Tag Archives: ChuyenToan

Đề thi thử vào 10 chuyên toán năm 2023 – Star Education

Thời gian làm bài 150 phút

Đề bài.

Bài 1. (2,5 diểm)
(a) Giải phương trình $3 x^3+x+3+(8 x-3) \sqrt{2 x^2+1}=0$.
(b) Cho phương trinh $(\sqrt{x}+1)\left(x^2-3(m+1) x+2 m^2+5 m+2\right)=0(m$ là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn nghiệm này là bình phương nghiệm kia.
(c) n là số tự nhiên lớn hơn hoạc bằng 4, cho $n$ số thực $a_1 \leq a_2 \leq \cdots \leq a_n$ thỏa mãn $a_1+a_2+\cdots a_n=0$ và $\left|a_1\right|+\left|a_2\right|+\cdots\left|a_n\right|=A$. Chứng minh rằng
$$
a_n-a_1 \geq \frac{2 A}{n}
$$

Bài 2. (1,5 điểm) Xét các số $a, b, c$ khác 0 và đôi một phân biệt sao cho các phương trình sau đây có một nghiệm chung:
$$
a x^3+b x+c=0(1), b x^3+c x+a=0(2), c x^3+a x+b=0(3) .
$$
(a) Chứng minh $a+b+c=0$.
(b) Chứng minh rằng một trong các phương trình này có ba nghiệm (không nhất thiết phân biệt).

Bài 3. $(1,5$ điểm)
(a) Tìm số tự nhiên có hai chũ số sao cho nó bằng tổng bình phương các chũ số của nó.
(b) Tìm tất cả các số nguyên tố p, sao cho p có thể biểu diễn được dưới dạng $\sqrt{\frac{a^2-4}{b^2-1}}$, trong đó a,b là các số nguyên dương.

Bài 4. ( 3,5 điểm) Cho đường tròn $(O ; R)$ và dây cung $B C=R \sqrt{3}$ cố định, $A$ thay đổi trên cung lớn $B C$ sao cho tam giác $A B C$ nhọn. Các đường cao $B D, C E$ cắt nhau tại $H$. Phân giác trong góc $A$ cắt $D E$ và $B C$ lần lượt tại $K, L$.
(a) Tính $\angle B A C$ và $\angle O H C$.
(b) Chứng minh $\frac{A K}{A L}$ không đổi. Tìm vị trí của A để KL lớn nhât, tính giá trị đó theo $R$.
(c) Chứng minh đường thẳng d qua L vuông góc $O A$ tiếp xúc với một đường tròn cố định.
(d) Đường thẳng qua K vuông góc DE và đường thẳng qua L vuông góc $B C$ cắt nhau tại P. Chứng minh AP luôn đi qua một điểm cố định.

Bài 5. (1 điểm) Có 10 viên bi vàng và 10 viên bi xanh được xếp thành một hàng. Chúng minh rằng tồn tại 10 viên bi liên tiếp sao cho số viên bi vàng và xanh bằng nhau.

LỜI GIẢI

ĐỀ VÀ ĐÁP ÁN CHUYÊN ĐỀ TOÁN 9 – STAR EDUCATION

ĐỀ BÀI.


Bài 1.
a) Giải phương trình: $\sqrt{2 x^2+5 x-6}+\sqrt{2 x^2-x+3}=2 x+1$.
b) Giải hệ phương trình: $\left\{\begin{array}{l}3 x=x y z+y+1 \\\ 3 y=y z x+z+1 \\\ 3 z=z x y+x+1\end{array}\right.$.

Bài 2. Cho các số thực $x, y, z$ thỏa $x^2+y^2+z^2=1$. Tìm giá trị nhỏ nhất và lớn nhất của
$$
A=x^3+y^3+z^3-x^4-y^4-z^4 .
$$

Bài 3. Xét phương trình nghiệm nguyên $x^2+y^2+z^2=x y+k z$ theo ẩn $x, y, z$ và tham số nguyên $k$.
a) Giải phương trình khi $k=3$.
b) Chứng minh rằng khi $k=3^n$ với $n \geq 1$, phương trình có đúng 2 nghiệm.

Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn tâm $O$ và ngoại tiếp đường tròn tâm $I$. Phân giác ngoài của góc $\angle B A D$ và $\angle A B C$ cắt nhau tại $E$. Phân giác ngoài của góc $\angle A B C$ và $\angle B C D$ cắt nhau tại $F$. Phân giác ngoài của góc $\angle B C D$ và $\angle C D A$ cắt nhau tại $G$. Phân giác ngoài của góc $\angle C D A$ và $\angle D A B$ cắt nhau tại $H$.
a) Chứng minh tứ giác $E F G H$ nội tiếp.
b) Chứng minh $E, I, G$ thẳng hàng và $H, I, F$ cũng thẳng hàng.
c) Gọi $M, N, P, Q$ là các tiếp điểm của đường tròn nội tiếp $(I)$ tại $A B, B C, C D, D A$. Chứng minh rằng $E G$ là trung trực của $N Q$, và $F H$ là trung trực của $M P$.

Bài 5. Cho 9 điểm (khác nhau) nằm trong một hình vuông có cạnh là 1 .
a) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích không quá $\frac{1}{8}$.
b) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích nhỏ hơn $\frac{1}{8}$.

LỜI GIẢI

Bài 1.

a) Giải phương trình: $\sqrt{2 x^2+5 x-6}+\sqrt{2 x^2-x+3}=2 x+1$.
b) Giải hệ phương trình: $\left\{\begin{array}{l}3 x=x y z+y+1 \\\ 3 y=y z x+z+1 \\\ 3 z=z x y+x+1\end{array}\right.$.

Lời giải

a) Điều kiện: $x \geq-\dfrac{1}{2}$ và $2 x^2+5 x-6 \geq 0$, suy ra $x>0$. Phương trình đã cho tương đương
$$ \sqrt{2 x^2+5 x-6}-x+\sqrt{2 x^2-x+3}-x-1=0$$
$$\Leftrightarrow \dfrac{2 x^2+5 x-6-x^2}{\sqrt{2 x^2+5 x-6}+x}+\dfrac{2 x^2-x+3-x^2-2 x-1}{\sqrt{2 x^2-x+3}+x+1}=0$$
$$\Leftrightarrow \dfrac{x^2+5 x-6}{\sqrt{2 x^2+5 x-6}+x}+\dfrac{x^2-3 x+2}{\sqrt{2 x^2-x+3}+x+1}=0$$
Ta thấy $x=1$ là nghiệm. Xét $x \neq 1$, phương trình trên tương đương
$$\dfrac{x+6}{\sqrt{2 x^2+5 x-6}+x}+\dfrac{x-2}{\sqrt{2 x^2-x+3}+x+1}=0$$
Ta chứng minh $\dfrac{6}{\sqrt{2 x^2+5 x-6}+x}>\dfrac{2}{\sqrt{2 x^2-x+3}+x+1}$

hay $ 3 \sqrt{2 x^2-x+3}>\sqrt{2 x^2+5 x-6} \Leftrightarrow 16 x^2-14 x+21>0$
Bất đẳng thức cuối đúng.
Vậy tóm lại, phương trình đã cho có nghiệm duy nhất $x=1$.

Bài 2.

Cho các số thực $x, y, z$ thỏa $x^2+y^2+z^2=1$. Tìm giá trị nhỏ nhất và lớn nhất của
$$
A=x^3+y^3+z^3-x^4-y^4-z^4 .
$$

Lời giải

Từ giả thiết ta có $-1 \leq x, y, z \leq 1$.
Từ đó suy ra $x^3+y^3+z^3+x^2+y^2+z^2=x^2(x+1)+y^2(y+1)+z^2(z+1) \geq 0.$
Dẫn đến $x^3+y^3+z^3 \geq-\left(x^2+y^2+z^2\right)=-1$.
Lại có: $x^4+x^4+y^4-\left(x^2+y^2+z^2\right)=x^2\left(x^2-1\right)+y^2\left(y^2-1\right)+z^2\left(z^2-1\right) \leq 0.$
nên $x^4+x^4+y^4 \leq x^2+y^2+z^2=1$.
Do đó suy ra $A=x^3+y^3+z^3-\left(x^4+x^4+y^4\right) \geq-1-1=-2.$
Đẳng thức xảy ra khi $x=0, y=0, z=-1$ hoặc các hoán vị.
Áp dụng bất đẳng thức $a b \leq \dfrac{a^2+b^2}{2}$ với mọi số thực $a, b$, ta có:
$ x^3=\sqrt{3} \cdot \dfrac{1}{\sqrt{3}} x \cdot x^2 \leq \sqrt{3} \cdot \dfrac{x^2+x^4}{2}=\dfrac{x^2 \sqrt{3}}{6}+\dfrac{x^4 \sqrt{3}}{2}.$
Tương tự, $y^3 \leq \dfrac{y^2 \sqrt{3}}{6}+\dfrac{y^4 \sqrt{3}}{2}, z^3 \leq \dfrac{z^2 \sqrt{3}}{6}+\dfrac{z^4 \sqrt{3}}{2}$.
Từ đây suy ra $A =x^3+y^3+z^3-x^4-y^4-z^4\leq \dfrac{\sqrt{3}}{6}\left(x^2+y^2+z^2\right)+\dfrac{\sqrt{3}-2}{2} \left(x^4+y^4+z^4\right)$
$\leq \dfrac{\sqrt{3}}{6}+\dfrac{\sqrt{3}-2}{2} \cdot \dfrac{\left(x^2+y^2+z^2\right)^2}{3}$
$=\dfrac{\sqrt{3}}{6}+\dfrac{\sqrt{3}-2}{6}=\dfrac{\sqrt{3}-1}{3}.$
Đẳng thức xảy ra khi $x=y=z=\dfrac{1}{\sqrt{3}}$.

Bài 3. Xét phương trình nghiệm nguyên $x^2+y^2+z^2=x y+k z$ theo ẩn $x, y, z$ và tham số nguyên $k$.
a) Giải phương trình khi $k=3$.
b) Chứng minh rằng khi $k=3^n$ với $n \geq 1$, phương trình có đúng 2 nghiệm.

Lời giải

a) Khi $k=3$, ta có phương trình $x^2+y^2+z^2=x y+3 z \Leftrightarrow 3 z-z^2=x^2-x y+y^2 \geq 0 .$
Suy ra $0 \leq z \leq 3$.
Nếu $z=0$ hoặc $z=3$ thì $x=y=0$.
Nếu $z=1$ hoặc $z=2$ thì $x^2-x y+y^2=2$ hay $(x+y)^2=3 x y+2$. Điều này là vô lý vì số chính phương không thể chia cho 3 dư 2 .
Vậy tất cả nghiệm cần tìm là $(0,0,0),(0,0,3)$.

b) Ta chứng minh bằng cách quy nạp theo $n$. Khẳng định đúng với $n=1$. Giả sử khẳng định đúng đến $n \geq 1$, ta chứng minh khẳng định cũng đúng với $n+1$.
Khi $k=3^{n+1}$, phương trình đã cho tương đương: $(x+y)^2+z^2=3 x y+3^{n+1} z: 3$.
Đặt $a=x+y$.
Giả sử $a$ không chia hết cho 3 thì $z$ cũng không chia hết cho 3 , suy ra $
a^2-1, z^2-1 \vdots 3 \Rightarrow a^2+z^2-2 \vdots 3.$ Điều này là vô lý vì $a^2+z^2: 3.$ Vậy $x+y$ và $z$ chia hết cho .
Khi đó $(x+y)^2+z^2: 9$, dẫn đến $x y: 3$.
Kết hợp với $x+y: 3$ ta kết luận được $x, y$ đều là bội của 3 .
Đặt $x=3 x_0, y=3 y_0, z=3 z_0\left(x_0, y_0, z_0 \in \mathbb{Z}\right)$
Có: $x^2+y^2+z^2=x y+3^{n+1} z \Leftrightarrow x_0^2+y_0^2+z_0^2=x_0 y_0+3^n z_0 .$
Theo giả thiết quy nạp, phương trình trên có đúng hai nghiệm. Theo nguyên lý quy nạp, ta được phát biểu đúng với mọi $n \geq 1$.

Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn tâm $O$ và ngoại tiếp đường tròn tâm $I$. Phân giác ngoài của góc $\angle B A D$ và $\angle A B C$ cắt nhau tại $E$. Phân giác ngoài của góc $\angle A B C$ và $\angle B C D$ cắt nhau tại $F$. Phân giác ngoài của góc $\angle B C D$ và $\angle C D A$ cắt nhau tại $G$. Phân giác ngoài của góc $\angle C D A$ và $\angle D A B$ cắt nhau tại $H$.
a) Chứng minh tứ giác $E F G H$ nội tiếp.
b) Chứng minh $E, I, G$ thẳng hàng và $H, I, F$ cũng thẳng hàng.
c) Gọi $M, N, P, Q$ là các tiếp điểm của đường tròn nội tiếp $(I)$ tại $A B, B C, C D, D A$. Chứng minh rằng $E G$ là trung trực của $N Q$, và $F H$ là trung trực của $M P$.

Lời giải

a) Biến đổi góc: $$\angle A E B=180^{\circ}-\angle E A B-\angle E B A=\angle B A I+\angle A B I=\dfrac{1}{2}(\angle B A D+\angle A B C) .$$
Tương tự, $\angle D G C=\dfrac{1}{2}(\angle A D C+\angle B C D)$.
Suy ra $$\angle A E B+\angle D G C=\dfrac{1}{2}(\angle B A D+\angle A B C+\angle A D C+\angle B C D)=\dfrac{1}{2} \cdot 360^{\circ}=180^{\circ} .$$
Vậy tứ giác $E F G H$ nội tiếp.

b) Ta có các tứ giác $A E B I, G D I C$ là các tứ giác nội tiếp nên suy ra
$$\angle A I E+\angle A I D+\angle G I D =\angle A B E+\left(180^{\circ}-\angle I A D-\angle I D A\right)+\angle G C D $$
$$=90^{\circ}-\angle A B I+180^{\circ}-\angle I A D-\angle I D A+90^{\circ}-\angle D C I$$
$$=360^{\circ}-\dfrac{1}{2}(\angle B A D+\angle A B C+\angle A D C+\angle B C D)=180^{\circ} .$$
Vậy $E, I, G$ thẳng hàng. Tương tự, ta cũng có $H, I, F$ thẳng hàng.

c) Gọi $X, Y$ lần lượt là giao điểm của $I E, I B$ và $Q N$.
Biến đổi góc:$$\angle B Y N =180^{\circ}-\angle Y B N-\angle B N Q=180^{\circ}-\dfrac{1}{2} \angle A B C-\dfrac{360^{\circ}-\angle Q A B-\angle N B A}{2}$$
$$=-\dfrac{1}{2} \angle A B C+\dfrac{\angle D A B+\angle A B C}{2}$$
$$=\dfrac{1}{2} \angle D A B=\angle B A I=\angle B E I .$$

Suy ra tứ giác $E B Y X$ nội tiếp, dẫn đến $\angle I X Y=90^{\circ}$.
Mà $I Q=I N$ nên ta được $E I$ là đường trung trực của $Q N$, hay $E Q$ là đường trung trực của $Q N$.
Tương tự, $F N$ của là đường trung trực của $M P$.

Bài 5. Cho 9 điểm (khác nhau) nằm trong một hình vuông có cạnh là 1 .
a) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích không quá $\dfrac{1}{8}$.
b) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích nhỏ hơn $\dfrac{1}{8}$.

Lời giải

Trước tiên ta chứng minh bài toán phụ: một tam giác có ba đỉnh nằm trên cạnh hoặc miền trong của một hình chữ nhật thì có diện tích không quá một nửa diện tích hình chữ nhật ấy.
Thật vậy, giả sử tam giác $M N P$ với $M, N, P$ thuộc cạnh hoặc miền trong hình chữ nhật $A B C$.
Xét trường hợp $M, N$ thuộc cạnh hình chữ nhật, không mất tính tổng quát, $M, N$ nằm trên cạnh $A B$.
Khi đó hạ đường cao $P H$ của tam giác $M N P$ thì $$S_{M N P}=\dfrac{1}{2} P H \cdot M N \leq \dfrac{1}{2} B C \cdot M N \leq \dfrac{1}{2} B C \cdot A B=\dfrac{1}{2} S_{A B C D} .$$
Xét trường hợp $M \in A B$. Kẻ đường thẳng qua $M$ song song với $B C$ cắt $C D$ tại $Q$ và cắt đường thẳng $N P$ tại $T$. Nếu $T$ nằm ngoài đoạn $N P$ thì $$
S_{M N P} \leq S_{M T P} \leq \dfrac{1}{2} S_{M Q C B} \leq \dfrac{1}{2} S_{A B C D} .$$
Nếu $T$ thuộc đoạn $N P$ thì $$S_{M N P}=S_{M T N}+S_{M T P} \leq \dfrac{1}{2} S_{M Q D A}+\dfrac{1}{2} S_{M Q C B}=\dfrac{1}{2} S_{A B C D} .$$


Cuối cùng, nếu $M, N, P$ dều không thuộc cạnh hình chữ nhật, không mất tính tổng quát, giả sử $M$ có khoảng cách gần với $A B$ nhất trong ba điểm $M, N, P$, kẻ đường thẳng qua $M$ song song với $A B$ cắt $A D, B C$ tại $R, S$.
Khi đó, $$S_{M N P} \leq \dfrac{1}{2} S_{R S C D} \leq \dfrac{1}{2} S_{A B C D} .$$
Vậy tóm lại, ta luôn có $S_{M N P} \leq \dfrac{1}{2} S_{A B C D}$. Đẳng thức xảy ra khi tam giác có một cạnh, giả sử $N P$ là cạnh của hình chữ nhật và $M$ nằm trên cạnh của hình chữ nhật đối diện với cạnh $N P$.
Trở lại bài toán, chia hình vuông thành bốn hình vuông nhỏ có diện tích là $\dfrac{1}{4}$ bởi hai đường trung bình.
Theo nguyên lý Dirichlet, tồn tại 3 diểm cùng thuộc một hình vuông nhỏ.
Diện tích tam giác tạo bởi 3 điểm này không quá $\dfrac{1}{2}$ diện tích hình vuông nhỏ, tức là không quá $\dfrac{1}{8}$ (nếu 3 điểm thẳng hàng thì ta coi như đó là tam giác có diện tích bằng 0 ).
Mà các điểm nằm bên trong hình vuông dẫn đến không có cạnh nào của tam giác này là cạnh của hình vuông, cho nên diện tích tam giác này phải bé hơn $\dfrac{1}{8}$.
Hoàn tất chứng minh.

Học chuyên toán ở phổ thông – Hình học

Có nhiều bạn hỏi về việc học chuyên toán ở phổ thông, nhân lúc rảnh rỗi mình cũng có một chút chia sẻ cho các bạn có nhu cầu, xem như đây là một vài kinh nghiệm của mình trong việc học và dạy chuyên.

Trong phần này mình nói về môn hình học của cấp 3.

Nếu bạn nào cấp 2 chưa học chuyên toán, mà lên cấp 3 muốn học chuyên toán để tham gia các kì thi học sinh giỏi thì thực sự khó khăn trong việc bắt đầu từ giai đoạn này vì còn nhiều thứ để học, lời khuyên chân thành trong trường hợp này là các bạn có thể bỏ qua mảng chuyên toán học tốt các phần toán trong chương trình chung, để tất cả đam mê, năng lượng của mình vào việc nghiên cứu toán học ở các cấp học cao hơn, học trò mình có những bạn cấp 3 chỉ học chuyên anh, hoặc không học chuyên toán, nhưng sau vẫn đang làm toán rất tốt ở bậc tiến sĩ. Còn nếu không thi học sinh giỏi mà chỉ học để tạo tiền đề học lên cao thì bỏ qua phần hình chuyên này.

Còn các bạn đã có nền tảng chuyên toán ở cấp 2, muốn học tiếp lên để thi học sinh giỏi thì phần hình học khá quan trọng trong các đề chuyên toán, có thể đọc tiếp ở các dòng sau.

Trong chương trình chính thức chung cho mọi đối tượng có các phần sau: Vectơ, hệ thức lượng, lượng giác, phương pháp tọa độ trong mặt phẳng- các đường conic (lớp 10) và mảng hình học không gian từ 11 lên 12. Nhìn chung phần này cũng rất đa dạng và cung cấp nhiều cách tiếp cận, chủ yếu là tính toán và biến đổi đại số, lượng giác nhằm giải quyết một bài toán hình học, hỗ trợ cho giải các bài toán thi học sinh giỏi. Cố gắng học chắc các phần này vì nó dù sao cũng là phần chung cho mọi học sinh phổ thông phải học. (Khi mình học phổ thông thì phần này học khá kĩ vì lúc đó không biết đề thi học sinh giỏi cho thi cái gì, !)

Ngoài các phần trên thì trong Tài liệu giáo khoa chuyên toán có giới thiệu thêm một số chuyên đề nhằm giải quyết các bài toán hình học phẳng: phương tích trục đẳng phương, hàng điểm điều hòa, cực và đối cực, các phép biến hình như: tịnh tiến, quay, vị tự, vị tự quay, nghịch đảo. Để giải một bài toán hình học trong các đề học sinh giỏi có thể có nhiều các tiếp cận, nhưng lời khuyên là hãy nắm thật chắc và vận dụng thành thạo các công cụ, thử chứng minh lại hết các tính chất, định lý trong từng chuyên đề. Ngoài ra để giải bài toán hình học phẳng còn phải biết thêm một vài tính chất, định lý quen thuộc. (Tất cả những thứ này mình đều không được biết trước khi thấy đề thi, do đó mà đã bỏ lỡ chúng trong thời gian học phổ thông, mãi tới đại học mới biết hàng điểm điều hòa là gì !)

Có một điều trong việc học chuyên đó là tính hệ thống, học một cách bài bản và có hệ thống các chuyên đề, theo một thứ tự phù hợp (như liệt kê trên) sẽ có lợi trong việc tư duy, tránh việc dùng “dao giết trâu để mổ gà”, vì đôi khi những bài toán khó bắt đầu từ các ý tưởng rất tự nhiên và đơn giản.

Về mặt kĩ thuật thì có các kĩ thuật cần rèn luyện nhiều như: biến đổi góc, biến đổi và so sánh các độ dài, tỉ lệ, việc phát hiện các yếu tố như tứ giác nội tiếp hay hàng điểm điều hòa, hay một tính chất nào đó quen thuộc, đôi khi là chìa khóa để giải bài toán đó.

Về mặt trình bày hình khá đơn giản, những kiến thức trong Tài liệu giáo khoa chuyên toán chắc chắn sẽ được công nhận, những tính chất nào mới quá, hoặc không phổ biến, nên chứng minh lại rõ ràng, nếu muốn đạt điểm tối đa.

Mình đã chứng kiến nhiều em lúc đầu kém hình, ngại làm hình học nhưng khi quyết tâm thì tiến bộ rất nhanh và thành công trong các kì thi học sinh giỏi.

Chú ý: Một số chuyên đề mình nêu cũng đã có trên website này, các bạn có thể tham khảo.

Học toán như luyện công, hãy rèn luyện nội lực thật tốt trước khi học những chiêu thức cao siêu, không khéo tẩu hỏa nhập ma.

Tài liệu tham khảo:

Đề và đáp án thi vào lớp 10 Chuyên Toán TPHCM năm 2022

Bài 1. (1,0 diểm)
Cho $x, y$ là hai số thực thỏa mãn $x y+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1$.
Tính giá trị của biểu thức $M=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)$.
Bài 2. (2,5 diểm)
a) Giải phương trình $\sqrt{x+4}+|x|=x^2-x-4$.
Bài 3. (1,5 diểm)
Cho hình vuông $A B C D$ Trên các cạnh $B C$ và $C D$ lần lượt lấy các điểm $M$ và $N$ sao cho $\angle M A N=45^{\circ}$.
a) Chứng minh $M N$ tiếp xúc với dường tròn tâm $A$ bán kính $A B$.
b) Kẻ $M P$ song song với $A N$ ( $P$ thuộc đoạn $A B)$ và kẻ $N Q$ song song với $A M(Q$ thuộc đoạn $A D)$. Chứng minh $A P=A Q$.
Bài 4. (2,0 diểm)
Cho ba số thực dương $a, b, c$ thỏa $a+b+c=3$.
a) Chứng minh rằng $a b+b c+c a \leq 3$.
b) Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}$.
Bài 5. (2,0 diểm)
Cho tam giác $A B C$ nhọn $(A B<A C)$ có các đường cao $A D, B E, C F$ cắt nhau tại $H$. Đường thẳng $E F$ cắt đường thẳng $B C$ tại $I$. Đường thẳng qua $A$ vuông góc với $I H$ tại $K$ và cắt $B C$ tại $M$.
a) Chứng minh tứ giác $I F K C$ nội tiếp và $\frac{B I}{B D}=\frac{C I}{C D}$.
b) Chứng minh $M$ là trung diểm của $B C$.

Bài 6. (1,0 diểm)
Số nguyên dương $n$ được gọi là “số tốt” nếu $n+1$ và $8 n+1$ dều là các số chính phương.
a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số.
b) Tìm các số nguyên $k$ thỏa mãn $|k| \leq 10$ và $4 n+k$ là hợp số với mọi $n$ là “số tốt”.

Đáp án được thực hiện vởi Star Education

Bài 1.

Điều kiện: $x y \leq 1$. Biến đổi giả thiết
$$
\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1-x y \Leftrightarrow\left(1+x^2\right)\left(1+y^2\right)=(1-x y)^2 \Leftrightarrow(x+y)^2=0 \Leftrightarrow y=-x .
$$
Thay vào biểu thức $M$ ta được
$$
\begin{aligned}
M & =\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right) \
& =\left(x+\sqrt{1+x^2}\right)\left(-x+\sqrt{1+x^2}\right) \
& =\left(\sqrt{1+x^2}\right)^2-x^2=1
\end{aligned}
$$

Bài 2.

a)

Lời giải:
a) Điều kiện: $\left\{\begin{array}{l}x+4 \geq 0 \\\\ x^2-x-4 \geq 0\end{array} \right.$

$\Leftrightarrow\left[\begin{array}{l}-4 \leq x \leq \frac{1-\sqrt{17}}{2} \\\\ x \geq \frac{1+\sqrt{17}}{2}\end{array}\right.$
Phương trình đã cho tương đương
$$
x^2-\sqrt{x+4}-|x|-(x+4)=0 \Leftrightarrow(|x|+\sqrt{x+4})(|x|-\sqrt{x+4}-1)=0 \Leftrightarrow|x|-1=\sqrt{x+4}
$$

  • Nếu $x \geq 0,(1) \Rightarrow x-1=\sqrt{x+4}$
    $$
    \Rightarrow x^2-2 x+1=x+4 \Leftrightarrow x^2-3 x-3=0 \Leftrightarrow\left[\begin{array}{l}
    x=\frac{3+\sqrt{21}}{2} \text { (Nhận) } \\\\
    x=\frac{3-\sqrt{21}}{2} \text { (Loại) }
    \end{array}\right.
    $$
  • Nếu $x<0,(1) \Rightarrow-x-1=\sqrt{x+4}$
    $$
    \Rightarrow x^2+2 x+1=x+4 \Leftrightarrow x^2+x-3=0 \Leftrightarrow\left[\begin{array}{l}
    x=\frac{-1+\sqrt{13}}{2} \text { (Loại) } \\\\
    x=\frac{-1-\sqrt{13}}{2} \text { (Nhận) }
    \end{array} .\right.
    $$
    Thử lại, ta được $x=\frac{3+\sqrt{21}}{2}$ và $x=\frac{-1-\sqrt{13}}{2}$ là các nghiệm của phương trình đã cho.

b) Điều kiện: $(x+y)(y+z)(z+x) \neq 0$. Hệ dã cho tương dương
$$
\left\{\begin{array} { l }
{ \frac { x } { y + z } + 1 = 2 x } \\\\
{ \frac { y } { z + x } + 1 = 3 y } \\\\
{ \frac { z } { x + y } + 1 = 5 z }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ \frac { x + y + z } { y + z } = 2 x } \\\\
{ \frac { x + y + z } { z + x } = 3 y } \\\\
{ \frac { x + y + z } { x + y } = 5 z }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x+y+z=2 x(y+z) \\\\
x+y+z=3 y(z+x) \\\\
x+y+z=5 z(x+y)
\end{array}\right.\right.\right.
$$
Dễ thấy $x y z \neq 0$. Từ trên suy ra
$$
2 x(y+z)=3 y(z+x)=5 z(x+y) \Leftrightarrow 2\left(\frac{1}{y}+\frac{1}{z}\right)=3\left(\frac{1}{z}+\frac{1}{x}\right)=5\left(\frac{1}{x}+\frac{1}{y}\right) .
$$
Ta tính được $\frac{1}{z}=\frac{19}{x}, \frac{1}{y}=\frac{11}{x} \Rightarrow x=11 y=19 z$. Thay lại vào phương trình $(*)$ ta dược
$$
x+\frac{x}{11}+\frac{x}{19}=2 x\left(\frac{x}{11}+\frac{x}{19}\right) \Leftrightarrow 1+\frac{1}{11}+\frac{1}{19}=2\left(\frac{x}{11}+\frac{x}{19}\right) \Leftrightarrow x=\frac{239}{60} .
$$
Suy ra $y=\frac{239}{660}, z=\frac{239}{1140}$.
Vậy nghiệm duy nhất của hệ là $(x, y, z)=\left(\frac{239}{60}, \frac{239}{660}, \frac{239}{1140}\right)$.

Bài 3.

a) Trên tia đối của tia $D C$ lấy $F$ sao cho $D F=B M$.
Xét $\triangle A D F$ và $\triangle A B M$ có $A D=A B, \angle A D F=\angle A B M=90^{\circ}$ và $D F=B M$.
Do đó $\triangle A D F=\triangle A B M(\mathrm{c}-\mathrm{g}-\mathrm{c})$
$\Rightarrow \angle D A F=\angle B A M$ và $A F=A M$.
Suy ra $\angle D A F+\angle D A N=\angle B A M+\angle D A N=90^{\circ}-45^{\circ}=45^{\circ}$.
$\Rightarrow \angle N A F=45^{\circ}=\angle N A M$, mà $A F=A M$ nên $\triangle N A F=\triangle N A M$. (c-g-c)
Kẻ $A E \perp M N(E \in M N) \Rightarrow A E=A D=A B \Rightarrow M N$ tiếp xúc với $(A, A B)$.
b) Ta có: $\triangle N A F=\triangle N A M \Rightarrow \angle A N F=\angle A N M$, mà $\angle A N F=\angle N A P($ do $D C | A B)$, dẫn đến $\angle A N M=\angle N A P$.

Từ $A N | M P \Rightarrow A P M N$ là hình thang, kết hợp với $\angle A N M=\angle N A P$, ta được $A P M N$ là hình thang cân.
Do đó $A P=M N$, tương tự ta cũng có $A Q=M N$, dẫn dến $A P=A Q$.

Bài 4.

a)

a) Ta có $a^2+b^2 \geq 2 a b, b^2+c^2 \geq 2 b c, c^2+a^2 \geq 2 c a$ nên
$$
2\left(a^2+b^2+c^2\right) \geq 2(a b+b c+c a) \Leftrightarrow a^2+b^2+c^2 \geq a b+b c+c a .
$$
Khi đó
$$
\begin{aligned}
9=(a+b+c)^2 & =a^2+b^2+c^2+2 a b+2 b c+2 c a \
& \geq a b+b c+c a+2(a b+b c+c a)=3(a b+b c+c a)
\end{aligned}
$$
Do đó $a b+b c+c a \leq 3$.
Dấu “=” xảy ra khi và chỉ khi $a=b=c=1$.

b)

b) Ta có
$$
\begin{aligned}
& \frac{a}{b^2+1}-a=\frac{-a b^2}{b^2+1} \geq-\frac{a b^2}{2 b}=-\frac{a b}{2} \
& \frac{b}{c^2+1}-b=\frac{-b c^2}{c^2+1} \geq-\frac{b c^2}{2 c}=-\frac{b c}{2} \
& \frac{c}{a^2+1}-c=\frac{-c a^2}{a^2+1} \geq-\frac{c a^2}{2 a}=-\frac{c a}{2}
\end{aligned}
$$
Do đó
$$
\begin{aligned}
& \frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c^2}{a^2+1}-(a+b+c) \geq-\frac{a b+b c+c a}{2} \geq-\frac{3}{2} \
\Rightarrow & \frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1} \geq-\frac{3}{2}+a+b+c=\frac{3}{2}
\end{aligned}
$$
Vậy giá trị nhỏ nhất của $P$ là $\frac{3}{2}$, dấu “=” xảy ra khi và chỉ khi $a=b=c=1$.

Bài 5.

Vẽ dường tròn $(O)$ ngoại tiếp $\triangle A B C$
a) Ta có: Các tứ giác $A F D C, A K D I, B F E C, A F H E$ nội tiếp.
$\Rightarrow H F \cdot H C=H D \cdot H A=H K . H I \Rightarrow I F K C$ nội tiếp.
Mặt khác: $\widehat{I F B}=\widehat{A C B}=\widehat{B F D}$ (do các tứ giác $B F E C, A F D C$ nội tiếp)
$\Rightarrow F B$ là phân giác $\widehat{I F D}$.
Mà $F B \perp F C$ nên $F B$ là phân giác trong, $F C$ là phân giác ngoài $\triangle I F D$
$$
\Rightarrow \frac{B I}{B D}=\frac{C I}{C D}
$$
b) Gọi $S$ là giao điểm thứ hai của $I A$ và đường tròn ngoại tiếp $O$.
Ta chứng minh được $I F . I E=I B . I C=I S . I A$
$\Rightarrow A S F E$ nội tiếp hay 5 điểm $A, S, F, H, E$ cùng thuộc đường tròn đường kính $A H$
$\Rightarrow \widehat{A S H}=\widehat{A F H}=90^{\circ}$
Mặt khác do: $I K \perp A M, A D \perp I M$ nên $H$ là trực tâm $\triangle A I M \Rightarrow M H \perp A I$.
Từ đó, ta có: $S, H, M$ thẳng hàng.
Vẽ đường kính $A Q$ của đường tròn ngoại tiếp $\triangle A B C$.
Ta có $\widehat{A S Q}=90^{\circ}$ nên $S, H, M, Q$ thẳng hàng
Xét tứ giác $B H C Q$ có: $B H / / C Q$ (cùng $\perp A C)$ và $C H / / B Q($ cùng $\perp A B)$
Nên $B H C Q$ là hình bình hành nghĩa là có $M$ là trung điểm $B C$.

Bài 6.

Lời giải:
a) Ví dụ: $3\left(3+1=2^2\right.$ và $\left.8 \cdot 3+1=5^2\right), 15\left(15+1=4^2\right.$ và $\left.8 \cdot 15+1=11^2\right)$ và 120 $\left(120+1=11^2\right.$ và $\left.8 \cdot 120+1=31^2\right)$.
b) Nhận xét $a^2 \equiv 0,1(\bmod 3)$ với mọi $a \in \mathbb{N}$.
Đặt $n+1=x^2$ và $8 n+1=y^2(x, y \in \mathbb{N})$.

  • Nếu $n \equiv 1(\bmod 3)$ thì $x^2=n+1 \equiv 2(\bmod 3)$, vô lí.
  • Nếu $n \equiv 2(\bmod 3)$ thì $y^2=8 n+1 \equiv 17 \equiv 2(\bmod 3)$, vô lí.
    Vậy $n \equiv 0(\bmod 3)$ hay $n$ chia hết cho 3 .
    Nếu $k=1,5,7,-5,-7$ thì với $n=3$ (là số tốt), $4 n+k$ nhận các giá trị $13,17,19,7,5$ là các số nguyên tố. (Loại)
    Nếu $k=-1$, với $n=15$ (là số tốt) thì $4 n+k=59$ là số nguyên tố. (Loại)
    Nếu $k=-10$, với $n=3$ thì $4 n+k=2$ là số nguyên tố. (Loại)
    Nếu $k=-9$, với $n=3$ thì $4 n+k=3$ là số nguyên tố. (Loại)
    Nếu $k \geq-8, k$ chẵn hoặc $k$ chia hết cho 3 thì $4 n+k \geq 4 \cdot 3-8=4$ và $4 n+k$ có ước là 2 hoặc 3 , do đó $4 n+k$ là hợp số.
    Vậy các giá trị cần tìm của $k$ là
    $$
    k \in{-8,-6,-4,-3,-2,0,2,3,4,6,8,9,10} .
    $$

Giải toán như … viết văn


Mình đăng lại bài viết của bạn Nguyễn Tiến Hoàng gửi cho Tập san Star Education số 10.

Nếu bạn đang tự hỏi rằng tên bài viết này có nhầm lẫn gì không, thì không hề đâu, bạn đã đọc đúng rồi đấy. Trước khi bắt đầu đọc, hãy lưu ý rằng, bài viết này rất nhiều chữ.
Một trong những vấn đề muôn thuở của học sinh Việt Nam, theo quan sát của người viết bài, là một nỗi sợ vô hình đối với các bài toán tổ hợp trong bất kỳ một kỳ thi lớn hay nhỏ. Tổ hợp ở đây không giới hạn trong phạm vi các bài toán đếm mà mang một nét nghĩa rộng hơn thế, tập trung vào khả năng diễn giải và suy luận. Mỗi bài toán dù trong quá trình luyện tập tại nhà, hay là bước vào thực tế thi cử, đều là một vấn đề hoàn toàn mới lạ với các bạn học sinh. Thông thường có hai hình thức để xoay sở:


a) Giải càng nhiều bài tập càng tốt để thu nhận kinh nghiệm. Đây thực ra không phải điều xấu, nhưng việc lạm dụng quá đà sẽ khiến học sinh chỉ trông đợi vào việc gặp lại những thứ quen thuộc, và thậm chí biến tướng thành việc học thuộc lòng.
b) Tuỳ cơ ứng biến và tin tưởng vào trực giác của bản thân. Điều này cũng thú vị bởi xét cho cùng thì một bài toán trong một kỳ thi ở bậc trung học, dù thi gì đi nữa, cũng chỉ là một vấn đề có thể được giải quyết trong thời gian ngắn, thành ra khả năng lớn là mỗi người sẽ tìm được một cách tiếp cận riêng mang tính sáng tạo. Thế nhưng trong một ngày xấu trời, sự nhạy bén không đồng hành, thì phải làm sao ?

Trong bài viết này, người viết muốn giới thiệu một hướng tiếp cận mang tính chất trung hoà và tập trung vào một khâu mà các bạn học sinh thường bỏ quên: phân tích bài toán. Các phân tích cẩn thận và rõ ràng để dần gỡ rối vấn đề được đặt ra đóng vai trò quan trọng tương tự như dàn ý trong việc viết văn. Điều này trở nên then chốt với các vấn đề phức tạp.
Sự phân tích nên tiến hành ra sao ? Bốn câu hỏi cơ bản sau nên được trả lời:
a) “Có gì ?” Bước đầu tiên không khác việc đọc hiểu là bao. Cần chú ý đến từng câu chữ dù là nhỏ nhất. Việc đọc kỹ các giả thiết được đưa ra giúp người giải toán hình dung được những đối tượng đã xuất hiện trong bài toán.
b) “Cần gì ?” Đây là bước giúp hiểu được yêu cầu của bài toán.
c) “Khó khăn gì ?” Bước này quan trọng nhất và đòi hỏi sự kiên nhẫn. Khi thực hiện cẩn thận hai bước đầu tiên, một số vấn đề sẽ phát sinh rất tự nhiên. Các đối tượng được đưa ra đã rõ ràng hay chưa ? Những giả thiết trong bài toán để làm gì ? Tại sao đề bài lại hỏi như thế ? Liệu các đối

tượng có liên kết gì với nhau ? Cấu trúc của từng thành phần hay cả tổng thể là thế nào ? Và còn nhiều thứ phải chú ý nữa.
d) “Giải quyết thế nào ?” Đây là việc trả lời các câu hỏi trên một cách trực tiếp. Việc đặt ra các câu hỏi tự nhiên trong bước trên sẽ giúp người giải toán nhận ra những gì cần thực hiện. Một nguyên tắc chung là, hãy phân tích và liên tục đặt câu hỏi để giảm sự phức tạp, đến khi mọi thứ có thể diễn giải được thật dễ hiểu. Việc gõ rối cần đi từ nội tại từng đối tượng (chẳng hạn như cấu trúc và tính chất của chúng), cho đến liên hệ giữa các đối tượng với nhau, để tránh bỏ sót thông tin quan trọng.


Trong những bài toán phức tạp gồm nhiều công đoạn, các bước trên sẽ phải thực hiện nhiều lần cho mỗi phần của bài toán. Việc tiếp cận có định hướng thế này, ban đầu có thể sẽ hơi tốn thời gian và mệt mỏi trong suy nghĩ, nhưng khi đã thành thạo thì cho thấy hiệu quả lớn, hơn nữa còn rèn luyện được khả năng giải quyết vấn đề một cách độc lập. Người viết bài đã liên tục sử dụng định hướng trên trong việc giảng dạy tại lớp Chuyên đề Toán 9 năm học 2022-2023 và nhận thấy hiệu quả tương đối rõ rệt.

Ví dụ 1. Chứng minh rằng trong 39 số tư nhiên liên tiếp, luôn tìm được một số mà tổng các chứ số của nó chia hết cho 11.


Phân tích. Khi đọc kỹ bài toán, một số câu hỏi sau về các khó khăn là tự nhiên:
a) Tại sao đối tượng được quan tâm là tồng các chữ số ?
b) Dưới điều kiẹn gi thì tồng đó sẽ là bội của 11 ?
c) Tại sao phải cần 39 số tự nhiên liên tiếp? Như thế là ít hay nhiều?
Để đưa được một lập luận trực tiếp nhằm giải quyết các câu hỏi trên, nhìn chung là việc khó hình dung. Các yêu cầu trên có sự liên quan mật thiết với nhau, và hơn nữa tồng các chũ số là một đại lượng không quen thuộc cho lắm, nên một cách tiếp cận khả dũ là việc làm mọi thứ trở nên rõ ràng, từ tính chất của tổng các chữ số hay là quan hệ trong nội bộ của đối tượng, cho đến quan hệ giũa các đối tượng đã xuất hiện.
Một cách tìm hướng giải quyết là đưa ra ví dụ. Khi nhìn vào trường hợp đơn giản nhất cho 39 số tự nhiên liên tiếp chính là các số từ 1 đến 39, chúng ta có thề quan sát được sự biến động của tổng các chũ̃ số và khảo sát được tính chia hết cho 11. Có gì thú vị?

a) Dường như tồng các chư số là tăng dần, nhưng có lúc tổng đó sẽ bị giảm. Vậy khi nào tổng ấy tăng và khi nào tổng ấy giảm ? Quan sát kỹ sẽ thấy rằng: Khi bắt đầu từ số chia hết cho 10 , chẳng hạn là $10 x$ với $x \in \mathbb{Z}^{+}$, thì các số từ $10 x$ đến $10 x+9$ có tổng các chữ số là 10 số tự nhiên liên tiếp. Tổng các chũ số sẽ giảm khi ta “chuyển” tù̀ $10 x+9$ lên $10(x+1)$.
b) Việc chia hết cho 11, nếu nhìn lại ý đầu tiên, thì chúng ta nhận ra rằng vì đã có cách tạo ra 10 giá trị liên tiêp của tổng các chữ số, chỉ cần cố gắng “kéo dài” để tạo ra 11 giá trị liên tiếp của tổng đó thì bài toán sẽ được hoàn tất, bởi trong 11 số tự nhiên liên tiêpp, thế nào cũng có số chia hết cho 11. Do đó việc quan sát vị trí mà tổng các chũ số bị giảm trở nên quan trọng, và đại lượng đó sẽ giảm thế nào ?

  • Có vẻ nhu khi từ $10 x+9$ lên $10(x+1)$ thì tổng các chũ số sẽ giảm 9 đơn vị. Nếu được nhu thê, chúng ta chỉ cần lấy 20 số là $10 x, 10 x+1, \cdots, 10 x+19$ là xong, vì sẽ thu được 11 giá trị liên tiếp cho tổng các chữ sô.
  • Nhưng tại sao bài toán lại cần đến 39 số ? Nếu hình dung một bộ gồm 20 số liên tiếp, bắt đầu từ số chia hết cho 10, là ứng viên tiềm năng để giải quyết bài toán, thì chúng ta không cần đến 39 số để chắc chắn chọn được, mà cần quãng 30 số là đủ. Nghĩa là nhận xét về sự thay đổi được đưa ra phía trên có thể không đúng.
  • Vậy chúng ta tiếp tục kiểm tra khi nào nhận xét “giảm 9 đơn vị” đúng và khi nào điều đó sai, hay có thể tạm gọi là chú ý đến sự xuất hiện của những thứ “ngoài quy luật”. Thử với các giá trị tiếp theo của $x$, rất đáng chú ý khi nhận ra rằng, nhận xét sẽ sai khi có bước chuyển từ 99 lên 100, hay từ 199 lên 200,… Nói cách khác, miễn là $10(x+1)$ không chia hết cho 100 thì nhân xét đúng.

Có thể rút ra được gì từ các nhận định trên?
a) Nếu trong 39 số mà không có số nào chia hết cho 100, thi chọn được bộ 20 số liên tiếp từ $10 x$ đến $10 x+19$, mà có thể hoàn toàn yên tâm về tính “liên tiếp” của tổng các chưu số trong nhũ̃ng số đang được xét, và bài toán sê xong.
b) Lỡ nhu trong 39 số ban đầu, có số chia hết cho 100 thì sao ? Như đã chỉ ra, chúng ta chỉ cần 20 số có dạng $10 x$ đến $10 x+19$, mà trong chúng sẽ không có số nào chia hết cho 100. Có thể hiểu rằng số chia hết cho 100, mà tạm gọi là a, sê “phân đôi” 39 số mà bài toán cho thành 2 phần: một phần gồm các số từ a trở lên, và một phần gồm các số từ a-1 trở xuống. Vì ban đầu chúng ta có 39 số, theo Nguyên lý Dirichlet, phải có một phần được tạo ra gồm ít nhất 20 số.
Và thế là xong. Bây giờ chỉ là sắp xếp và viết lại các nhận định trên thành một lời giải ngắn gọn. Khi viết thành văn thì các suy luận trên có vẻ dài dòng, nhưng trên thực tế khi suy nghĩ, mọi thứ chỉ ở dạng ý tưởng, nên việc triển khai có thề diễn ra rất nhanh.

Chứng minh. Với mỗi số nguyên dương $n$, gọi $S(n)$ là tổng các chữ số của $n$. Trước hết chúng ta chứng minh rằng, với $x$ là số nguyên dương sao cho $100 \nmid 10(x+1)$, có một trong các số $10 x, 10 x+1, \cdots, 10 x+19$ có tổng các chữ số chia hết cho $11 .$. Thật vậy, đặt $S(10 x)=a$ thì với $0 \leq k \leq 9$, ta có $S(10 x+k)=a+k$ và $S(10 x+10+k)=$ $a+1+k$. Do đó tổng các chữ số nhận giá trị trong ${a, a+1, a+2, \cdots, a+10}$, là tập hợp gồm 11 số tự nhiên liên tiếp, và trong tập hợp đó có một giá trị chia hết cho 11 . Quay trở lại bài toán. Gọi 39 số tự nhiên của đề bài lần lượt là là $a, a+1, \cdots, a+38$. Xét các khả năng sau:

  • Trong 39 số này không có số nào là bội của 100. Bởi vì tập hợp ${a, a+1, \cdots, a+9}$ gồm 10 số tự nhiên liên tiếp, trong đó phải có một số chia hết cho 10. Khi đó tồn tại $0 \leq k \leq 9$ để $10 \mid a+k$. Xét các giá trị trong ${S(a+k), S(a+k+1), \cdots, S(a+$ $k+19)}$ thì theo nhận xét ở đầu bài toán, tồn tại một giá trị trong đó là bội của 11.
  • Tồn tại một giá trị $0 \leq k \leq 38$ để $100 \mid a+k$. Khi đó trong các số còn lại, không còn số nào chia hết cho 100 . Có hai khả năng sau:
  • Nếu $k \leq 18$, xét tập hợp ${S(a+k), S(a+k+1), \cdots, S(a+k+19)}$ thì theo nhận xét ở đầu bài toán, tồn tại một giá trị trong đó là bội của 11 .
  • Nếu $k \geq 19$, xét tập hợp ${S(a+k), S(a+k-1), \cdots, S(a+k-19)}$ thì theo nhận xét ở đầu bài toán, tồn tại một giá trị trong đó là bội của 11 .
    Tóm lại, trong 39 số tự nhiên liên tiếp, luôn có số mà tổng các chữ số là bội của 11.

Ví dụ trên cũng cho thấy được một hiện tượng rất thú vị và hầu như luôn đúng, đó là khi quá trình phân tích đủ cẩn thận, việc trình bày lời giải chỉ là một cách sắp xếp và viết ngược lại những ý tưởng chính trong mạch suy luận mà thôi. Để kết thúc bài toán này một cách trọn vẹn, bây giờ là một câu hỏi dành cho các bạn.
Ví dụ 2. Thay vì 39 số, chúng ta chỉ xét 38 số thôi. Liệu bài toán còn đúng không ?
Một gợi ý cho các bạn là hãy đọc lại thật cẩn thận từng bước suy luận, và xem vấn đề diền ra ở đâu. Chú ý rằng nếu như bài toán vần đúng, các bạn phải cung cấp một chứng minh, còn nếu kết quả trở nên sai thì hãy chỉ ra một phản ví dụ. Bây giờ chúng ta đến với một bài toán khác cũng tương đối cổ điển.

Ví dụ 3. Cho sáu số nguyên dương đôi một phân biệt và đều nhỏ hơn 10. Chứng minh rằng luôn tìm được ba số trong đó, mà có một số bằng tồng hai số còn lại.

Phân tích. Một số câu hỏi có thể được đặt ra:
a) Tại sao lại xét 6 số trong ${1,2, \cdots, 9}$ ?
b) Việc có một số bằng tổng hai số còn lại có ý nghĩa gì ? Số nào sẽ bằng tổng của hai số nào ? Khó khăn tại đây đến từ việc chúng ta không xác định được điều trên.
Mà nếu đã không xác định được rõ ràng mọi thứ ngay lập tức, thì tốt nhất là lấy ví dụ cu thể để quan sát thôi. Khi lấy thử một vài ví dụ đề khảo sát, dù có ít bộ ba số hay nhiều bộ ba số thoả mãn yêu cầu bài toán, luôn có một nhận xét quan trọng xuất hiện: tồn tại hai số có tổng bằng số lớn nhất.
Vậy từ đây một hướng đi khả dĩ là tìm hiểu xem số lớn nhất như thế nào, đồng thời làm thế nào có thề viết được số đó thành tổng của hai số tự nhiên phân biệt khác. Khi đã làm được điều đó, hãy xem các thông tin vừa nhận được liên hệ gì với giả thiết ban đầu, mà cụ thể là những số nào xuất hiện trong các cách phân tích thành tổng ấy. Thực ra cũng không quá nhiều trường hợp để giải quyết, vì số lớn nhất thì cũng phải không nhỏ hơn 6.

Chứng minh. Gọi 6 số đã cho là $1 \leq a_1<a_2<\cdots<a_6 \leq 9$. Theo giả thiết trên và đề bài thì $a_k \geq k$ với $1 \leq k \leq 6$. Xét các khả năng sau:

  • Nếu $a_6=9$ thì $1 \leq a_k \leq 8$ với $1 \leq k \leq 5$. Phân các số nguyên dương từ 1 đến 8 thành bốn tập hợp ${1,8},{2,7},{3,6},{4,5}$. Theo nguyên lý Dirichlet, trong các số từ $a_1$ đến $a_5$, có ít nhất hai số thuộc vào cùng một tập hợp. Tổng hai số đó bằng 9 , nên tồn tại $1 \leq i<j \leq 5$ để $a_i+a_j=9$.
  • Nếu $a_6=8$ thì $1 \leq a_k \leq 7$ với $1 \leq k \leq 5$. Phân các số nguyên dương từ 1 đến 8 thành bốn tập hợp ${1,7},{2,6},{3,5},{4}$. Theo nguyên lý Dirichlet, trong các số từ $a_1$ đến $a_5$, có ít nhất hai số thuộc vào cùng một tập hợp. Tổng hai số đó bằng 8 , nên tồn tại $1 \leq i<j \leq 5$ để $a_i+a_j=8$.
  • Nếu $a_6=7$ thì $1 \leq a_k \leq 6$ với $1 \leq k \leq 5$. Phân các số nguyên dương từ 1 đến 7 thành ba tập hợp ${1,6},{2,5},{3,4}$. Theo nguyên lý Dirichlet, trong các số từ $a_1$ đến $a_5$, có ít nhất hai số thuộc vào cùng một tập hợp. Tổng hai số đó bằng 7 , nên tồn tại $1 \leq i<j \leq 5$ để $a_i+a_j=7$.
  • Nếu $a_6=6$ thì $1 \leq a_k \leq 5$ với $1 \leq k \leq 5$. Phân các số nguyên dương từ 1 đến 5 thành ba tập hợp ${1,5},{2,4},{3}$. Theo nguyên lý Dirichlet, trong các số từ
  • $a_1$ đến $a_5$, có ít nhất hai số thuộc vào cùng một tập hợp. Tổng hai số đó bằng 6 , nên tồn tại $1 \leq i<j \leq 5$ để $a_i+a_j=6$.
  • Tóm lại thì luôn có hai số bằng tổng của số lớn nhất. Bài toán kết thúc.

Khai thác thêm bài toán này có thể thấy nhiều điều thú vị sau:
a) Câu hỏi đầu tiên vẫn chưa được giải quyết triệt để khi phân tích. Tuy nhiên, với trường hợp $a_6=9$, nhận thấy rằng việc chọn ra 6 số là để vừa đủ cho việc sử dụng Nguyên lý Dirichlet. Một câu hỏi tự nhiên là nếu bài toán chỉ xét 5 số thay vì 6 số, thì các lập luận sẽ biến đổi thế nào, và liệu kết luận của bài toán còn đúng ?
b) Phát biểu khác đi một chút, liệu số lượng số nhỏ nhất cần chọn để chắc chắn có một số bằng tổng hai số khác, là bao nhiêu? Hơn nữa thay vì giải quyết bài toán như trường hợp ban đầu, khi các số không lớn hơn 9 , điều gì sẽ xảy ra khi thay 9 bởi một số nguyên dương $n$ bất kỳ ? Liệu các câu hỏi tương tự có thể được giải quyết ?
Từ đó có thể thu được bài toán sau, xin dành cho các bạn tự luyện tập.
Ví dụ 4. Cho số nguyên dương $n \geq 3$. Tìm số nguyên dương $k$ nhỏ nhất sao cho với mọi cách chọn ra $k$ số nguyên dương đôi một phân biệt từ tập hợp ${1,2, \cdots, n}$, luôn chọn được ba số trong đó, mà có một số bằng tổng hai số kia.

Ví dụ 5. Với n là số nguyên dương, chọn ra $n+1$ số từ tập hợp ${1,2, \cdots, 2 n}$.
a) Chứng minh rằng có hai số nguyên tố cùng nhau.
b) Chứng minh rằng có hai số mà thương của chúng là số nguyên.

Phân tích. Một số câu hỏi có thể được đặt ra như sau:
a) Tại sao phải cần chọn ra $n+1$ số ?
b) Sự nguyên tố cùng nhau, và việc thương là số nguyên, có ý nghĩa số học gì ? Nếu định nghĩa một cách số học, thì hai số được gọi là nguyên tố cùng nhau khi và chỉ khi chúng không có ước nguyên tố chung. Khi thử tiếp cận theo việc khảo sát các ước nguyên tố của $n+1$ số, mọi chuyện sẽ trở nên rất phức tạp vi chúng ta không biết những số nào được chọn ra, hơn nữa bài toán chỉ yêu cầu một sự tốn tại, nên nếu đi khảo sát toàn bộ cấu trúc của tập hợp ước nguyên tô, thì đó có vè là một yêu cầu quá sức. Hơn nũa, một vấn đề khác làm hướng tiếp cận này trở nên không khả thi, đó là trong bài toán không hề có dấu hiệu gì cho thấy nên tìm hiểu một cách chi tiết về các cấu trúc số $h o c$.
Do đó chúng ta sẽ thử một góc nhìn khác. Tập trung vào câu hỏi đầu tiên, một vấn đề được đặt ra nhu sau: nếu như chỉ lấy $n$ số thì sao? Có thể tìm ngay được phản ví dụ với việc chọn $n$ số chã̃n, thì hai số nào cũng có ước nguyên tố chung là 2. Vậy trong trường hợp tạm gọi là xấu nhất, thế nào cũng có ít nhất một số lẻ. Và liệu số lẻ này có vai trò và quan hệ thế nào với các số chã̃n, khi cần khảo sát sự nguyên tố cùng nhau?
Viết một vài trường hợp nhỏ, chúng ta nhận ra rằng khi số lẻ ấy được kết hợp với số liền trước hay số liền sau, thi sẽ tạo ra một cặp số nguyên tố cùng nhau. Từ đó một câu hỏi

nảy sinh: nếu như chọn $n+1$ số bất kỳ, thi liệu luôn có hai số tự nhiên liên tiếp ? Điều này có thể được kiểm chứng dễ dàng, nên ý đầu tiên của bài toán đến đây là hoàn thành. Sự kiện “chia hết” là một yếu tố khó kiểm soát. Bây giờ chẳng hạn như đã chọn trước một số nguyên dương a, các số chia hết cho a sẽ là ka, hoặc các ước của a thì luôn có dạng $a / k$. Vấn đề là, chúng ta không xác định được khi chọn ra $n+1$ số bất kỳ, sẽ có các số nào liên quan đến a xuất hiện, hơn nữa không chắc chắn việc thương của chúng liệu có phải số nguyên. Vậy thì chúng ta sẽ thử làm mạn đánh giá lên để khử được sự ngẫu nhiên ấy: nếu như chọn ra được một bộ càng nhiều số càng tốt mà liên quan đến a, đồng thời hai số nào trong đó cũng có thương là số nguyên, thì bộ số ấy chỉ nên được chọn tối đa một phần tử nhằm tránh việc chia hết.
Làm rõ ý tưởng này, chúng ta sẽ nhận ra $a, 2 a, 4 a, \cdots$ là lựa chọn tốt nhất có thể nếu xét các số tù̀ a trở lên. Khi chú ý đến các số tù̀ a trở xuống và hiệu chỉnh, lưa chọn phù hợp cho bộ số cần tìm chính là $a, 2 a, 4 a, \cdots$ với a là số lẻ. Có n bộ như thê, và thế là xong.

Chứng minh.
a) Chia tập hợp ${1,2, \cdots, 2 n}$ thành $n$ tập hợp ${2 k-1,2 k}$ với $1 \leq k \leq n$. Vì ban đầu có $n+1$ phần tử được chọn ra, theo Nguyên lý Dirichlet, phải có hai phần tử nào đó thuộc cùng một tập hợp con được nêu ra phía trên. Đây là hai số tự nhiên liên tiếp nên chúng nguyên tố cùng nhau.
b) Với $a$ là số lẻ và $1 \leq a \leq 2 n$, ta định nghĩa
$$
S_a=\left\{x \in \mathbb{Z}^{+}, 1 \leq x \leq 2 n \mid \exists k \in \mathbb{Z}^{+}: x=2^k a\right\}
$$
Mỗi số nguyên dương không vượt quá $2 n$ đều thuộc về một tập hợp $S_a$ nào đó. Có $n$ tập hợp như thế, mà ban đầu có $n+1$ số được chọn, nên Nguyên lý Dirichlet cho thấy rằng phải có hai số cùng nằm trong một tập hợp $S_a$ nào đó. Gọi hai số đó là $2^s a$ và $2^t a$ với $0 \leq s<t$ thì thương của chúng là $2^{t-s} a$, là một số nguyên.

Như thường lệ, bài toán chưa kết thúc ngay tại đây, mà chúng ta đặt ra thêm một vài quan sát nữa. Việc chọn $n+1$ số trong tập hợp ${1,2, \cdots, 2 n}$, như đã phân tích, là vừa đủ để vượt qua ngưỡng “lớn nhất” của sự kiện không có hai số nào nguyên tố cùng nhau. Một lẽ dĩ nhiên là chúng ta muốn xác lập một ngưỡng tương tự cho sự kiện chia hết: liệu có thể chọn được tối đa bao nhiêu sô, mà không có hai số nào có thương là số nguyên ?
Hơn nữa, nếu như kết hợp cả hai vấn đề, nghĩa là có thể chọn được tối đa bao nhiêu số để không có hai số nào nguyên tố cùng nhau và đồng thời không có hai số nào có thương là số nguyên, chúng ta thu được bài toán sau trong đề thi chọn Đội tuyển năm 2017 của Trường Phổ thông Năng khiếu để tham dự Kỳ thi Học sinh giỏi Quốc gia môn Toán bậc THPT.

Ví dụ 6 (PTNK 2017). Xét tập hợp $S={1,2, \cdots, 2017}$. Liệu có thể chọn ra tôi đa bao nhiêu số nguyên dương từ $S$, sao cho không có hai số nào nguyên tố cùng nhau và đồng thời không có hai số nào có thương là số nguyên ?

Theo trí nhớ của người viết bài cũng tham dự kỳ thi năm ấy, không có thí sinh nào giải quyết được bài toán trên. Mặc dù vậy, khi phân tích kỹ, đặc biệt là về sự kiện chia
hết, các bạn có thể tìm được ngay đáp số và thậm chí là một ví dụ thoả mãn yêu cầu bài toán.
Các bài toán trên đều minh hoạ cho một bước chuyển đổi quan trọng từ những phân tích dài dòng bằng chữ thành các suy diễn gãy gọn được diễn đạt bằng ký hiệu. Vì mỗi tình huống mỗi khác, điều quan trọng nhất vẫn là đọc thật kỹ những giả thiết được đưa ra và nắm chắc những yêu cầu cẩn thiết. Một điều tối kỵ là không được bịa ra thêm giả định vô căn cứ để ép vào mạch suy luận. Chúng ta kết thúc bằng một bài toán thú vị, mặc dù trông có vẻ nhiều khó khăn, và phương châm vẫn là… nghĩ đơn giản thôi

Ví dụ 7. Cho các số tự nhiên tù 1 đến 2023. Hỏi có thể chọn ra được nhiều nhất bao nhiêu số sao cho tổng của hai số bất kì trong chúng không chia hết cho hiệu của nó ?
Phân tích. Một số câu hỏi sau được đặt ra khi đọc kỹ đề bài.
a) Giả định chia hết của bài toán rất kỳ quặc. Có cách nào diễn đạt lại mọi thứ cho rồ ràng hơn hay không, và làm sao để khai thác được điều kiện ấy ?
b) Liệu có thể tìm được một ví dụ với tương đối nhiều số ?
Chúng ta tập trung giải quyết yêu cầu đầu tiên. Viết rõ lại bằng ký hiệu, đó là với $a>b$ là hai số nguyên dương phân biệt được chọn, ta phải có $a-b \nmid a+b$. Vì các số này được chọn bất kỳ và các biểu thức xuất hiện đẹ̀u là bậc nhất, việc tìm kiếm một quan hệ số học giũ̃a a và b chỉ bằng giả định trên là không khả thi. Nếu không tin, các bạn có thể thư!
Xoay sang câu hỏi thứ nhì. Thử tiếp cận vấn đề một cách tương đối ngây thơ như sau: cứ lần lượt bắt đầu tù số 1, liệu có thề lấy được những số nào tiểp theo? Dĩ nhiên không phải lúc nào việc xử lý vấn đè̀ theo cách tham lam cũng cho một kết quả tối u’u, nhung ít nhất vẫn có thêm định hướng và một vài quan sát hữu ích để hiệu chỉnh khi cần thiết.

  • Không lấy được số 2 và số 3, vì ảnh hưởng của số 1 .
  • Lấy được số 4. Cũng bởi thế mà không lấy được số 5 và số 6 .
  • Lấy được số 7, rồi lại bỏ qua số 8 và số 9. Cứ như thế…

Một quan sát về các số được thu nhận cho thấy chúng phải cách nhau ít nhất 3 đơn vị. Liệu điều này có luôn đúng ? Có thề quay về giả định của bài toán để kiểm tra.
Mọi thứ quy về việc chọn ra càng nhiều số càng tốt, mà hai số bất kỳ có hiệu từ 3 trở lên. Để chọn được nhiều số nhất, một lê dĩ nhiên là phải khởi đầu từ số nhỏ nhất, và các khoảng cách giữa các số cũng phải nhỏ nhất có thể. Bây giờ chỉ là xếp lại thành lời giải, và nhớ rằng vì đây là bài toán cực trị, hãy chỉ ra ví dụ.

Chứng minh. Gọi các số được chọn là $1 \leq a_1<a_2<\cdots<a_k \leq 2023$. Trước hết, ta chứng minh rằng với $1 \leq i \leq k-1$ thì $a_{i+1}-a_i \geq 3$. Thật vậy:

Nếu có chỉ số $1 \leq i \leq k-1$ để $a_{i+1}-a_i=1$ thì $a_{i+1}-a_i \mid a_{i+1}+a_i$, mâu thuẫn.

Nếu có chỉ số $1 \leq i \leq k-1$ để $a_{i+1}-a_i=2$ thì chú ý rằng $a_{i+1}+a_i=2 a_i+2$, ta cũng thu được $a_{i+1}-a_i \mid a_{i+1}+a_i$, lại là một mâu thuẫn.
Do đó nhận xét được chứng minh. Từ đó thì
$$
2023 \geq a_k \geq a_{k-1}+3 \geq a_{k-2}+3 \cdot 2 \geq \cdots \geq a_1+3(k-1) \geq 1+3(k-1)
$$
hay là $2022 \geq 3(k-1)$. Điều này cho thấy $k \leq 675$. Để chọn được 675 số thoả mãn yêu cầu bài toán, với $1 \leq i \leq 675$, chọn $a_i=3 i-2$. Thật vậy, với $1 \leq i<j \leq 675$ thì:

  • $a_j-a_i=3(j-i)$ là một bội của 3 ,
  • $a_j+a_i=3(j+i)-4$ không là một bội của 3 , nên ta luôn có $a_j-a_i \nmid a_j+a_i$. Vậy có thể chọn được tối đa 675 số nguyên dương đôi một phân biệt không vượt quá 2023 mà không có tổng hai số nào chia hết cho hiệu của chúng.

Hi vọng rằng những trình bày phía trên có thể giúp các bạn phần nào đó tự tin và vững vàng hơn trong việc suy luận để giải toán. Dưới đây là một số bài toán để luyện tập.

Bài tập rèn luyện.

Bài 1. Xét bảng ô vuông $10 \times 10$. Mỗi ô vuông của bảng được điền một số nguyên tuỳ ý sao cho hiệu hai số được điền ở hai ô chung một cạnh bất kì đều không vượt quá 1 . Chứng minh rằng tồn tại một số nguyên xuất hiện trên bảng ít nhất 6 lần.

Bài 2. Cho $A B C$ là một tam giác tuỳ ý. Mỗi điểm trên mặt phẳng được tô bởi một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại hai điểm màu đỏ có khoảng cách bằng 1, hoặc tồn tại một tam giác có ba đỉnh màu xanh mà đồng dạng với tam giác $A B C$.
Bài 3. Có 20 viên bi được xếp thành một hàng ngang trên bàn, trong đó có 10 viên bi màu xanh và 10 viên bi màu đỏ. Chứng minh rằng có thể chọn ra một bộ gồm 10 viên bi liên tiếp mà trong đó số viên bi màu xanh bằng số viên bi màu đỏ.

Bài 4. Cho $A={1,2,3, \cdots, 100}$. Lấy $S$ là tập hợp con của $A$ sao cho các tồng hai phần tử phân biệt bất kỳ của $S$ thì có các số du đôi một phân biệt khi chia cho 100. Chứng minh rằng $S$ có không quá 14 phần tử, và chỉ ra một tập hợp $S$ có 10 phần tử.
Bài 5. Có một bộ các quả cân có tính chất sau:
i) Trong bộ có ít nhất 5 quả cân có trọng lượng khác nhau.
ii) Với hai quả cân bất kỳ, tìm được hai quả cân khác có tồng trọng lượng bằng với tổng trọng lượng của hai quả cân đó.
Bộ quả cân này có ít nhất là bao nhiêu quả cân?
Bài 6. Chọn ra $k$ số nguyên dương phân biệt là ước của $6^{2023}$.
a) Chứng minh rằng nếu $k=5$ thì tồn tại hai số có tích là số chính phương.
b) Chứng minh rằng nếu $k=21$ thì tồn tại sáu số có tích là một luỹ thừa bậc 6.

Bài 7. Cho số nguyên dương $n \geq 2$. Chứng minh rằng khi chọn ra $n+2$ số nguyên dương từ tập hợp $S={1,2, \cdots, 3 n}$, luôn tồn tại hai số $x, y$ đề $n<x-y<2 n$.

Bài 8. Cho tập hợp $S={1,2, \cdots, 2023}$. Xét tập hợp con $T \subseteq S$. Nếu $T$ không chứa hai phần tử nào có hiệu trong $E$ thì có tối đa bao nhiêu phần tứ, với:
a) $E={3 ; 6 ; 9}$
b) $E={4 ; 7}$
Bài 9. Lớp $9 A$ có 6 học sinh tham gia kỳ thi chọn đội tuyển môn Toán, và nhận được 6 điểm số khác nhau là các số tự nhiên không vượt quá 20. Gọi m là trung bình cộng các điểm số của 6 học sinh trên. Hai học sinh được gọi là lập thành một cạ̣p hoàn hảo nếu như trung bình cộng điểm số của hai em đó lớn hơn $m$.

a) Chứng minh rằng không thề chia 6 học sinh thành 3 cặp mà mỗi cặp đều hoàn hảo.
b) Trong 6 học sinh trên, có thể có nhiều nhất bao nhiêu cặp hoàn hảo ?
Bài 10. Có 8 kì thủ thi đấu giải cờ vua Candidates 2023 theo thể thức vòng tròn một lượt. Tại mỗi trận đấu phân định thắng thua, người thắng được 1 điểm còn người thua được 0 điểm; tại mỗi trận hòa thì mỗi người được 0.5 điểm.
a) Chứng minh rằng sau 3 vòng đầu tiên, luôn tìm được hai người có số điểm bằng nhau.
b) Giả sử rằng sau khi kết thúc giải, tất cả các kì thủ đều có số điểm khác nhau. Tìm số điểm ít nhất có thể của người chiến thắng.
c) Giải lại bài toán khi giải đấu diễn ra theo thể thức vòng tròn hai lượt.

Hệ phương trình ba ẩn

Trong các bài trước mình đã làm quen với các hệ phương trình hai ẩn, phương pháp chủ yếu cũng là thế, cộng đại số, đặt ẩn phụ. Trong bài này chúng ta tiếp tục với các hệ phương trình nhiều ẩn hơn, chủ yếu là các hệ phương trình ba ẩn, trong các hệ phương trình này có hai dạng ta quan tâm và xuất hiện nhiều là hệ đối xứng và hệ hoán vị vòng quanh.

Hệ ba ẩn đối xứng

Hệ đối xứng ba biến là hệ có dạng

$\left\{\begin{array}{l}
f(x,y,z)=0 \\\\
g(x,y,z)=0 \\\\
h(x,y,z)=0
\end{array}\right.$

trong đó $f, g, h$ là các biểu thức đối xứng với $x, y, z$ tức là khi ta hoán vị $x, y, z$ thì $f, g, h$ vẫn không đổi.

Các biểu thức đối xứng 3 biến cơ bản nhất là $x+y+z, xy+yz+xz, xyz$.

Từ đó ta xét ví dụ sau

Ví dụ 1. Giải hệ phương trình $\left\{\begin{array}{l}
x+y+z=6 (1)\\\\
xy+yz+xz=11 (2)\\\\
xyz=6 (3)
\end{array}\right.$

Lời giải

Từ (1) ta có $y +z = 6-z$, từ (2), $ yz = 11-x(y+z) = 11 – x(6-x) = x^2-6x+11$.

Thế vào (3) ta có $x(x^2-6x+11) = 6$ $\Leftrightarrow x^3 -6x^2+ 11x – 6 = 0$

Giải ra được $x = 1, x = 2, x= 3$.

Với $x = 1$ ta có $y+z = 5, yz = 6$ giải ra được $y = 2, z= 3$ và $y=3, z=2$.

Các trường hợp khác tương tự, hệ phương trình có nghiệm $(1, 2, 3)$ và các hoán vị.

Do đó nếu hệ phương trình ba ẩn đối xứng, có một cách giải là ta tìm được giá trị của các biểu thức đối xứng cơ bản như bài trên.

Ví dụ 2. (PTNK Chuyên toán 2010) Giải hệ phương trình $\left\{\begin{array}{l}
x+y+z=3 \\\\
x y+y z+x z=-1 \\\\
x^3+y^3+z^3+6=3\left(x^2+y^2+z^2\right)
\end{array}\right.$

Lời giải

Ta chỉ cần tính được $xyz$ thì có thể đưa về ví dụ 1.

Từ (1) và (2) ta tính được $x^2+y^2+z^2 = (x+y+z)^2 – 2(xy+yz+xz) = 11$

Suy ra $x^3+y^3+z^3 = 27$

Mà $x^3+y^3+z^3 – 3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz) \Rightarrow xyz = -3$

do đó ta có $x+y+z = 3, xy+yz+xz = -1, xyz = -3$ tương tự ví dụ 1, ta giải được nghiệm là $(1,-1,3)$ và các hoán vị.

Ngoài cách trên ta có thể giải như sau

$x^3+y^3+z^3 = (x+y+z)^3 – 3(x+y)(y+z)(x+z)$, khi đó $(x+y)(y+z)(z+x) = 0$, tổng hai số bằng 0, ta suy ra số còn lại bằng 3, tiếp tục ta cũng có kết quả như trên.

Hệ hoán vị vòng quanh

Các hệ phương trình nhiều ẩn thường gặp là hệ hoán vị vòng quanh có dạng sau:

Phương pháp thường dùng là cộng đại số,phân tích thành tích, sử dụng đánh giá bất đẳng thức để chứng minh $x=y=z$.

Ta xét một số ví dụ sau:

Ví dụ 3. Giải hệ phương trình $\left\{\begin{array}{l}(x-y)^2=2 z-z^2(1) \\\\(y-z)^2=2 x-x^2(2)\\\\ (z-x)^2=2 y-y^2(3)\end{array}\right.$

Lời giải Lấy (1) trừ (2) ta có:

$(x-2 y+z)(x-z)=x^2-z^2-2(x-z)=(x-z)(x+z-2) \Leftrightarrow 2(x-z)(y-1)= 0$

$\Leftrightarrow x=z$ hoặc $y=1$
– $y=1$ ta có $(3) \Leftrightarrow(x-z)^2=1 \Leftrightarrow z=x+1, z=x-1$
+ $z=x+1$ giải được $ x=0, z=1$ và $x=1, z=2 $Khi đó ta có nghiệm $(0,1,1),(1,1,2)$
+ $z=x-1 $ giải ra được $x=1, z=0 $ và $ x=2, z=1 $Ta có nghiệm $(1,1,0)$ và $(2,1,1)$
Với $x=z$ từ (3) ta có $ y^2-2 y=0 \Leftrightarrow y=0, y=2$

Với $y=0$ ta có $\left\{\begin{array}{l}x^2=2 z-z^2 \\\\ z^2=2 x-x^2\end{array} \Leftrightarrow \left\{\begin{array}{l}2 z^2=2 z \\\\ x-z\end{array}\right.\right.$.

Giải được nghiệm $(0,0,0)$ và $(1,0,1)$.

+Với $y=2$, giải ra được nghiệm $(1,2,1)$ và $(2,2,2)$. Vậy hệ phương trình có 8 nghiệm.

Ví dụ 4. (PTNK Chuyên Toán 2103) Giải hệ phương trình $\left\{\begin{array}{l}
3 x^2+2 y+1=2 z(x+2) \\\\
3 y^2+2 z+1=2 x(y+2) \\\\
3 z^2+2 x+1=2 y(z+2)
\end{array}\right.$

Lời giải Cộng ba phương trình lại ta có:
$3\left(x^2+y^2+z^2\right)+2(x+y+z)+3=2(x y+y z+z x)+4(x+y+z) $

$ \Leftrightarrow 3\left(x^2+y^2+z^2\right)-2(x y+y z+x z)-2(x+y+z)+3=0 $
$\Leftrightarrow(x-y)^2+(y-z)^2+(z-x)^2+(x-1)^2+(y-1)^2+(z-1)^2=0 $
$\Leftrightarrow\left\{\begin{array}{l}
x=1 \\\\
y=1 \\\\
z=1
\end{array}\right.
$
Thử lại thấy $(1,1,1)$ là nghiệm của hệ.

Ví dụ 5. Giải hệ phương trình $\left\{\begin{array}{l}
2 x=y^2-z^2 \\\\
2 y=z^2-x^2 \\\\
2 z=x^2-y^2
\end{array}\right.$

Lời giải

Lấy (1) $+(2)$ ta có $(x+y)(x-y+2)=0 \Leftrightarrow x+y=0$ hoặc $x=2-y$.
Với $x+y=0$, từ (3) ta có $z=0$, từ (1) ta có $x=0$ hoặc $x=2$. Ta có nghiệm $(x, y, z)$ là $(0,0,0)$ và $(2,-2,0)$.
Với $x=y-2$, từ (3) ta có $2 z=(y-2)^2-y^2=4-4 y \Leftrightarrow z=2-2 y$. Thế vào (1) ta có: $2(y-2)=y^2-(2-2 y)^2 \Leftrightarrow y^2-2 y=0 \Leftrightarrow y=0, y=2$. Từ đó ta có nghiệm $(-2,0,2)$ và $(2,-2,0)$. Vậy hệ có 4 nghiệm.

Hệ nhiều ẩn không mẫu mực

Một số hệ không mẫu mực thì không có cách giải chung, do đó ta phải để đặc điểm của các hệ phương trình này để có cách giải phù hợp, chủ yếu cũng là giảm được ẩn, phân tích nhân tử, . ..

Ví dụ 6. Giải hệ phương trình sau: $\left\{\begin{array}{l}
(x-2 y)(x-4 z)=55 \\\\
(y-2 z)(y-4 x)=-39 \\\\
(z-2 x)(z-4 y)=-16
\end{array}\right.$

Lời giải

$\left\{\begin{array}{l}(x-2 y)(x-4 z)=55 \\\\ (y-2 z)(y-4 x)=-39 \\\\ (z-2 x)(z-4 y)=-16\end{array} \Leftrightarrow\left\{\begin{array}{l}x^2-2 x y-4 x z+8 y z=55(1) \\\\ y^2-2 y z-4 x y+8 x z=-39(2) \\\\ z^2-2 x z-4 y z+8 x y=-16(3)\end{array}\right.\right.$

Cộng (1),(2),(3) ta có $(x+y+z)^2=0 \Leftrightarrow x+y+z=0 \Leftrightarrow z=-x-y$
Thế vào (1),(2) ta có $\left\{\begin{array}{l}(x-2 y)(5 x+4 y)=55 \\\\ (3 y+2 x)(y-4 x)=-39\end{array}\right.$

$\Leftrightarrow\left\{\begin{array}{l}5 x^2-6 x y-8 y^2=55 \\\\ 3 y^2-10 x y-8 x^2=-39\end{array}\right.$
Nhận thấy $y=0$ không thỏa hpt:
Đặt $x=k y$, ta có hệ

$\left\{\begin{array}{l}
y^2\left(5 k^2-6 k-8\right)=55 \\\\
y^2\left(-8 k^2-10 k+3\right)=-39
\end{array}\right. $
$\Rightarrow-39\left(5 k^2-6 k-8\right)=55\left(-8 k^2-10 k+3\right) $
$\Leftrightarrow 245 k^2+784 k+147=0$
$ \Leftrightarrow\left[\begin{array}{l}
k=-3 \\\\
k=\frac{-1}{5}
\end{array}\right.
$
Với $k=-3$, ta có $y=1$, hoặc $y=-1$. Từ đó ta có nghiệm là $(-3,1,2),(3,-1,-2)$
Với $k=-\frac{1}{5}$ (vô nghiệm)

Chìa khóa trong lời giải này chính là đặc điểm của các hệ số tự do bên phải của các phương trình.

Qua một số ví dụ , hi vọng các em rút ra kinh nghiệm trong việc giải một số hệ phương trình nhiều ẩn, cùng rèn luyện các bài toán sau nhé.

Bài tập rèn luyện

Bài 1. Giải các hệ phương trình sau

1)$\begin{cases} x^2(y+z)^2=(3x^2+x+1)y^2z^2&\\\\y^2(z+x)^2=(4y^2+y+1)z^2x^2&\\\\z^2(x+y)^2=(5z^2+z+1)=x^2y^2 \end{cases}$ 2)$\left\{ \begin{array}{l}xy = x + 3y\\\\yz = 2\left( {y + z} \right)\\\\xz = 3\left( {3z + 2x} \right)\end{array} \right.$ 3) $\left\{ \begin{array}{l}
{\left( {x + y + z} \right)^3} = 12t\\\\
{\left( {y + z + t} \right)^3} = 12x\\\\
{\left( {z + t + z} \right)^3} = 12y\\\\
{\left( {t + x + y} \right)^3} = 12z
\end{array} \right.$

Bài 2. Giải hệ phương trình sau:

1)$\left\{\begin{array}{l}
x^{3}+x^{2}+x-2=y \\\\
y^{3}+y^{2}+y-2=z \\\\
z^{3}+z^{2}+z-2=x
\end{array}\right.$
2) $\left\{\begin{array}{l}
y^{3}-6 x^{2}+12 x-8=0 \\\\
z^{3}-6 y^{2}+12 y-8=0 \\\\
x^{3}-6 z^{2}+12 z-8=0
\end{array}\right.$
Bài 3. Giải hệ phương trình $\begin{cases}ab+c+d=3&\\\\bc+d+a=5&\\\\cd+a+b=2&\\\\da+b+c=6 \end{cases}$

Bài 4.

Cho $a \in \mathbb{R}$. Giải hệ phương trình $\begin{cases} x_1^2+ax_1+(\dfrac{a-1}{2})^2=x_2&\\\\
x_2^2+ax_2+(\dfrac{a-1}{2})^2=x_3&\
…&\\\\
x_n^2+ax_n+(\dfrac{a-1}{2})^2=x_1
\end{cases}$

Hệ phương trình chứa tham số

Hệ phương trình và các phương pháp giải của nó chúng ta đã nghiên cứu trong các bài giảng trước, bài viết này ta tiếp tục với các hệ phương trình nhưng chứa thêm tham số, việc giải các hệ phương trình chứa tham số căn bản cũng dựa trên các phương pháp đã biết, tuy vậy ta phải xét nhiều trường hợp hơn đòi hỏi suy luận tốt và sự cẩn thận nhất định của học sinh.

Ví dụ 1. Cho hệ phương trình: $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\\\ x+y=m\end{array}\right.$
(a) Giải hệ với $m=7$
(b) Tìm $m$ sao cho hệ có nghiệm $(x, y)$

Lời giải
a) $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\\\ x+y=m\end{array}\right.$
ĐKXĐ: $x \geq 2, y \geq 1$
Đặt $ a=\sqrt{x-2}, b = \sqrt{y-1}$ ta có $a, b \geq 1$ và $a+b = 2, a^2+b^2 = 4$.

Từ đó ta có $b = 2-a, a^2+(2-a)^2 = 4$, giải ra được $a= 2, b=0$ và $a=0, b=2$.

Với $a = 2,b=0$ ta có $x=6, y=1$

Với $a=0,b=2$ ta có $x=2, y = 5$.

Vậy hệ phương trình có hai nghiệm $(2 ; 5),(6 ; 1)$

b) Đặt $u=\sqrt{x-2}, v=\sqrt{y-1}(u, v \geq 0$
Hệ phương trình trở thành: $\left\{\begin{array}{l}u+v=2 \\\\ u^2+v^2=m-3\end{array}\right.$ $\Rightarrow 2 u^2-4 u+7-m=0 \quad(2)$
Để hệ (1) có nghiệm thì (2) phải có nghiệm không âm, nhỏ hơn hoặc bằng 2, khi và chỉ khi:
$$
\left\{\begin{array} { l }
{ \Delta ^ { \prime } \geq 0 } \\\\
{ S > 0 } \\\\
{ P \geq 0 } \\\\
{ ( x _ { 1 } – 2 ) ( x _ { 2 } – 2 ) > 0 } \\\\
{ S \leq 4 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
m \geq 5 \\\\
m \leq 7
\end{array}\right.\right.
$$
Vậy $5 \leq m \leq 7$ thì hệ đã cho có nghiệm $(x, y)$

Ví dụ 2. Giải và biện luận hệ phương trình sau: $\left\{\begin{array}{l}\frac{x y z}{x+y}=m \\\\ \frac{x y z}{y+z}=1 \ \frac{x y z}{z+x}=2\end{array}\right.$

Lời giải

Lời giải. Đặt $a=x y, b=y z, c=x z$ ta tính được: $\frac{1}{a}=\frac{3 m-2}{4 m}, \frac{1}{b}=\frac{m+2}{4 m}, \frac{1}{c}=\frac{2-m}{4 m}$.
Khi đó $\frac{1}{(x y z)^2}=\frac{1}{a b c}=\frac{(3 m-2)(m+2)(2-m)}{64 m^3}=P$.
Nếu $P \leq 0 \Leftrightarrow m \leq-2,0 \leq m \leq \frac{2}{3}$ hoặc $m \geq 2$ thì hệ vô nghiệm.
Ta có $P>0 \Leftrightarrow-2<m<0$ hoặc $\frac{2}{3}<m<2$.
Khi đó $(x y z)^2=\frac{64 m^3}{(3 m-2)(m+2)(2-m)}=\frac{1}{P}$. Suy ra $x y z= \pm \sqrt{\frac{1}{P}}$.

  • Nếu $x y z=\sqrt{\frac{1}{P}}$ thì $x=\frac{2-m}{4 m} \sqrt{\frac{1}{P}}$,
    $$
    y=\frac{m+2}{4 m} \sqrt{\frac{1}{P}}, z=\frac{3 m-2}{4 m} \sqrt{\frac{1}{P}} \text {. }
    $$
  • Nếu $x y z=-\sqrt{\frac{1}{P}}$ thì $x=\frac{m-2}{4 m} \sqrt{\frac{1}{P}}$,
    $$
    y=\frac{-m-2}{4 m} \sqrt{\frac{1}{P}}, z=\frac{2-3 m}{4 m} \sqrt{\frac{1}{P}} \text {. }
    $$

Ví dụ 3. Cho hệ phương trình $\left\{\begin{array}{l}(x-2 y)(x+m y)=m^2-2 m-3 \\\\ (y-2 x)(y+m x)=m^2-2 m-3\end{array}\right.$

a) Giải hệ phương trình khi $m=-3$

b) Tìm $m$ để hệ có ít nhất một nghiệm $\left(x_\circ, y_\circ \right)$ thỏa $x_\circ>0, y_\circ>0$.

Lời giải
a) Khi $m=-3$ ta có hệ:
$$
\left\{\begin{array} { l }
{ ( x – 2 y ) ( x – 3 y ) = 1 2 } \\\\
{ ( y – 2 x ) ( y – 3 x ) = 1 2 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x^2-5 x y+6 y^2=12(1) \\\\
y^2-5 x y+6 x^2=12(2)
\end{array}\right.\right.
$$
Lấy (1) – (2) ta có $5\left(y^2-x^2\right)=0 \Leftrightarrow x=y, x=-y$.
Với $x=y$ thế vào (1) ta có $x^2=6 \Leftrightarrow x=\sqrt{6}, y=\sqrt{6}$ hoặc $x=-\sqrt{6}, y=$ $-\sqrt{6}$
Với $x=-y$ thế vào (1) ta có $x^2=1 \Leftrightarrow x=1, x=-1$. Với $x=1, y=-1$, với $x=-1, y=1$.
Vậy hệ phương trình có 4 nghiệm.
b) Hệ có thể viết lại $\left\{\begin{array}{l}x^2+(m-2) x y-2 m y^2=m^2-2 m-3(1) \\\\y^2+(m-2) x y-2 m x^2=m^2-2 m-3(2)\end{array}\right.$
Lấy (1) – (2) ta có $(2 m+1)\left(y^2-x^2\right)=0$.
Xét $m=\frac{-1}{2}$ ta có hệ trở thành: $x^2-\frac{5}{2} x y+y^2+\frac{7}{4}=0$, có nghiệm $\left(\frac{5+\sqrt{2}}{2}, 2\right)$ thỏa đề bài.
Xét $m \neq \frac{-1}{2}$ ta có $x=y$ hoặc $x=-y$. Trường hợp $x=-y$ không thỏa đề bài.
Trường hợp $x=y$, thế vào (1) ta có:
$$
-(m+1) x^2=m^2-2 m-3=(m+1)(m-3)
$$
Nếu $m=-1$ ta có $(x-2 y)(x-y)=0,(y-2 x)(y-x)=0$ có nghiệm thỏa đề bài, chỉ cần chọn $x=1, y=1$.
Nếu $m \neq-1$ ta có $x^2=3-m$ để có nghiệm $x_o=y_o>0$ thì $m<3$. Khi đó phương trình có nghiệm $x_0=\sqrt{3-m}, y_o=\sqrt{3-m}$ thỏa đề bài.
Kết luận $m=\frac{-1}{2}, m=-1$ và $m<3$.

Ví dụ 4. Cho hệ phương trình với $k$ là tham số:
$$\left\{\begin{array}{l}
\frac{x}{\sqrt{y z}}+\sqrt{\frac{x}{y}}+\sqrt{\frac{x}{z}}=k \\\\
\frac{y}{\sqrt{z x}}+\sqrt{\frac{y}{z}}+\sqrt{\frac{y}{x}}=k \\\\
\frac{z}{\sqrt{x y}}+\sqrt{\frac{z}{x}}+\sqrt{\frac{z}{y}}=k
\end{array}\right.
$$
(a) Giải hệ với $k=1$.
(b) Chứng minh hệ vô nghiệm với $k \geq 2$ và $k \neq 3$.

Lời giải

Điều kiện xác định là: $x, y, z$ cùng dương hoặc cùng âm.
Đặt $a=\sqrt{\frac{x}{y}}, b=\sqrt{\frac{y}{z}}, c=\sqrt{\frac{z}{x}}$ thì $a, b, c>0$ và $a b c=1$.
Ta có: $\frac{a}{c}=\frac{|x|}{\sqrt{y z}}, \frac{b}{a}=\frac{|y|}{\sqrt{z x}}, \frac{c}{b}=\frac{|z|}{\sqrt{x y}}$.
a) Khi $k=1$, nếu $x, y, z>0$ thì $\frac{a}{c}+a+\frac{1}{c}=\frac{b}{a}+b+\frac{1}{a}=\frac{c}{b}+c+\frac{1}{b}=1$.
Cộng lại suy ra $\left(a+\frac{1}{a}\right)+\left(b+\frac{1}{b}\right)+\left(c+\frac{1}{c}\right)+\left(\frac{c}{c}+\frac{b}{a}+\frac{c}{b}\right)=3$
Theo bất đẳng thức Cô-si thì rõ ràng $a+\frac{1}{a} \geq 2, b+\frac{1}{b} \geq 2, c+\frac{1}{c} \geq 2$ nên đẳng thức trên không thể xảy ra.
Xét trường hợp $x, y, z$ cùng âm thì
$$
-\frac{a}{c}+a+\frac{1}{c}=-\frac{b}{a}+b+\frac{1}{a}=-\frac{c}{a}+c+\frac{1}{b}=1
$$
Trừ vào các vế và phân tích, ta suy ra:
$$
\frac{(a-1)(b-1)}{a}=\frac{(b-1)(c-1)}{b}=\frac{(c-1)(a-1)}{c}=0
$$
Từ đây dễ dàng suy ra ít nhất 2 trong $a, b, c$ phải là 1 mà $a b c=1$ nên $a=b=c=1$. Vì thế nên thay vào ta có $x=y=z<0$. Và mọi bộ số như thế đều thỏa mãn hệ.

b) Với $k \geq 2$, giả sử hệ có nghiệm $(x, y, z)$. Nếu như $x, y, z<0$ thì ta có $\frac{(a-1)(b-1)}{a}=\frac{(b-1)(c-1)}{b}=\frac{(c-1)(a-1)}{c}=k-1>0$.
Từ đó suy ra $a-1, b-1, c-1$ dều cùng dấu, kéo theo $a, b, c>1$ hoặc $a, b, c<1$ Tuy nhiên $a b c=1$ nên điều này không thể xảy ra. Do đó, ta phải có $a, b, c>0$ nên đưa về
$$
\frac{a}{c}+a+\frac{1}{c}=\frac{b}{a}+b+\frac{1}{a}=\frac{c}{b}+c+\frac{1}{b}=k
$$
Trong các số $a, b, c$ giả sử $a=\max {a, b, c}$ thì $k=\frac{a}{c}+a+\frac{1}{c} \geq$ $\frac{a}{c}+2 \sqrt{\frac{a}{c}} \geq 1+2=3$ nên ta cần có $k \geq 3$. Vì $k \neq 3$ nên $k>3$.
Vì $a=\max {a, b, c} \geq 1$ nên ta có $2 b+1 \geq \frac{b}{a}+b+\frac{1}{a}=k>3$ kéo theo $b>1$. Tương tự từ $2 c+1>\frac{c}{b}+c+\frac{1}{b}=k>3$ nên $c>1$. Từ đây suy ra $a, b, c>1$ trong khi $a b c=1$, vô lý.
Vậy hệ luôn vô nghiệm với $k \geq 2$ và $k \neq 3$.

Bài tập rèn luyện

Bài 1. Cho hê phương trình $\left\{\begin{array}{l}x+y=m-2 \\\\x^2+y^2+2 x+2 y=-m^2+4\end{array}\right.$ (trong đó $m$ là tham số $x$ và y là ẩn)
a) Tìm $m$ để hệ phương trình trên có nghiệm.
b) Tìm giá trị lớn nhất, nhỏ nhất của biểu thúc $A=x y+2(x+y)+2011$.

Bài 2. Cho hệ phương trình $\left\{\begin{array}{c}x^2+y^2+x y=m^2-2 m+4 \\\\ x^2+y^2-3 x y=5 m^2-10 m+4\end{array} \quad\right.$ (m là tham số)
a) Giải hệ phương trình khi $m=-1$.
b) Chứng minh rằng hệ phương trình luôn có nghiệm với mọi giá trị của $m$. Tìm $m$ để phương trình có nghiệm $(x ; y)$ thỏa $y>x>0$ và $5 x^2-2 x y+y^2$ đạt giá trị nhỏ nhất.

Bài 3. Tìm $a$ để hệ phương trình
$\left\{\begin{array}{c}
& \frac{a x+y}{y+1}+\frac{a y+x}{x+1}=a \\\\
& a x^2+a y^2=(a-2) x y-x
\end{array} \quad\right.$
có nghiệm duy nhất.

Đề thi học sinh giỏi khối 10

Kì thi chọn đội dự tuyển trường Phổ thông Năng khiếu

Đề thi và đáp án chọn đội dự tuyển 10 trường PTNK năm 2023

Đề thi và đáp án chọn đội dự tuyển trường PTNK năm 2022

Đề thi và đáp án chọn đội dự tuyển PTNK năm 2021 – Toán Việt (toanviet.net)

Đề thi và đáp án chọn đội dự tuyển trường PTNK năm 2020 – Toán Việt (toanviet.net)

Đề thi và đáp án chọn đội dự tuyển PTNK năm học 2019 – 2020 – Toán Việt (toanviet.net)

Đề và đáp thi chọn đội dự tuyển PTNK năm học 2017 – 2018 – Toán Việt (toanviet.net)

Đáp án đề thi chọn đội dự tuyển lớp 10 năm 2016 – 2017 – Toán Việt (toanviet.net)

Đề và đáp án thi chọn đội dự tuyển lớp 10 năm 2012 – 2013 – Toán Việt (toanviet.net)

Kì thi Olympic truyền thống 30/4 (SGD TPHCM)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2011 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2010 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2009 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2008 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2007 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2005 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2004 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2003 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2002 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2000 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1999 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1998 – Toán Việt (toanviet.net)

Kì thi duyên hải Bắc bộ

Kì thi HSG lớp 10 của các tỉnh, thành phố

ĐỀ THI VÀO CHUYÊN TOÁN LỚP 10 TP.HCM 2012

Bài 1. Giải phương trình:

$\sqrt{8 x+1}+\sqrt{46-10 x}=-x^{3}+5 x^{2}+4 x+1$

Bài 2. Cho đa thức $f(x)=a x^{3}+b x^{2}+c x+d$ với $a$ là số nguyên dương, biết $f(5)-$ $f(4)=$ 2012. Chứng minh rằng: $f(7)-f(2)$ là hợp số.

Bài 3. Cho ba số dương $a, b, c$ thỏa $a+b+c=1$. Tìm giá trị nhỏ nhất của biểu thức:

$A=14\left(a^{2}+b^{2}+c^{2}\right)+\frac{a b+b c+c a}{a^{2} b+b^{2} c+c^{2} a}$

Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn $(O, R)$ có $A C$ vuông góc với $B D$ tại $H$. Trên cạnh $A B$ lấy điểm $M$ sao cho $A B=3 A M$. Trên cạnh $H C$ lấy trung điểm $N$. Chứng minh rằng $M H$ vuông góc với $D N$.

Bài 5. Cho đường tròn tâm $O$ và đường tròn tâm $I$ cắt nhau tại hai điểm $A$ và $B(O$ và $I$ nằm khác phía đối với đường thẳng $A B), I B$ cắt $(O)$ tại $E, O B$ cắt $(I)$ tại $F$. Qua $B$ vẽ đường thẳng $M N$ song song với $E F(M$ thuộc $(O), N$ thuộc $(I)$ ).

(a) Chứng minh rằng $O A I E$ nội tiếp.

(b) Chứng minh rằng: $A E+A F=M N$.

Bài 6. Trên mặt phẳng cho 2013 điểm tùy ý sao cho trong ba điểm bất kì thì tồn tại 2 điểm mà khoảng cách giữa hai điểm đó luôn bé hơn 1. Chứng minh rằng tồn tại một đường tròn có bán kính bằng 1 chứa ít nhất 1007 điểm (kế cả biên).

 

LỜI GIẢI

Bài 1. Giải phương trình:

$\sqrt{8 x+1}+\sqrt{46-10 x}=-x^{3}+5 x^{2}+4 x+1$

Lời giải. $\sqrt{8 x+1}+\sqrt{46-10 x}=-x^{3}+5 x^{2}+4 x+1$

ĐKХĐ: $\frac{-1}{8} \leq x \leq \frac{23}{5}$

Sử dụng lượng liên hợp, phương trình ban đầu tương đương với:

$\sqrt{8 x+1}-3+\sqrt{46-10 x}-6+x^{3}-x^{2}-4 x^{2}+4 x-8 x+8=0$

$\Leftrightarrow(x-1)\left(\frac{8}{\sqrt{8 x+1}+3}-\frac{10}{\sqrt{46-10 x}+6}+x^{2}-4 x-8\right)=0$

Từ đó ta có phương trình có một nghiệm là $x=1$. Xét biểu thức:

$\frac{8}{\sqrt{8 x+1}+3}-\frac{10}{\sqrt{46-10 x}+6}+x^{2}-4 x-8=0$

Từ điều kiện ta có:

$-1<x<5 \Leftrightarrow(x+1)(x-5)<0 \Leftrightarrow x^{2}-4 x-5<0$

Lại có: $\frac{8}{\sqrt{8 x+1}+3} \leq \frac{8}{3}<\frac{9}{3}=3 \Leftrightarrow \frac{8}{\sqrt{8 x+1}+3}-3<0$ Từ đó ta có:

$\frac{8}{\sqrt{8 x+1}+3}-\frac{10}{\sqrt{46-10 x}+6}+x^{2}-4 x-8<0$

Vậy phương trình đã cho có nghiệm duy nhất là: $x=1$

Bài 2. Cho đa thức $f(x)=a x^{3}+b x^{2}+c x+d$ với $a$ là số nguyên dương, biết $f(5)-$ $f(4)=2012$. Chứng minh rằng: $f(7)-f(2)$ là hợp số.

Lời giải. Ta có: $f(x)=a x^{3}+b x^{2}+c x+d$

Từ đó ta tính được: $f(5)=125 a+25 b+5 c+d, f(4)=64 a+16 b+4 c+d$

Vậy: $f(5)-f(4)=61 a+9 b+c=2012, f(7)=343 a+49 b+7 c+d, f(2)=8 a+4 b+$ $2 c+d$

Vậy: $f(7)-f(2)=335 a+45 b+5 c=5(67 a+9 b+c)=30 a+5(61 a+9 b+c)=30 a+$ 10060

Từ đó ta có: $f(7)-f(2)$ là hợp số vì $a$ là số nguyên dương và nó chia hết cho $2,5,10$.

Bài 3. Cho ba số dương $a, b, c$ thỏa $a+b+c=1$. Tìm giá trị nhỏ nhât của biểu thức:

$A=14\left(a^{2}+b^{2}+c^{2}\right)+\frac{a b+b c+c a}{a^{2} b+b^{2} c+c^{2} a}$

Lời giải.

Cách 1:

$\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)=a^{3}+b^{3}+c^{3}+\left(a^{2} b+b^{2} c+c^{2} a\right)+\left(b^{2} a+a^{2} c+c^{2} b\right) $

$\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)=\left(a^{3}+a b^{2}\right)+\left(b^{3}+b c^{2}\right)+\left(c^{3}+c a^{2}\right)+\left(a^{2} b+b^{2} c+c^{2} a\right)$

Áp dụng bất đẳng thức Cauchy và do $a+b+c=1$, ta có:

$\left(a^{2}+b^{2}+c^{2}\right) \geq 2 a^{2} b+2 b^{2} c+2 c^{2} a+\left(a^{2} b+b^{2} c+c^{2} a\right)=3\left(a^{2} b+b^{2} c+c^{2} a\right)$

Mặt khác: $a b+b c+c a=\frac{1-\left(a^{2}+b^{2}+c^{2}\right)}{2}$

Từ đó ta có: $F \geq 14\left(a^{2}+b^{2}+c^{2}\right)+\frac{3-3\left(a^{2}+b^{2}+c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)}$

Hay: $F \geq 14\left(a^{2}+b^{2}+c^{2}\right)+\frac{3}{2\left(a^{2}+b^{2}+c^{2}\right)}-\frac{3}{2}$

Áp dụng bất đẳng thức Cauchy, ta có:

$27\left(a^{2}+b^{2}+c^{2}\right)+\frac{3}{\left(a^{2}+b^{2}+c^{2}\right)} \geq 2 \sqrt{27\left(a^{2}+b^{2}+c^{2}\right) \cdot \frac{3}{\left(a^{2}+b^{2}+c^{2}\right)}}=18 $

$a^{2}+b^{2}+c^{2} \geq \frac{1}{3}(a+b+c)^{2}=\frac{1}{3}$

Vậy: $28\left(a^{2}+b^{2}+c^{2}\right)+\frac{3}{\left(a^{2}+b^{2}+c^{2}\right)} \geq 18+\frac{1}{3}=\frac{55}{3}$

Từ đó ta có: $F \geq \frac{55}{6}-\frac{3}{2}=\frac{23}{3}$

Đẳng thức xảy ra khi: $a=b=c=\frac{1}{3}$

Cách 2:

Do $a, b, c$ dương và $a+b+c=1$ nên ta có:

$(1-c)^{2}=(a+b)^{2} \geq 4 a b \Leftrightarrow 1-2 c+c^{2} \geq 4 a b \Leftrightarrow a-2 a c+a c^{2} \geq 4 a^{2} b $

$(1-a)^{2}=(b+c)^{2} \geq 4 b c \Leftrightarrow 1-2 a+a^{2} \geq 4 b c \Leftrightarrow b-2 a b+a^{2} b \geq 4 b^{2} c $

$(1-b)^{2}=(c+a)^{2} \geq 4 c a \Leftrightarrow 1-2 b+b^{2} \geq 4 c a \Leftrightarrow c-2 b c+b^{2} c \geq 4 a c^{2}$

Hay: $a+b+c-2(a b+b c+c a) \geq 3\left(a^{2} b+b^{2} c+c^{2} a\right)$

$\Leftrightarrow 1-2(a b+b c+c a) \geq 3\left(a^{2} b+b^{2} c+c^{2} a\right)$

Vậy: $F \geq 14[1-2(a b+b c+c a)]+\frac{3(a b+b c+c a)}{1-2(a b+b c+c a)}$

Đạt: $t=1-2(a b+b c+c a), t \geq \frac{1}{3}$

Áp dụng bất đẳng thức Cauchy ta có:

$F \geq 14 t+\frac{\frac{3}{2}(1-t)}{t}=14 t+\frac{3}{2 t}-\frac{3}{2}=\frac{1}{2} t+\frac{27}{2} t+\frac{3}{2 t}-\frac{3}{2} \geq \frac{1}{2} t+2 \sqrt{\frac{27}{2} t \cdot \frac{3}{2 t}}-\frac{3}{2}$

Vậy: $F \geq \frac{1}{2} \cdot \frac{1}{3}+9-\frac{3}{2}=\frac{23}{3}$

Đẳng thức xảy ra khi: $a=b=c=\frac{1}{3}$

Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn $(O, R)$ có $A C$ vuông góc với $B D$ tại $H$. Trên cạnh $A B$ lấy điểm $M$ sao cho $A B=3 A M$. Trên cạnh $H C$ lấy trung điểm $N$. Chứng minh rằng $M H$ vuông góc với $D N$.

Lời giải.

  • Gọi $K, L$ lần lượt là trung điểm $B M$ và $H B, P$ là giao điểm của $H M$ và $A K$.

  • Ta có $K L$ là đường trung bình của tam giác $H M B$ nên $K L$ song song $H M$. Khi đó xét tam giác $A K L$ thì $P H$ là đường trung bình nên $P$ là trung điểm của $A K$.

  • Ta có từ $A B C D$ nội tiếp suy ra $H D \cdot H B=H A \cdot A C \Rightarrow H K \cdot H D=H A \cdot H N$, do đó $A D N K$ nội tiếp.

  • Suy ra $\angle N H Q=\angle A H P=\angle H A P=\angle H D N$, suy ra $\angle H Q N=90^{\circ}$.

Bài 5. Cho đường tròn tâm $O$ và đường tròn tâm $I$ cắt nhau tại hai điểm $A$ và $B(O$ và $I$ nằm khác phía đối với đường thẳng $A B), I B$ cắt $(O)$ tại $E, O B$ cắt $(I)$ tại $F$. Qua $B$ vẽ đường thẳng $M N$ song song với $E F(M$ thuộc $(O), N$ thuộc $(I))$.

a) Chứng minh rằng $O A I E$ nội tiếp.

b) Chứng minh rằng: $A E+A F=M N$.

Lời giải.

a) Chứng minh rằng tứ giác $A O E F$ nội tiếp

Do hai đường tròn $(\mathrm{O})$ và $(\mathrm{I})$ cắt nhau tại $A$ và $B$ nên ta có: $A$ đối xứng với $B$ qua $O I$. Vậy: $\angle O A I=\angle O B I$

Ta có tam giác $\triangle O B E$ cân tại $O$ nên $\angle O B E=\angle O E B$, do $\angle O B E+\angle O B I=180^{\circ}$ nên $\angle O E B+\angle O B I=180^{\circ}$. Từ đó ta có: $\angle O E B+\angle O A I=180^{\circ}$

Vậy tứ giác $O A I E$ là tứ giác nội tiếp. Chứng minh tương tự ta có: tứ giác $O A I F$ là tứ giác nội tiếp.

$\angle O E A=\angle O I A$ (tứ giác $O A I E$ là tứ giác nội tiếp)

$\angle O I A=\angle O F A$ (tứ giác $O A I F$ là tứ giác nội tiếp)

Vậy: $\angle O E A=\angle O F A$ nên tứ giác $O A F E$ là tứ giác nội tiếp

b) Chứng minh rằng: $M N=A E+A F$

Bài toán cần chứng minh tương đương với: $A F=B N$ và $A E=B M$.

Ta chỉ cần chứng minh $A F=B N$ vì $A E=B M$ là điều tương tự.

Để chứng minh $A F=B N$. Ta chỉ cần chứng minh số đo cung $\mathrm{AF}$ bằng số đo cung $\mathrm{BN}(A F, B N$ lần lượt là dây căng cung $\mathrm{AF}$, cung $\mathrm{BN}$ trong đường tròn (I)). Hay chỉ cần chứng minh: số đo cung $\mathrm{AB}$ bằng số đo cung FN. Từ đó ta chứng minh: $\angle O F A=\angle F B N$ là bài toán được giải quyết.

Do $E F | M N$ nên ta có: $\angle O F E=\angle F B N$

Mà $\angle O F E=\angle O A E=\angle O E A=\angle O F A$ (tứ giác $A O E F$ là tứ giác nội tiếp)

Từ đó ta có: $\angle O F A=\angle F B N$ (đpcm)

Bài 6. Trên mặt phẳng cho 2013 điểm tùy ý sao cho trong ba điểm bất kì thì tồn tại 2 điểm mà khoảng cách giữa hai điểm đó luôn bé hơn 1. Chứng minh rằng tồn tại một đường tròn có bán kính bằng 1 chứa ít nhất 1007 điểm (kế cả biên).

Lời giải. Gọi $A$ là một điểm bất kì trong 2013 điểm trên. Lấy $A$ làm tâm vẽ đường tròn có bán kính bằng 1 .

Nếu 2012 điểm còn lại thuộc đường tròn $(A)$ thì bài toán được chứng minh xong. Giả tồn tại một số điểm nằm ngoài đường tròn tâm $(A)$. Lấy điểm $(B)$ bất kì trong các điểm đó và vẽ đường tròn tâm $(B)$ có bán kính bằng 1 .

Giả sử tồn tại một điểm $C$ nằm ngoài hai đường tròn $(A)$ và $(B)$ thì $A B, A C$ đều lớn hơn 1. Điều này vô lí.

Từ đó ta có tất cả các điểm đã cho đều thuộc trong hai đường tròn $(A)$ và $(B)$.

Theo nguyên lí Dirichlet sẽ tồn tại một đường tròn chứa $\frac{2012}{2}+1=1007$ điểm (đpcm).