}}}$
$ \Rightarrow y = \dfrac{{15}}{4}(cm)$
Tương tự: $x = \dfrac{{20}}{3}(cm)$
7. Tìm $x, y$ là cạnh của hình chữ nhật biết $MN = 1$.
Gợi ý

Gọi hình chữ nhật đó là $ABCD$ với $N$ thuộc cạnh $CD$.
Ta có $AB // CD $
$ \Rightarrow \dfrac{{AB}}{{DN}} = \dfrac{{AM}}{{MN}}$ (Ta- lét)
$\Rightarrow \dfrac{y}{{\dfrac{y}{2}}} = \dfrac{{AM}}{1}$
$\Rightarrow AM = 2$
$ \Rightarrow AN = AM + MN = 2 + 1 = 3$
Tam giác $ADN$ vuông tại $D$ ta có:
$D{N^2} = MN.AN$
$ \Rightarrow DN = \sqrt 3 $
Và $A{D^2} = AM.AN$
$AD = \sqrt 6 $
Vậy $ x = \sqrt 6$ và $ y = 2\sqrt 3$

8. (*) Cho tam giác $ABC$ vuông có đường cao $AH$, trung tuyến $BM$ và phân giác $CD$ đồng quy.

    •  (a). Chứng minh $BH = AC$.
    •  (b). Tính $AB, AC$ biết $BC = 10cm$.
Gợi ý
 a) Gọi O là giao điểm của $AH$; $BM$; $CD$
Áp dụng định lí Ceva vào trong tam giác ABC, ta có:
$\dfrac{{MA}}{{MC}}.\dfrac{{HC}}{{HB}}.\dfrac{{DB}}{{DA}} = 1 \Rightarrow \dfrac{{HC}}{{HB}} = \drac{{DA}}{{DB}}$
(Vì $M$ là trung điểm của $AC$)
Mà: $\dfrac{{DA}}{{DB}} = \dfrac{{AC}}{{BC}}$ ( $CD$ là phân giác)
$\Rightarrow \dfrac{{HC}}{{HB}} = \dfrac{{AC}}{{BC}} \Rightarrow CH.CB = AC.HB$
Mặt khác: $CH.CB = A{C^2}$ (Hệ thức lượng trong tam giác vuông $ABC$)
$\Rightarrow AC.HB = A{C^2} \Rightarrow BH = AC$
b) Ta có: $A{C^2} = HC.BC$
$A{C^2} = (BC – BH).BC$
Mà: $ BH = AC$ ( câu a)
$\Rightarrow A{C^2} = (BC – AC).BC$
$ \Rightarrow AC = – 5 + 5\sqrt 5 (cm) $
Và $\Rightarrow AB = – 50 + 50\sqrt 5 (cm)$