PHƯƠNG TRÌNH NGHIỆM NGUYÊN DẠNG LUỸ THỪA

A. MỘT SỐ CHÚ Ý KHI GIẢI PHƯƠNG TRÌNH DẠNG LŨY THỪA
Nhận xét: Để giải phương trình nghiệm nguyên dạng lũy thừa ta chú ý một số phương pháp thường sử dụng

  • Sử dụng đồng dư để xét tính chẵn lẻ, hay modun của nghiệm.
  • Phân tích thành thừa số.
  • Đánh giá bất đẳng thức.

Do sử dụng nhiều đồng dư, do đó ta chú ý một số tính chất về đồng dư sau Tính chất 3.2. Cho $a$ là một số nguyên tùy ý. Khi đó
(a) $a^2 \equiv 0,1(b\mod 3)$;
(b) $a^2 \equiv 0,1(b\mod 4)$
(c) $a^2 \equiv 0,1,4 (b\mod 8)$;
(d) $a^2 \equiv 0,1,4 (b\mod 5)$;
(e) $a^3 \equiv-1,0,1 (b\mod 7)$
(f) $a^3 \equiv-1,0,1(b\mod 9)$.

Tính chất 3.3. Cho $p$ là một số nguyên tố và $a, b, c, n$ là các số nguyên dương. Ta có
(a) $a^n \vdots p \Leftrightarrow a \vdots p$;
(b) Nếu $a b=p^n$ thì $\left\{\begin{array}{l}a=p^k \\\ b=p^{n-k}\end{array} \quad\right.$ với $k \in \mathbb{N}$ thỏa $0 \leq k \leq n$;
(c) Nếu a b=c^n và (a, b)=1 thì $a=s^n \text { và } b=r^n$ với $s, r \in \mathbb{N}$.

B MỘT SỐ VÍ DỤ
Ví dụ 3.29. Tìm các số nguyên $x, y$ thỏa mān $x^3+1=4 y^2$.

Hướng dẫn giải

Giả sử tồn tại các số nguyên $x, y$ thỏa mãn $x^3+1=4 y^2$. Ta có
$$
x^3=4 y^2-1=(2 y-1)(2 y+1) \text {. }
$$

Đặt $d=(2 y-1,2 y+1)$, ta có $d$ lẻ và $\left\{\begin{array}{l}d \mid 2 y-1 \\\ d \mid 2 y+1\end{array}\right.$.
Do đó $d \mid 2$, suy ra $d=1$ (vì $d$ lẻ). Như vậy $2 y-1$ và $2 y+1$ nguyên tố cùng nhau.
Kết hợp với (3.1) ta suy ra $2 y-1=a^3$ và $2 y+1=b^3$ với $a, b \in \mathbb{Z}$.
Dẫn đến $b^3-a^3=2$ hay $(b-a)\left(b^2+b a+a^2\right)=2$. Từ đó ta được $b=1$ và $a=-1$, suy ra $y=0$ và khi đó $x=-1$. Thử lại thỏa.
Vậy $(x, y)=(-1,0)$.

Ví dụ 3.30. Giải phương trình nghiệm nguyên $x^5+2023 x=5^y+2$.

Hướng dẫn giải

Giả sử tồn tại các số nguyên $x, y$ thỏa mãn $x^5+2023 x=5^y+2$.
Vì $5^y+2$ lẻ nên $x$ lẻ, do đó $x^5+2023 x=x\left(x^4+2023\right) \vdots 4$ (vì $x$ lẻ nên $x \equiv 1(\bmod 4)$.
Tuy nhiên $x^5+2023 x=5^y+2 \equiv 1^y+2 \equiv 3(\bmod 4)$ (Vô lí).

Vậy không tồn tại các số nguyên $x, y$ thỏa mãn $x^5+2023 x=5^y+2$.

Ví dụ 3.31. Tìm các số nguyên $x$ và $y$ sao cho $3^x-y^3=1$.

Hướng dẫn giải

Giả sử tồn tại các số nguyên $x$ và $y$ sao cho $3^x-y^3=1$. Nhận xét $x \geq 0$.
Ta có $3^x=y^3-1=(y+1)\left(y^2-y+1\right)$, suy ra $\left\{\begin{array}{l}y+1=3^t \\\ y^2-y+1=3^{x-t}\end{array} \quad(t \in \mathbb{N}, t \leq x)\right.$.
Khi đó $y=3^t-1$ và
$$
\left(3^t-1\right)^2-\left(3^t-1\right)+1=3^{x-t} \Leftrightarrow 3^{2 t}-3^{t+1}+3=3^{x-t} .
$$

  • Nếu $t=0$, từ (3.2) ta được $1=3^x$ hay $x=0$. Ngoài ra $y=3^0-1=2$.

Nếu $t \geq 1$, giả sử $x-t \geq 2$, khi đó $3^{x-t} \vdots 9$. Từ (3.2) ta có $3^{2 t} \vdots 9$ và $3^{t+1} \vdots 9$ (do $t \geq 1$ ), từ đó suy ra $3 \vdots 9$ (Vô lí).
Do đó $x-t \in{0,1}$.

  • Nếu $x-t=0$ thì $y^2-y+1=1 \Leftrightarrow y(y-1)=0 \Leftrightarrow\left[\begin{array}{l}y=0 \ y=1\end{array}\right.$.
    Với $y=0$ ta tìm được $x=0$ và với $y=1$ ta có $3^x=2$ (Vô lí).
  • Nếu $x-t=1$ thì $y^2-y+1=3 \Leftrightarrow y^2-y-2=0 \Rightarrow y=2$.
    Khi đó $3^x=2^3+1=9$, dẫn đến $x=2$.

Vậy $(x, y)=(0,0)$ hoặc $(x, y)=(2,1)$.

Ví dụ 3.32. Tìm các số nguyên dương $x$ và $y$ sao cho
$$
9^x-7^x=2^y .
$$

Hướng dẫn giải

Giả sử tồn tại các số nguyên dương $x, y$ sao cho $9^x-7^x=2^y$.
Nếu $x$ lẻ thì
$$
9^x-7^x \equiv 1^x-(-1)^x \equiv 2(\bmod 8) .
$$

Do đó $2^y \equiv 2(\bmod 8)$, suy ra $y=1$. Khi đó $9^x-7^x=2 \Rightarrow x=1$.
Nếu $x$ chẵn, đặt $x=2 k\left(k \in \mathbb{N}^*\right)$, ta được
$$
2^y=9^{2 k}-7^{2 k}=\left(9^k-7^k\right)\left(9^k+7^k\right) .
$$

Suy ra
$$
\left\{\begin{array}{l}
9^k-7^k=2^t \\
9^k+7^k=2^{y-t}
\end{array}\right.
$$
với $t \in \mathbb{N}^*$ và $t \leq y$.
– Nếu $k$ lẻ, khi đó $2^t \equiv 9^k-7^k \equiv 2(\bmod 8)$, do đó $t=2$ và $k=1$.
Dẫn đến $x=2$ và $2^y=81-49=32 \Rightarrow y=5$.
– Nếu $k$ chẵn, ta có
$$
9^k+7^k \equiv 1^k+(-1)^k \equiv 2(\bmod 8) .
$$

Do đó $2^{y-t} \equiv 2(\bmod 8)$, suy ra $y-t=1$. Như vậy $9^k+7^k=2$ (Vồ lí).
Vậy $(x, y)=(1,1)$ hoặc $(x, y)=(2,5)$.

Ví dụ 3.33. Tìm tất cả các số nguyên tố $p$ sao cho luôn tồn tại các số nguyên dương $n, x, y$ thỏa mãn
$$
p^n=x^3+y^3 .
$$

Hướng dẫn giải

Đặt $x=p^t x_1$ và $y=p^s y_1\left(x_1, y_1, s, t \in \mathbb{N}\right.$ và $\left.x_1, y_1 \neq p\right)$.
Ta có
$$
p^n=p^{3 t} x_1^3+p^{3 s} y_1^3>p^{3 t} \Rightarrow n>3 t .
$$

Không mất tính tổng quát, giả sử $t \geq s$.
Nếu $t>s$ thì $p^{n-3 s}=p^{3(t-s)} x_1^3+y_1^3 \vdots p \Rightarrow y_1^3 \vdots p$ (Vô lí).
Vậy $t=s$, do đó $p^{n-3 t}=x_1^3+y_1^3=\left(x_1+y_1\right)\left(x_1^2-x_1 y_1+y_1^2\right)$.

  • Nếu $x_1^2-x_1 y_1+y_1^2=1$ thì $x_1=y_1=1$.
    Khi đó $p^{n-3 t}=2 \Rightarrow\left\{\begin{array}{l}p=2 \\\ n-3 t=1\end{array} \Rightarrow\left\{\begin{array}{l}p=2 \\\ n=3 t+1\end{array}\right.\right.$.
    Lúc này ta được $x=y=2^t$. Thử lại thỏa.
  • Nếu $x_1^2-x_1 y_1+y_1^2>1$, ta được
    $$
    \left\{\begin{array}{l}
    x_1+y_1=p^k \\\
    x_1^2-x_1 y_1+y_1^2=p^{n-3 t-k}
    \end{array}\right.
    $$
    với $k \geq 1, n-3 t-k \geq 1$.

Do đó $\left(x_1+y_1\right)^2-\left(x_1^2-x_1 y_1+y_1^2\right)=3 x_1 y_1 \vdots p \Rightarrow 3 \vdots p \Rightarrow p=3$.

Ngoài ra, nếu $n-3 t-k \geq 2$ thì $x_1^2-x_1 y_1+y_1^2=\left(x_1+y_1\right)^2-3 x_1 y_1 \vdots 3^2$, mà $\left(x_1+y_1\right)^2 \vdots 3^2$ nên $3 x_1 y_1 \vdots 3^2 \Rightarrow x_1 y_1 \vdots 3$ (Vô lí).
Vậy $n-3 t-k=1$ hay $x_1^2-x_1 y_1+y_1^2=3$. Không mất tính tổng quát, giả sử $x_1 \geq y_1$ thì ta được $x_1=2$ và $y_1=1$.
Từ đây ta được $n-3 t=2 \Leftrightarrow n=3 t+2$ và $x=2 \cdot 3^t$ và $y=3^t$.
Thử lại thỏa.
Vậy $p=2$ và $p=3$ là các số nguyên tố cần tìm.

Ví dụ 3.34. Tìm nghiệm tự nhiên của phương trình
$$
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879 .
$$

Hướng dẫn giải

Giả sử tồn tại các số tự nhiên $x, y$ thỏa mãn
$$
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879 .
$$

Ta có
$$
\begin{aligned}
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right) & =\left(4^x+5 \cdot 2^x+4\right)\left(4^x+5 \cdot 2^x+6\right) = \left(4^x+5 \cdot 2^x+5\right)^2-1 .
\end{aligned}
$$

Do đó $\left(4^x+5 \cdot 2^x+5\right)^2-1-5^y=11879 \Leftrightarrow\left(4^x+5 \cdot 2^x+5\right)^2-5^y=11880$.
Nếu $y \geq 1$ thì ta suy ra $4^x+5 \cdot 2^x+5 \vdots 5 \Rightarrow 4^x \vdots 5$. (Vô lí)
Do đó $y=0$, khi đó
$$
\left(4^x+5 \cdot 2^x+5\right)^2=11881 \Rightarrow 4^x+5 \cdot 2^x+5=109 \Leftrightarrow 4^x+5 \cdot 2^x-104=0 .
$$

Suy ra $2^x=8 \Rightarrow x=3$.
Vậy $x=3$ và $y=0$.

Ví dụ 3.35. Cho $M=a^2+3 a+1$ với $a$ là số nguyên dương.
(a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
(b) Tìm các giá trị của $a$ để $M$ là lũy thừa của 5 .

Hướng dẫn giải

(a) Ta có $a^2+3 a+1=a(a+3)+1$ là số lẻ. Do đó mọi ước của $M$ đều là số lẻ.
(b) Giả sử tồn tại $n \in \mathbb{N}^*$ thỏa mãn $a^2+3 a+1=5^n$. Khi đó
$$
a^2+3 a-4=5^n-5 \Leftrightarrow(a+4)(a-1)=5\left(5^{n-1}-1\right) .
$$

Nếu $n>1$ thì $5^{n-1}-1>0$.
Ta lại có $(a+4)(a-1) \vdots 5$ và $a+4-(a-1)=5$ nên $\left\{\begin{array}{l}a+4 \vdots 5 \\\ a-1 \vdots 5\end{array}\right.$.
Do đó $(a+4)(a-1) \vdots 25 \Rightarrow 5\left(5^{n-1}-1\right) \vdots 25 \Rightarrow 5^{n-1}-1 \vdots 5$. (Vô lí)
Vậy $n=1$ hay $a^2+3 a+1=5 \Rightarrow a=1$.
Thử lại thỏa, vậy $M$ là lũy thừa của 5 khi và chỉ khi $a=1$.

Ví dụ 3.36. Tìm số tự nhiên $n$ sao cho $8^n+47$ là số nguyên tố.

Hướng dẫn giải

  • Xét $n=2 k(k \in \mathbb{N})$, khi đó
    $$
    p^n \equiv 8^n+47 \equiv(-1)^{2 k}+47 \equiv 48 \equiv 0(\bmod 3) .
    $$

Do đó $p$ ! 3 nên $p$ không là số nguyên tố (Vô lí).

  • Xét $n=4 k+1\left(k \in \mathbb{N}^*\right)$, khi đó
    $$
    p \equiv\left(8^4\right)^k \cdot 8+47 \equiv 8+47 \equiv 55 \equiv 0(\bmod 5) .
    $$

Do đó $p \vdots: 5$ nên $p$ không là số nguyên tố (Vô lí).

  • Nếu $n=4 k+3\left(k \in \mathbb{N}^*\right)$, khi đó
    $$
    p \equiv\left(8^4\right)^k \cdot 8^3+47 \equiv 8^3+47 \equiv 559 \equiv 0(\bmod 13) .
    $$

Do đó $p$ : 13 nên $p$ không là số nguyên tố (Vô lí).
Vậy không tồn tại số tự nhiên $n$ để $8^n+47$ là số nguyên tố.

Ví dụ 3.37. Cho phương trình $2^x+5^y=k^2$ ( $x, y, k$ là các số nguyên dương).
(a) Chứng minh rằng phương trình trên vô nghiệm khi $y$ chẵn.
(b) Tìm $k$ để phương trình có nghiệm.
(Đề thi tuyển sinh vào lớp 10 chuyên toán PTNK 2022)

Hướng dẫn giải

(a) Giả sử tồn tại $y \in \mathbb{N}^*$ chẵn để phương trình trên có nghiệm.

  • Với $x=1$ thì $2+5^y=k^2 \equiv 2(\bmod 5)$.
    Điều này vô lý vì $k^2 \equiv 0,1,4(\bmod 5)$ với mọi $k \in \mathbb{N}$.
  • Với $x>1$, do $y$ chẵn nên ta đặt $y=2 m(m \in \mathbb{N})$.
    Khi đó
    $$
    2^x+5^{2 m}=k^2 \Leftrightarrow 2^x=\left(k-5^m\right)\left(k+5^m\right) \Rightarrow\left\{\begin{array}{l}
    k-5^m=2^t \\\
    k+5^m=2^{x-t}
    \end{array} \quad(t \geq 0) .\right.
    $$

Vì $k+5^m>k-5^m$ nên $x-t>t$, suy ra $k=2^{t-1}+2^{x-t-1}$.
Ta thấy nếu $t=0$ thì $k=\dfrac{1}{2}+2^{x-1} \notin \mathbb{N}$. Do đó $t \geq 1$.

Mặt khác $k$ lẻ và $t-1<x-t-1$ nên $2^{t-1}=1 \Rightarrow t=1$. Khi đó $k-5^m=2 \Leftrightarrow k=2+5^m$. Thay vào $2^x+5^{2 m}=k^2$, ta được
$$
2^x+5^{2 m}=\left(2+5^m\right)^2 \Leftrightarrow 2^x=4+2 \cdot 5^m .
$$

Vì $x>1$ nên $2^x \vdots 4$, suy ra $2 \cdot 5^m \vdots 4$ (Vô lí).
Vậy phương trình vô nghiệm khi $y$ chẵn.
(b) Giả sử phương trình có nghiệm, khi đó $y$ lẻ.

  • Nếu $x=4 z+1(z \in \mathbb{N})$ thì
    $$
    k^2 \equiv 2^x+5^y \equiv 2^{4 z} \cdot 2+5^y \equiv 2(\bmod 5) .
    $$

Điều này vô lý vì $k^2 \equiv 0,1,4(\bmod 5)$ với mọi $k \in \mathbb{N}$.

  • Nếu $x=4 z+3(z \in \mathbb{N})$ thì
    $$
    k^2 \equiv 2^{4 z} \cdot 2^3+5^y \equiv 8 \equiv 3(\bmod 5) \text { (Vô lí). }
    $$

Vậy $x$ chẵn, đặt $x=2 t\left(t \in \mathbb{N}^*\right)$.
Ta có
$$
2^x+5^y=k^2 \Leftrightarrow 5^y=\left(k-2^t\right)\left(k+2^t\right) \Rightarrow\left\{\begin{array}{l}
k-2^t=5^s \\\
k+2^t=5^{y-s}
\end{array} \quad(s \in \mathbb{N}) .\right.
$$

Nếu $s>0$ thì $5^{y-s}-5^s \vdots 5$ nên $2^{t+1} \vdots 5$ (vô lý). Do đó $s=0$.

Khi đó $\left\{\begin{array}{l}k=1+2^t \\\ k=5^y-2^t\end{array}\right.$. Suy ra $1+2^t=5^y-2^t \Rightarrow 5^y-1=2^{t+1}$.
Nếu $t>1$ thì $2^{t+1} \vdots 8$. Dặt $y=2 l+1$, khi đó
$$
2^{t+1}=5^y-1=25^l \cdot 5-1 \equiv 5-1 \equiv 4(\bmod 8) \text{vô lý}
$$

Vậy $t=1$, suy ra $k=3$. Với $k=3$, ta tìm được $x=2$ và $y=1$.
Vậy phương trình có nghiệm khi và chỉ khi $k=3$.

Ví dụ 3.38. Cho $k$ là số nguyên dương và $a=3 k^2+3 k+1$.
(a) Chứng minh rằng $2 a$ và $a^2$ là tổng của ba số chính phương.
(b) Chứng minh rằng nếu $a$ là uớc của số nguyên $b$ và $b$ bằng tổng của ba số chính phương thì bất kì lũy thừa với số mũ nguyên dương nào của $b$ cũng là tổng của ba số chính phương.

Hướng dẫn giải

(a) Ta có
$$
\begin{aligned}
2 a=6 k^2+6 k+2 & =k^2+\left(k^2+2 k+1\right)+\left(4 k^2+4 k+1\right) = k^2+(k+1)^2+(2 k+1)^2
\end{aligned}
$$
$$
\begin{aligned}
a^2 & =\left(3 k^2+3 k-1+2\right)^2=9 k^4+18 k^3+15 k^2+6 k+1 = \left(4 k^4+12 k^3+13 k^2+6 k+1\right)+\left(4 k^4+4 k^3+k^2\right)+\left(k^4+2 k^3+k^2\right) = \left(2 k^2+3 k+1\right)^2+\left(2 k^2+k\right)^2+\left(k^2+k\right)^2
\end{aligned}
$$
(b) Đặt $a^2=a_1^3+a_2^3+a_3^3$ với $a_1, a_2, a_3 \in \mathbb{Z}$.
Đặt $b=c a$ với $c$ là số nguyên dương, do $b$ bẳng tổng của ba số chính phương nên $b=b_1^2+b_2^2+b_3^2$ với $b_1, b_2, b_3$ là các số nguyên.
Xét số nguyên dương $n$ bất kì, khi đó

  • Nếu $n=2 k\left(k \in \mathbb{Z}^{+}\right)$thì
    $$
    \begin{aligned}
    b^n & =c^{2 k} a^{2 k}=\left(c^k a^{k-1}\right)^2 a^2 = \left(c^k a^{k-1}\right)^2\left(a_1^2+a_2^2+a_3^2\right) = \left(c^k a^{k-1} a_1\right)^2+\left(c^k a^{k-1} a_2\right)^2+\left(c^k a^{k-1} a_3\right)^2
    \end{aligned}
    $$
  • Nếu $n=2 k+1(k \in \mathbb{Z})$ thì
    $$
    b^n=\left(b^k\right)^2 \cdot b=\left(b^k\right)^2\left(b_1^2+b_2^2+b_3^2\right)=\left(b^k b_1\right)^2+\left(b^k b_2\right)^2+\left(b^k b_3\right)^2
    $$

Hoàn tất chứng minh.


C. CÁC BÀI TẬP RÈN LUYỆN

Bài 3.13. Tìm nghiệm nguyên dương của phương trình
$$
x^3+x^2+x+1=2011^y .
$$

Bài 3.14. Tìm tập nghiệm nguyên dương của phương trình
$$
8^x+15^y=17^z .
$$

Bài 3.15. Tìm các số nguyên dương $x, y, z>1$ thỏa mãn
$$
(x+1)^y-x^z=1 .
$$

Bài 3.16. Tìm nghiệm tự nhiên của phương trình $5^x-3^y=2$.

Bài 3.17. Tìm nghiệm nguyên dương của phương trình
$$
2^x \cdot 3^y+5^z=7^t .
$$

Bài 3.18. Cho các số nguyên dương $m, n \geq 2$. Tìm nghiệm nguyên dương của phương trình
$$
x^n+y^n=3^m .
$$

Bài 3.19. Cho $p$ là một số nguyên tố và $a, n$ là các số nguyên dương. Chứng minh rằng nếu $2^p+3^p=$ $a^n$ thì $n=1$.

Bài 3.20. Chứng minh rằng tích của ba số nguyên liên tiếp không thể là lũy thừa với số mũ lớn hơn 1 của một số nguyên.

Bài 3.21. Cho phương trình $3 x^2-y^2=23^n$ với $n$ là số tự nhiên.
(a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x, y)$.
(b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x, y)$.

Bài 3.22.
(a) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+4 m=0$ thì cũng tồn tại các số nguyên $a^{\prime}, b^{\prime}, c^{\prime}$ sao cho $a^{\prime}+b^{\prime}+c^{\prime}=0$ và $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+a^{\prime} c^{\prime}+m=0$.
(b) Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+2^k=0$.
(Đề thi tuyển sinh lớp 10 chuyên Toán PTNK 2015)

Leave a Reply

Your email address will not be published. Required fields are marked *