Tag Archives: ChuyenDe

ĐỀ VÀ ĐÁP ÁN CHUYÊN ĐỀ TOÁN 9 – STAR EDUCATION

ĐỀ BÀI.


Bài 1.
a) Giải phương trình: $\sqrt{2 x^2+5 x-6}+\sqrt{2 x^2-x+3}=2 x+1$.
b) Giải hệ phương trình: $\left\{\begin{array}{l}3 x=x y z+y+1 \\\ 3 y=y z x+z+1 \\\ 3 z=z x y+x+1\end{array}\right.$.

Bài 2. Cho các số thực $x, y, z$ thỏa $x^2+y^2+z^2=1$. Tìm giá trị nhỏ nhất và lớn nhất của
$$
A=x^3+y^3+z^3-x^4-y^4-z^4 .
$$

Bài 3. Xét phương trình nghiệm nguyên $x^2+y^2+z^2=x y+k z$ theo ẩn $x, y, z$ và tham số nguyên $k$.
a) Giải phương trình khi $k=3$.
b) Chứng minh rằng khi $k=3^n$ với $n \geq 1$, phương trình có đúng 2 nghiệm.

Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn tâm $O$ và ngoại tiếp đường tròn tâm $I$. Phân giác ngoài của góc $\angle B A D$ và $\angle A B C$ cắt nhau tại $E$. Phân giác ngoài của góc $\angle A B C$ và $\angle B C D$ cắt nhau tại $F$. Phân giác ngoài của góc $\angle B C D$ và $\angle C D A$ cắt nhau tại $G$. Phân giác ngoài của góc $\angle C D A$ và $\angle D A B$ cắt nhau tại $H$.
a) Chứng minh tứ giác $E F G H$ nội tiếp.
b) Chứng minh $E, I, G$ thẳng hàng và $H, I, F$ cũng thẳng hàng.
c) Gọi $M, N, P, Q$ là các tiếp điểm của đường tròn nội tiếp $(I)$ tại $A B, B C, C D, D A$. Chứng minh rằng $E G$ là trung trực của $N Q$, và $F H$ là trung trực của $M P$.

Bài 5. Cho 9 điểm (khác nhau) nằm trong một hình vuông có cạnh là 1 .
a) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích không quá $\frac{1}{8}$.
b) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích nhỏ hơn $\frac{1}{8}$.

LỜI GIẢI

Bài 1.

a) Giải phương trình: $\sqrt{2 x^2+5 x-6}+\sqrt{2 x^2-x+3}=2 x+1$.
b) Giải hệ phương trình: $\left\{\begin{array}{l}3 x=x y z+y+1 \\\ 3 y=y z x+z+1 \\\ 3 z=z x y+x+1\end{array}\right.$.

Lời giải

a) Điều kiện: $x \geq-\dfrac{1}{2}$ và $2 x^2+5 x-6 \geq 0$, suy ra $x>0$. Phương trình đã cho tương đương
$$ \sqrt{2 x^2+5 x-6}-x+\sqrt{2 x^2-x+3}-x-1=0$$
$$\Leftrightarrow \dfrac{2 x^2+5 x-6-x^2}{\sqrt{2 x^2+5 x-6}+x}+\dfrac{2 x^2-x+3-x^2-2 x-1}{\sqrt{2 x^2-x+3}+x+1}=0$$
$$\Leftrightarrow \dfrac{x^2+5 x-6}{\sqrt{2 x^2+5 x-6}+x}+\dfrac{x^2-3 x+2}{\sqrt{2 x^2-x+3}+x+1}=0$$
Ta thấy $x=1$ là nghiệm. Xét $x \neq 1$, phương trình trên tương đương
$$\dfrac{x+6}{\sqrt{2 x^2+5 x-6}+x}+\dfrac{x-2}{\sqrt{2 x^2-x+3}+x+1}=0$$
Ta chứng minh $\dfrac{6}{\sqrt{2 x^2+5 x-6}+x}>\dfrac{2}{\sqrt{2 x^2-x+3}+x+1}$

hay $ 3 \sqrt{2 x^2-x+3}>\sqrt{2 x^2+5 x-6} \Leftrightarrow 16 x^2-14 x+21>0$
Bất đẳng thức cuối đúng.
Vậy tóm lại, phương trình đã cho có nghiệm duy nhất $x=1$.

Bài 2.

Cho các số thực $x, y, z$ thỏa $x^2+y^2+z^2=1$. Tìm giá trị nhỏ nhất và lớn nhất của
$$
A=x^3+y^3+z^3-x^4-y^4-z^4 .
$$

Lời giải

Từ giả thiết ta có $-1 \leq x, y, z \leq 1$.
Từ đó suy ra $x^3+y^3+z^3+x^2+y^2+z^2=x^2(x+1)+y^2(y+1)+z^2(z+1) \geq 0.$
Dẫn đến $x^3+y^3+z^3 \geq-\left(x^2+y^2+z^2\right)=-1$.
Lại có: $x^4+x^4+y^4-\left(x^2+y^2+z^2\right)=x^2\left(x^2-1\right)+y^2\left(y^2-1\right)+z^2\left(z^2-1\right) \leq 0.$
nên $x^4+x^4+y^4 \leq x^2+y^2+z^2=1$.
Do đó suy ra $A=x^3+y^3+z^3-\left(x^4+x^4+y^4\right) \geq-1-1=-2.$
Đẳng thức xảy ra khi $x=0, y=0, z=-1$ hoặc các hoán vị.
Áp dụng bất đẳng thức $a b \leq \dfrac{a^2+b^2}{2}$ với mọi số thực $a, b$, ta có:
$ x^3=\sqrt{3} \cdot \dfrac{1}{\sqrt{3}} x \cdot x^2 \leq \sqrt{3} \cdot \dfrac{x^2+x^4}{2}=\dfrac{x^2 \sqrt{3}}{6}+\dfrac{x^4 \sqrt{3}}{2}.$
Tương tự, $y^3 \leq \dfrac{y^2 \sqrt{3}}{6}+\dfrac{y^4 \sqrt{3}}{2}, z^3 \leq \dfrac{z^2 \sqrt{3}}{6}+\dfrac{z^4 \sqrt{3}}{2}$.
Từ đây suy ra $A =x^3+y^3+z^3-x^4-y^4-z^4\leq \dfrac{\sqrt{3}}{6}\left(x^2+y^2+z^2\right)+\dfrac{\sqrt{3}-2}{2} \left(x^4+y^4+z^4\right)$
$\leq \dfrac{\sqrt{3}}{6}+\dfrac{\sqrt{3}-2}{2} \cdot \dfrac{\left(x^2+y^2+z^2\right)^2}{3}$
$=\dfrac{\sqrt{3}}{6}+\dfrac{\sqrt{3}-2}{6}=\dfrac{\sqrt{3}-1}{3}.$
Đẳng thức xảy ra khi $x=y=z=\dfrac{1}{\sqrt{3}}$.

Bài 3. Xét phương trình nghiệm nguyên $x^2+y^2+z^2=x y+k z$ theo ẩn $x, y, z$ và tham số nguyên $k$.
a) Giải phương trình khi $k=3$.
b) Chứng minh rằng khi $k=3^n$ với $n \geq 1$, phương trình có đúng 2 nghiệm.

Lời giải

a) Khi $k=3$, ta có phương trình $x^2+y^2+z^2=x y+3 z \Leftrightarrow 3 z-z^2=x^2-x y+y^2 \geq 0 .$
Suy ra $0 \leq z \leq 3$.
Nếu $z=0$ hoặc $z=3$ thì $x=y=0$.
Nếu $z=1$ hoặc $z=2$ thì $x^2-x y+y^2=2$ hay $(x+y)^2=3 x y+2$. Điều này là vô lý vì số chính phương không thể chia cho 3 dư 2 .
Vậy tất cả nghiệm cần tìm là $(0,0,0),(0,0,3)$.

b) Ta chứng minh bằng cách quy nạp theo $n$. Khẳng định đúng với $n=1$. Giả sử khẳng định đúng đến $n \geq 1$, ta chứng minh khẳng định cũng đúng với $n+1$.
Khi $k=3^{n+1}$, phương trình đã cho tương đương: $(x+y)^2+z^2=3 x y+3^{n+1} z: 3$.
Đặt $a=x+y$.
Giả sử $a$ không chia hết cho 3 thì $z$ cũng không chia hết cho 3 , suy ra $
a^2-1, z^2-1 \vdots 3 \Rightarrow a^2+z^2-2 \vdots 3.$ Điều này là vô lý vì $a^2+z^2: 3.$ Vậy $x+y$ và $z$ chia hết cho .
Khi đó $(x+y)^2+z^2: 9$, dẫn đến $x y: 3$.
Kết hợp với $x+y: 3$ ta kết luận được $x, y$ đều là bội của 3 .
Đặt $x=3 x_0, y=3 y_0, z=3 z_0\left(x_0, y_0, z_0 \in \mathbb{Z}\right)$
Có: $x^2+y^2+z^2=x y+3^{n+1} z \Leftrightarrow x_0^2+y_0^2+z_0^2=x_0 y_0+3^n z_0 .$
Theo giả thiết quy nạp, phương trình trên có đúng hai nghiệm. Theo nguyên lý quy nạp, ta được phát biểu đúng với mọi $n \geq 1$.

Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn tâm $O$ và ngoại tiếp đường tròn tâm $I$. Phân giác ngoài của góc $\angle B A D$ và $\angle A B C$ cắt nhau tại $E$. Phân giác ngoài của góc $\angle A B C$ và $\angle B C D$ cắt nhau tại $F$. Phân giác ngoài của góc $\angle B C D$ và $\angle C D A$ cắt nhau tại $G$. Phân giác ngoài của góc $\angle C D A$ và $\angle D A B$ cắt nhau tại $H$.
a) Chứng minh tứ giác $E F G H$ nội tiếp.
b) Chứng minh $E, I, G$ thẳng hàng và $H, I, F$ cũng thẳng hàng.
c) Gọi $M, N, P, Q$ là các tiếp điểm của đường tròn nội tiếp $(I)$ tại $A B, B C, C D, D A$. Chứng minh rằng $E G$ là trung trực của $N Q$, và $F H$ là trung trực của $M P$.

Lời giải

a) Biến đổi góc: $$\angle A E B=180^{\circ}-\angle E A B-\angle E B A=\angle B A I+\angle A B I=\dfrac{1}{2}(\angle B A D+\angle A B C) .$$
Tương tự, $\angle D G C=\dfrac{1}{2}(\angle A D C+\angle B C D)$.
Suy ra $$\angle A E B+\angle D G C=\dfrac{1}{2}(\angle B A D+\angle A B C+\angle A D C+\angle B C D)=\dfrac{1}{2} \cdot 360^{\circ}=180^{\circ} .$$
Vậy tứ giác $E F G H$ nội tiếp.

b) Ta có các tứ giác $A E B I, G D I C$ là các tứ giác nội tiếp nên suy ra
$$\angle A I E+\angle A I D+\angle G I D =\angle A B E+\left(180^{\circ}-\angle I A D-\angle I D A\right)+\angle G C D $$
$$=90^{\circ}-\angle A B I+180^{\circ}-\angle I A D-\angle I D A+90^{\circ}-\angle D C I$$
$$=360^{\circ}-\dfrac{1}{2}(\angle B A D+\angle A B C+\angle A D C+\angle B C D)=180^{\circ} .$$
Vậy $E, I, G$ thẳng hàng. Tương tự, ta cũng có $H, I, F$ thẳng hàng.

c) Gọi $X, Y$ lần lượt là giao điểm của $I E, I B$ và $Q N$.
Biến đổi góc:$$\angle B Y N =180^{\circ}-\angle Y B N-\angle B N Q=180^{\circ}-\dfrac{1}{2} \angle A B C-\dfrac{360^{\circ}-\angle Q A B-\angle N B A}{2}$$
$$=-\dfrac{1}{2} \angle A B C+\dfrac{\angle D A B+\angle A B C}{2}$$
$$=\dfrac{1}{2} \angle D A B=\angle B A I=\angle B E I .$$

Suy ra tứ giác $E B Y X$ nội tiếp, dẫn đến $\angle I X Y=90^{\circ}$.
Mà $I Q=I N$ nên ta được $E I$ là đường trung trực của $Q N$, hay $E Q$ là đường trung trực của $Q N$.
Tương tự, $F N$ của là đường trung trực của $M P$.

Bài 5. Cho 9 điểm (khác nhau) nằm trong một hình vuông có cạnh là 1 .
a) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích không quá $\dfrac{1}{8}$.
b) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích nhỏ hơn $\dfrac{1}{8}$.

Lời giải

Trước tiên ta chứng minh bài toán phụ: một tam giác có ba đỉnh nằm trên cạnh hoặc miền trong của một hình chữ nhật thì có diện tích không quá một nửa diện tích hình chữ nhật ấy.
Thật vậy, giả sử tam giác $M N P$ với $M, N, P$ thuộc cạnh hoặc miền trong hình chữ nhật $A B C$.
Xét trường hợp $M, N$ thuộc cạnh hình chữ nhật, không mất tính tổng quát, $M, N$ nằm trên cạnh $A B$.
Khi đó hạ đường cao $P H$ của tam giác $M N P$ thì $$S_{M N P}=\dfrac{1}{2} P H \cdot M N \leq \dfrac{1}{2} B C \cdot M N \leq \dfrac{1}{2} B C \cdot A B=\dfrac{1}{2} S_{A B C D} .$$
Xét trường hợp $M \in A B$. Kẻ đường thẳng qua $M$ song song với $B C$ cắt $C D$ tại $Q$ và cắt đường thẳng $N P$ tại $T$. Nếu $T$ nằm ngoài đoạn $N P$ thì $$
S_{M N P} \leq S_{M T P} \leq \dfrac{1}{2} S_{M Q C B} \leq \dfrac{1}{2} S_{A B C D} .$$
Nếu $T$ thuộc đoạn $N P$ thì $$S_{M N P}=S_{M T N}+S_{M T P} \leq \dfrac{1}{2} S_{M Q D A}+\dfrac{1}{2} S_{M Q C B}=\dfrac{1}{2} S_{A B C D} .$$


Cuối cùng, nếu $M, N, P$ dều không thuộc cạnh hình chữ nhật, không mất tính tổng quát, giả sử $M$ có khoảng cách gần với $A B$ nhất trong ba điểm $M, N, P$, kẻ đường thẳng qua $M$ song song với $A B$ cắt $A D, B C$ tại $R, S$.
Khi đó, $$S_{M N P} \leq \dfrac{1}{2} S_{R S C D} \leq \dfrac{1}{2} S_{A B C D} .$$
Vậy tóm lại, ta luôn có $S_{M N P} \leq \dfrac{1}{2} S_{A B C D}$. Đẳng thức xảy ra khi tam giác có một cạnh, giả sử $N P$ là cạnh của hình chữ nhật và $M$ nằm trên cạnh của hình chữ nhật đối diện với cạnh $N P$.
Trở lại bài toán, chia hình vuông thành bốn hình vuông nhỏ có diện tích là $\dfrac{1}{4}$ bởi hai đường trung bình.
Theo nguyên lý Dirichlet, tồn tại 3 diểm cùng thuộc một hình vuông nhỏ.
Diện tích tam giác tạo bởi 3 điểm này không quá $\dfrac{1}{2}$ diện tích hình vuông nhỏ, tức là không quá $\dfrac{1}{8}$ (nếu 3 điểm thẳng hàng thì ta coi như đó là tam giác có diện tích bằng 0 ).
Mà các điểm nằm bên trong hình vuông dẫn đến không có cạnh nào của tam giác này là cạnh của hình vuông, cho nên diện tích tam giác này phải bé hơn $\dfrac{1}{8}$.
Hoàn tất chứng minh.

Sử dụng kĩ thuật tính toán để chứng các bài toán hình học phẳng

Bài viết trình bày một số kĩ thuật tính toán hình học để chứng minh các bài toán hình học phẳng, các định lý được dùng chính là định lý Sin, Cosin, công thức diện tích, vectơ,..và một số tính chất, bổ đề đơn giản.

Một số kí hiệu thường dùng.

Trong tam giác $ABC$, đặt $BC = a, AC = b, AB = c, p = \dfrac{a+b+c}{2}, S = S_{ABC}$, $R$ là bán kính đường tròn ngoại tiếp, $r$ là bán kính đường tròn nội tiếp.

Sau đây là một số định lý quan trọng và đã có trong các phần khác, bạn đọc có thể tự chứng minh một cách dễ dàng.

Định lý 1. (Định lý Sin) Trong tam giác $ABC$ thì $$\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R$$

Định lý 2. (Định lý Cosin) Trong tam giác $ABC$ thì $a^2 =b^2 + c^2 – 2bc \cos A$ và các hệ thức tương tự.

Định lý 3. (Định lý Ceva dạng sin) Cho tam giác $ABC$, $P$ là điểm bất kì, khi đó $$\frac{\sin \left(A A_1 ; A B\right)}{\sin \left(A A_1 ; A C\right)} \cdot \frac{\sin \left(B B_1 ; B C\right)}{\sin \left(B B_1 ; B A\right)} \cdot \frac{\sin \left(C C_1 ; C A\right)}{\sin \left(C C_1 ; C B\right)}=-1$$

Một số tính chất và bổ đề cần dùng.

Tính chất 1. Nếu $\alpha$ là góc nhọn và $0^{\circ} \leq x, y \leq \alpha$ thỏa
$$
\frac{\sin x}{\sin (\alpha-x)}=\frac{\sin y}{\sin (\alpha-y)}
$$
thì $x=y$.

Tính chất 2. Cho tam giác $A B C$. Khi đó:
(a) $S_{A B C}=\frac{1}{2} A B \cdot A C \cdot \sin B A C$.
(b) $M$ là điểm trên cạnh $B C$, khi đó $\frac{B M}{C A M}=\frac{A B \cdot \sin M A B}{A C \cdot \sin M A C}$. $M$ là trung điểm $B C$ khi và chỉ khi $\frac{A B}{A C}=\frac{\sin M A C}{\sin M A B}$.

Tính chất 3. Cho tam giác $A B C$ cân tại $A, M$ là điểm thuộc cạnh $B C$. Khi đó:
$$
\frac{M B}{M C}=\frac{\sin M A B}{\sin M A C}
$$

Một số ví dụ áp dụng

Ví dụ 1. Cho tam giác $A B C$, đường tròn tâm $I$ nội tiếp tam giác $A B C$ tiếp xúc với $B C, A C, A B$ tại $D, E, F . D I$ cắt $E F$ tại $K$. Chứng minh $A K$ qua trung điểm của $B C$.
Hướng dẫn giải

Gọi $M$ là trung điểm $B C$, ta sẽ chứng minh tia $A K$ trùng tia $A M$. Từ 6.1.6 ta thấy rằng để chứng minh 2 tia này trùng nhau, ta chỉ cần chứng minh
$$
\dfrac{\sin B A K}{\sin C A K}=\dfrac{\sin B A M}{\sin C A M}(*)
$$

Ta có: $\dfrac{A B}{A C}=\dfrac{\sin C}{\sin B}=\dfrac{\sin K I E}{\sin K I F}=\dfrac{K E}{K F}=\dfrac{\sin K A E}{\sin K A F}$.

Mà $\dfrac{A B}{A C}=\dfrac{\sin M A B}{\sin M A C}$.

Từ (1) và (2) ta có $\dfrac{\sin K A E}{\sin K A F}=\dfrac{\sin M A E}{\sin M A F}$.

Ví dụ 2. Cho tam giác $A B C$ nhọn, tiếp tuyến tại $B, C$ của đường tròn ngoại tiếp tam giác cắt nhau tại $P$. Chứng minh rằng $\angle P A B=\angle C A M$ với $M$ là trung điểm $B C$.

Hướng dẫn giải.

Ta có $S_{A B M}=S_{A C M} \Leftrightarrow A B \cdot A M \sin B A M=A B \cdot A M \cdot \sin C A M \Rightarrow \dfrac{\sin B A M}{\sin C A M}=\dfrac{A C}{A B}$
(1) Ta có $\dfrac{S_{P A B}}{S_{P A C}}=\dfrac{A B \cdot A P \cdot \sin P A B}{A C \cdot A P \cdot \sin P A C}=\dfrac{A B \cdot \sin P A B}{A C \cdot \sin P A C}$.

Mà $\dfrac{S_{P A B}}{S_{P A C}}=\dfrac{A B \cdot P B \cdot \sin A B P}{A C \cdot P C \cdot \sin A C P}=\dfrac{A B}{A C} \cdot \dfrac{\sin A C B}{\sin A B C}=\dfrac{A B^2}{A C^2}$.
Từ (3) và (4) ta có $\dfrac{\sin P A B}{\sin P A C}=\dfrac{A B}{A C}=\dfrac{\sin C A M}{\sin B A M} \Rightarrow \angle P A B=\angle C A M$.

Ví dụ 3. (Đường thẳng Newton) Cho các tứ giác $A B C D$ ngoại tiếp đường tròn $(I)$. Gọi $E, F, G, H$ là tiếp điểm của $(I)$ với các cạnh $A B, B C, C D, D A ; M, N$ là trung điểm của $A C$ và $B D$.
(a) Chứng minh $A C, B D, E G, F H$ dồng quy.
(b) Chứng minh $I, M, N$ thẳng hàng và $\frac{I M}{I N}=\frac{B E+D H}{A E+C H}$.

Hướng dẫn giải.

Đặt $A E=A H=a, B E=B F=b, C F=C G=c, D G=D H=d$.

(a) Gọi $K$ là giao điểm của $E G$ và $A C$.

Ta có $\dfrac{A K}{A E}=\dfrac{\sin \angle A E K}{\sin A K E}$ và $\dfrac{C K}{C G}=\dfrac{\sin \angle C G K}{\sin \angle C K G}$.

Mà $\sin \angle A K E=\sin \angle C K G, \sin \angle A E K=\sin C G K$.
Do đó $\frac{A K}{C K}=\dfrac{A E}{C G}=\frac{a}{c}$.

Gọi $K^{\prime}$ là giao điểm của $H F$ và $A C$ ta cũng chứng minh được $\frac{A K^{\prime}}{C K^{\prime}}=\dfrac{a}{c}$. Do đó $K \equiv K^{\prime}$ hay $E G, H F, A C$ dồng quy.
Tương tự ta cũng có $B D, E G, H F$ dồng quy.

b) Ta có $A B \overrightarrow{I E}=b \overrightarrow{I A}+a \overrightarrow{I B}, B C \overrightarrow{I F}=b \overrightarrow{I C}+c \overrightarrow{I B}, C D \overrightarrow{I G}=c \overrightarrow{I D}+d \overrightarrow{I C}, A D \overrightarrow{I H}=d \overrightarrow{I A}+a \overrightarrow{I D}$.

Theo định lý con nhím ta có $A B \overrightarrow{I E}+B C \overrightarrow{I F}+C D \overrightarrow{I G}+A D \overrightarrow{I H}=\overrightarrow{0}$, suy ra $(a+c)(\overrightarrow{I B}+$ $\overrightarrow{I D})+(b+d)(\overrightarrow{I A}+\overrightarrow{I C})=\overrightarrow{0}$

Mà $\overrightarrow{I A}+\overrightarrow{I C}=2 \overrightarrow{I M}, \overrightarrow{I B}+\overrightarrow{I D}=2 \overrightarrow{I N}$.

Do đó $(a+c) \overrightarrow{I N}+(b+d) \overrightarrow{I M}=\overrightarrow{0}$, từ đó suy ra $I, M, N$ thẳng hàng và $\dfrac{I M}{I N}=\dfrac{b+d}{a+c}$.

Ví dụ 4. Cho tam giác $A B C$ nhọn có trực tâm $H$. Gọi $M$ là trung điểm $B C$, đường tròn tâm $M$ bán kính $M H$ cắt $B C$ tại $A_1, A_2$; các điểm $B_1, B_2, C_1, C_2$ được xác định tương tự. Chứng minh rằng 6 điểm $A_1, A_2, B_1, B_2, C_1, C_2$ cùng thuộc một đường tròn.

Hướng dẫn giải.

Ta dễ nhận ra rằng các điểm này cách đều tâm đường tròn ngoại tiếp tam giác $A B C$, vậy ta chỉ cần tính $O A_1$ sao cho không phụ thuộc vào vị trí của $A_1$, hay kết quả là một biểu thức đối xứng ta sẽ có điều cần chứng minh.

$O A_1^2=O M^2+M A_1^2=O M^2+M H^2$.

$M H^2=\dfrac{1}{2}\left(H B^2+H C^2\right)-\dfrac{1}{4} B C^2=2 O N^2+2 O P^2-\dfrac{1}{4} a^2=R^2\left(2 \cos ^2 B+2 \cos ^2 C-\sin ^2 A\right)$.

Khi đó
$$
O A_1^2=R^2\left(2 \cos ^2 B+2 \cos ^2 C+\cos ^2 A-\sin ^2 A\right)=R^2\left(2 \cos ^2 B+2 \cos ^2 C+2 \cos ^2 A-1\right)
$$

Tương tự cho các độ dài khác, từ đó ta có 6 điểm thuộc đường tròn tâm $O$.

Chú ý: Để ý vai trò như nhau của các đối tượng cần tính và cố gắng đưa về các yếu tố của hình gốc, cụ thể trong bài này là tam giác $ABC$.

Bài 5. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$. Tiếp tuyến tại $B, C$ cắt nhau tại $L$. Gọi $X$ là điểm đối xứng của $A$ qua $B C$, tiếp tuyến tuyến tại $A$ cắt $L X$ tại $K$. Chứng minh $K$ thuộc đường thẳng Euler của tam giác $A B C$.
Hướng dẫn giải

Gọi giao điểm của $O K$ với $A X$ là $J$, ta sẽ chứng minh $J$ là trực tâm của $\triangle A B C$. Gọi giao điểm của $O L$ với $A K$ là $I$, theo định lý Thales ta có $\dfrac{J A}{O I}=\dfrac{K J}{K O}=\dfrac{J X}{O L} \Leftrightarrow \dfrac{J A}{J X}=\dfrac{O I}{O L}$.

Gọi $H$ là trực tâm của tam giác $A B C$ và $P$ là giao của $A H$ và $(O)$, do tính đối xứng thì $A P=H X$. Ta cần chứng minh $\dfrac{H A}{H X}=\dfrac{J A}{J X}$, tức là $\dfrac{A H}{A P}=\dfrac{O I}{O L}(1)$.

Từ đây chú ý thêm $\angle O I A=90^{\circ}-\angle O A H=\angle A C P=\alpha$, hướng giải quyết của ta đã sáng sủa hơn, ta có : $O I=\dfrac{O A}{\sin \alpha} ; O L=\dfrac{O C}{\cos \angle B A C} \Rightarrow \dfrac{O I}{O L}=\dfrac{\cos \angle B A C}{\sin \alpha}$

Ta có $A H=2 R \cos \angle B A C ; A P=2 R$. $\sin \alpha$, suy ra $\dfrac{A H}{A P}=\dfrac{\cos \angle B A C}{\sin \alpha}=\frac{O I}{O L}$. Suy ra $\dfrac{H A}{H X}=$ $\dfrac{J A}{J X}$; nghĩa là $H$ trùng $J$, suy ra $K$ thuộc đường thẳng Euler của tam giác $A B C$.

(Hết phần 1)

Đường tròn nội tiếp – Đường tròn bàng tiếp trong tam giác

Định nghĩa và một số tính chất quan trọng

Định nghĩa 1. Đường tròn nội tiếp là đường tròn có tâm là giao điểm ba đường phân giác trong và tiếp xúc với ba cạnh của tam giác.

Định nghĩa 2. Đường tròn bàng tiếp là đường tròn có tâm giao điểm của một phân giác trong và hai phân giác ngoài, tiếp xúc với một cạnh và phần nối dài của hai cạnh còn lại.\\
Trong tam giác có ba đường tròn bàng tiếp ứng với ba đỉnh của tam giác.

Tính chất 1. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$, đường tròn tâm $I$ bán kính $r$ nội tiếp tam giác tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$.
Gọi $I_a, I_b, I_c$ lần lượt là tâm đường tròn ứng với các đỉnh $A, B, C$. $(I_a)$ tiếp xúc với $BC, AC, AB$ tại $D’,E’, F’$.
Đặt $p = \dfrac{AB+BC+AC}{2}, S = S_{ABC}$.
Ta có một số tính chất sau:
a) $AE = AF = p-a$ và $AE’ = AF’ = p$ và $BD = CD’ = \dfrac{AB+BC-AC}{2}$.
b) $K$ là điểm đối xứng của $D$ qua $I$ thì $A, K, D’$ thẳng hàng.
c) Đường tròn ngoại tiếp tam giác $ABC$ đi qua trung điểm các cạnh của tam giác $I_aI_bI_c$.

Chứng minh.

(a) Ta có $A E=A F, B D=B F, C D=C E$, khi đó $A B+A C-B C=A F+B F+A E+C E-$ $B D-C D=A E+A F=2 A E$, suy ra $A E=\frac{A B+A C-B C}{2}=\frac{A B+B C+A C}{2}-B C=p-a ;$
Ta có $B D^{\prime}=B F, C D^{\prime}=C E$, suy ra $A B+A C+B C=A B+B D^{\prime}+C D^{\prime}+A C=$ $A B+B F^{\prime}+A C+C E^{\prime}=A E^{\prime}+A F^{\prime}=2 A E^{\prime} \Rightarrow A E^{\prime}=A F^{\prime}=\frac{A B+B C+A C}{2}=p ;$

Chứng minh tương tự thì $B D=p-b$ và $C D^{\prime}=C E^{\prime}=A E^{\prime}-A C=p-b$, do đó $B D=C D^{\prime}$.
(b) Ta có $I K=I E, I_a D^{\prime}=I_a E^{\prime}$ nên $\frac{I K}{I_a D^{\prime}}=\frac{I E}{I_a E^{\prime}}$ và $I E / / I_a E^{\prime}$ nên $\frac{I E}{I_a E^{\prime}}=\frac{A I}{A I_a}$; do đó $\frac{A I}{A I_a}=$ $\frac{I K}{I_a D^{\prime}}$, suy ra $\triangle A I K \backsim \triangle A I_a D^{\prime} \Rightarrow \angle I A K=\angle I_a A D^{\prime}$, từ đó $A, K, D^{\prime}$ thẳng hàng.
(c) Ta có $A I_b, A I_a$ là phân giác ngoài và phân giác trong góc $A$ nên $\angle I_a A I_b=90^{\circ}$ hay $I_a A \perp I_b I_c$; chứng minh tương tự ta có $I_b B \perp I_a I_c, I_c C \perp I_a I_b$.

Trong tam giác $I_a I_b I_c$ thì $I_a A, I_b B, I_c C$ là ba đường cao, nên đường tròn ngoại tiếp tam giác $A B C$ chính là đường tròn Euler của tam giác $I_a I_b I_c$ nên đi qua trung điểm 3 cạnh của tam giác này.

Tính chất 2. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác $ABC$ tiếp xúc với $BC, AC, AB$ tại $D, E, F$. Gọi $M, N$ lần lượt là trung điểm $BC, AC$. Khi đó $EF, BI, MN$ đồng quy.

Chứng minh.

Gọi $K$ là giao điểm của $B I$ và $E F$, ta chứng minh $K, M, N$ thẳng hàng.
Ta có $\angle K E C=\angle A E F=90^{\circ}-\frac{1}{2} \angle B A C$ và $\angle K I C=\angle I B C+\angle I C B=\frac{1}{2}(\angle A B C+$ $\angle A C B)=90^{\circ}-\angle B A C$. Suy ra $\angle K E C=$ $\angle K I C$, tứ giác $K E I C$ nội tiếp, do đó $\angle B K C=$ $90^{\circ}$.

Tam giác $K B C$ vuông tại $K$ có $K M$ trung tuyến nên $M K=M B=M C$, suy ra $\angle K M C=$ $2 \angle K B C=\angle A B C$, suy ra $K M / / A B$, mà $M N$ là đường trung bình của tam giác $A B C$ nên $M N / / A B$, do đó $K, M, N$ thẳng hàng.

Tính chất 3. Cho tam giác $A B C$, đường tròn tâm $I$ nội tiếp tam giác $A B C$ tiếp xúc với $B C, A C, A B$ tại $D, E, F . I D$ cắt $E F$ tại $K$, khi đó $A K$ đi qua trung điểm $M$ của $B C$.

Chứng minh. Qua $K$ vẽ đường thẳng song song hay $M$ là trung điểm cạnh $B C$. với $B C$ cắt $A B, A C$ tại $P$ và $Q$, ta chứng minh $K$ là trung điểm $P Q$.

Ta có $\angle I K \perp P Q$, từ đó suy ra $I K P F, I K E Q$ nội tiếp, suy ra $\angle I P K=\angle I F K, \angle I Q K=\angle I E K$ mà $I E F$ cân tại $I$ nên $\angle I E K=\angle I F K$, suy ra $\angle I P Q=\angle I Q K$. Tam giác $I P Q$ cân nên $K$ là trung điểm $P Q$.

Gọi $M$ là giao điểm của $A K$ với $B C$, ta có $\frac{K P}{M B}=$ $\frac{A K}{A M}=\frac{K Q}{M C}$, mà $K P=K Q$ nên $M B=M C$

Tính chất 4. Cho tam giác $A B C$, đường tròn tâm $I$ nội tiếp tam giác $A B C$ tiếp xúc với $B C, A C, A B$ lần lượt tại $D, E, F . E F$ cắt $B C$ tại $P$. Khi đó $\frac{P B}{P C}=\frac{D B}{D C}$ và $I P \perp A D$.
Chứng minh

Theo ví dụ 1.1 ta có $\frac{P B}{P C}=\frac{D B}{D C}$.

Gọi $K$ là giao điểm của $I A$ và $E F$ ta có $\angle I K P=90^{\circ}$, suy ra $I K P D$ nội tiếp, do đó $\angle I P D=\angle I K D$.
Mặt khác $I K \cdot I A=I E^2=I D^2$, suy ra $\triangle I K D \backsim \triangle I D A \Rightarrow I K D=\angle I D A$.
Do đó $\angle I P D=\angle I D A$, suy ra $D A \perp IP$.

Bài tập có lời giải

Bài 1. (PTNK 2014) Cho điểm $\mathrm{C}$ thay đổi trên nửa đường tròn đường kính $A B=2 R$ $(C \neq A, C \neq B)$. Gọi $H$ là hình chiếu vuông góc của $C$ lên $A B ; I$ và $J$ lần lượt là tâm đường tròn nội tiếp các tam giác $A C H$ và $B C H$. Các đường thẳng $C I, C J$ cắt $A B$ tại $M, N$.
(a) Chứng $\operatorname{minh} A N=A C, B M=B C$.
(b) Chứng minh 4 điểm $M, N, I, J$ cùng nằm trên một đường tròn và các đường thẳng $M J, N I$ và $C H$ dồng quy.
(c) Tìm giá trị lớn nhất của $M N$ và giá trị lớn nhất của diện tích tam giác $C M N$ theo $\mathrm{R}$.

Lời giải.

(a) Ta có $\angle H C B=\angle C A B$ (cùng phụ với $\angle A B C$ ) và $\angle H C A=\angle C B A$ (cùng phụ với $\angle B A C$ ).
Ta có $\angle C A N=\angle N A C+\angle A B C=\angle H A N+\angle A C B=\angle C A N$. Suy ra tam giác $C A N$ cân tại $A$ hay $A N=A C$. Chứng minh tương tự ta có $B M=B C$.
(b) Tam giác $C A N$ cân tại $A$ có $A I$ là phân giác nên cũng là trung trực, suy ra $I C=I N$, suy ra $\angle I N C=\angle I C N=\angle I C H+\angle N C H=\frac{1}{2} \angle A C H+\frac{1}{2} \angle B C H=45^{\circ}$.
Tương tự thì $\angle J M C=45^{\circ}$.
Tứ giác $M I J N$ có $\angle J M C=\angle I N C=45^{\circ}$ nên là tứ giác nội tiếp, hay $M, N, I, J$ cùng thuộc một đường tròn.
Tam giác $I N C$ cân có $\angle I C N=45^{\circ}$ nên $\angle C I N=90^{\circ}$, suy ra $C I \perp C M$.
Chứng minh tương tự $M J \perp C N$.
Tam giác $C M N$ có $C H, M J, N I$ là các đường cao nên đồng quy.
(c) Đặt $A C=b, B C=a$. Ta có $a^2+b^2=B C^2=4 R^2$.
Ta có $A N=A C=b, B M=B C=a$.
$A M+B N=B C+M N$, suy ra $M N=a+b-B C=a+b-2 R$.
Ta có $(a+b)^2 \leq 2\left(a^2+b^2\right)=8 R^2$. Suy ra $a+b \leq 2 \sqrt{2} R$, suy ra $a+b-2 R \leq 2 R(\sqrt{2}-1)$. Đẳng thức xảy ra khi $a=b=R \sqrt{2}$.
Vậy giá trị lớn nhất của $M N$ bằng $2 R(\sqrt{2}-1)$ khi $C$ là điểm chính giữa đường tròn. Khi đó $S_{C M N}=\frac{1}{2} C H \cdot M N \leq R^2(\sqrt{2}-1)$. Đẳng thức xảy ra khi $C$ là điểm chính giữa đường tròn.

Bài 2. Cho tam giác $A B C$ có bán kính đường tròn nội tiếp là $r$, đường tròn ngoại tiếp là $R$ và bán kính đường tròn bàng tiếp lả $r_a, r_b, r_c$. Khi đó
$$
r_a+r_b+r_c=4 R+r
$$

Lời giải.

Đường tròn ngoại tiếp tam giác $A B C$ là đường tròn Euler của tam giác $I_a I_b I_c,(A B C)$ cắt $I_b I_c$ tại $N$ và cắt $A I_a$ tại $M$, khi đó $N$ là trung điểm của $I_a I_b$ và $I I_a$. Ta có $M N$ là đường kính của $(A B C)$.
Gọi $K, L$ là hình chiếu của $I_c, I_b$ trên đường thẳng $B C$ và $E$ là hình chiếu của $I_a$ trên $B C$. Tứ giác $I_b L K I_c$ là hình thang vuông có $N P$ là đường trung bình nên $I_c K+I_b L=2 N P$ hay $r_b+r_c+2 N P$. Tương tự $I_a E-I D=2 M P$ hay $r_a-r=2 M P$. Do đó $r_b+r_c+r_a-r=2 N P+2 M P=2 M N=4 R \Rightarrow r_a+r_b+r_c=4 R+r$.

Bài 3. Cho tam giác $A B C$ nhọn có $A B<A C$, đường tròn tâm I nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $B C, A C, A B$ lần lượt tại $D, E, F$. Gọi $K$ là hình chiếu vuông góc với $D$ trên $E F$.
a) Đường tròn ngoại tiếp tam giác $A B C$ và tam giác $A E F$ cắt nhau tại $P$ khác
A. Chứng $\operatorname{minh} P, K, I$ thẳng hàng.
b) $D K$ cắt $A B$ tai $H$. Tính $\angle F P H$.

Lời giải.

a) Chứng minh được $\triangle P F B \backsim \triangle P E C$.
Suy ra $\frac{P F}{P E}=\frac{F B}{E C}$.
Ta cũng chứng minh được: $\angle B K F=\angle C K E$. Hơn nữa $\angle B F K=\angle C E K$ nên $\triangle K F B \backsim \triangle K E C$. Do đó ta suy ra $\frac{F B}{E C}=\frac{K F}{K E}$.
Do vậy $\frac{P F}{P E}=\frac{K F}{K E}$.
Suy ra $P K$ là phân giác góc $\angle E P F$.
Mà $P I$ là phân giác $\angle E P F$ nên $P, I, K$ thẳng hàng.
b) Ta có $H K / / A I$ nên suy ra $\angle P K H=\angle A I P=\angle P F H$.
Do đó tứ giác $P F H K$ nội tiếp.
Suy ra $\angle H P F+\angle H K F=180^{\circ}$.
Mà $\angle H K F=90^{\circ}$ nên $\angle H P F=90^{\circ}$.

Bài tập rèn luyện

Bài 1. (TPHCM 2020) Đường tròn $(I)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, B C$, $C A$ lần lượt tại $D, E, F$. Kẻ đường kính $E J$ của đường tròn $(I)$. Gọi $d$ là đường thẳng qua $A$ song song với $B C$. Đường thẳng $J D$ cắt $d, B C$ lần lượt tại $L, H$.
(a) Chứng minh: $E, F, L$ thẳng hàng.
(b) $J A, J F$ cắt $B C$ lần lượt tại $M, K$. Chứng minh: $M H=M K$.

Bài 2. (TPHCM 2017) Cho tam giác $A B C$ có góc $B$ tù. Đường tròn $(O)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, C A, B C$ lần lượt tại $L, H, J$.
(a) Các tia $B O, C O$ cắt $L H$ lần lượt tại $M, N$. Chứng minh 4 diểm $B, C, M, N$ cùng thuộc một đường tròn.
(b) Gọi $d$ là đường thẳng qua $O$ và vuông góc với $A J ; d$ cắt $A J$ và đường trung trực của cạnh $B C$ lần lượt tại $D$ và $F$. Chứng minh 4 điểm $B, D, F, C$ cùng thuộc một đường tròn.

Bài 3. (PTNK 2015) Cho tam giác $A B C(A B<A C)$ có các góc nhọn, nội tiếp trong đường tròn tâm $O$. Gọi $M$ là trung điểm của cạnh $B C, E$ là điểm chính giữa của cung nhỏ $B C, F$ là điểm đối xứng của $E$ qua $M$.
(a) Chứng minh $E B^2=E F \cdot E O$.
(b) Gọi $D$ là giao điểm của $A E$ và $B C$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn.
(c) Gọi $I$ là tâm đường tròn nội tiếp tam giác $A B C$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $I B C$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác $P O F$ đi qua một điểm cố định.

Tứ giác nội tiếp – Phần 2

(Bài viết dành cho học sinh lớp 9 chuyên toán – Lời giải bài tập chương 1 sách [1]) Chứng minh 4 điểm cùng nằm trên một đường tròn là dạng toán thường xuất hiện nhất trong các đề thi, đây cũng là kĩ năng quan trọng để chứng minh các ý toán khác trong một bài toán, có nhiều cách chứng minh 4 điểm cùng thuộc đường tròn trong đó chủ ý các các dấu hiệu một tứ giác nội tiếp. Một tứ giác là tứ giác nội tiếp khi và chỉ khi có một trong các dấu hiệu sau:
  • 4 đỉnh cách đều một điểm
  • Tổng hai góc đối bằng $180^\circ$ (đặc biệt hai góc đối vuông)
  • Góc ngoài bằng góc đối trong
  • Hai đỉnh kề cùng nhìn cạnh còn lại với hai góc bằng nhau (đặc biệt hai góc nhìn là góc vuông).
Ngoài ra còn có bổ đề thường dùng. Bổ đề 1. Cho tứ giác $ABCD$ có hai đường chéo cắt nhau tại $P$ và hai đường thẳng $AB, CD$ cắt nhau tại $P$. Khi đó $ABCD$ nội tiếp khi và chỉ khi $PA \cdot PC = PB \cdot PD$ hoặc $QA \cdot QB=QC \cdot QD$. Bổ đề 2. Phân giác trong góc $A$ của tam giác $ABC$ cắt trung trực của $BC$ tại $D$, khi đó $D$ thuộc đường tròn ngoại tiếp tam giác $ABC$. Ta bắt đầu với các bài toán sau: Bài 1. Hai dây $AB$ và $CD$ của một đường tròn cắt nhau tại $I$. Gọi $M$ là trung điểm của $IC$ và $N$ đối xứng với $I$ qua $D$. Chứng minh rằng $AMBN$ nội tiếp một đường tròn. Lời giải. Xét tam giác $IAC$ và $IBD$ có $\angle AIC = \angle BID$ và $\angle IAC = \angle IBD$, suy ra $\triangle IBD \backsim \triangle IAC$; $\Rightarrow IA \cdot IB = IC \cdot ID = 2 IM \cdot \dfrac{IN}{2} = IM \cdot IN \Rightarrow \dfrac{IM}{IB} = \dfrac{IA}{IN}$. Suy ra $\triangle IMA \backsim \triangle IBN \Rightarrow \angle IAM = \angle INB$; Do đó tứ giác $AMBN$ nội tiếp. Bài 2. Cho tam giác $ABC$ nhọn, nội tiếp đường tròn tâm $O$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. $AO$ cắt $EF$ tại $K$ và cắt $(O)$ tại $L$ khác $A$. Gọi $P$ là điểm đối xứng của $A$ qua $K$. Chứng minh rằng các tứ giác $DHKL$ và $DHOP$ nội tiếp.
Lời giải. Dễ thấy tứ giác $BCEF$ nội tiếp, suy ra $\angle AEF = \angle ABC$; Mà $\angle ABC = \angle ALC$, suy ra $\angle AEF = \angle ALC$, từ đó $KECL$ nội tiếp; Theo chú ý trên ta có $AK \cdot AL = AE \cdot AC$ \hfill (1) Mặt khác tứ giác $CDHE$ nội tiếp nên $AH \cdot AD = AE \cdot AC$ \hfill (2) Từ (1) và (2) suy ra $AK \cdot AK = AH \cdot AD \Rightarrow DHKL$ nội tiếp. Ta có $AP = 2AK, AL = 2AO \Rightarrow AP \cdot AO = AK \cdot AL = AH \cdot AD$, suy ra $DHOP$ nội tiếp. Bài 3. Cho hình vuông $ABCD$. Trên các cạnh $BC, CD$ lấy điểm $M,N$ sao cho $\angle MAN = 45^\circ$. $AM, AN$ cắt $BD$ lần lượt tại $P$ và $Q$. a) Chứng minh các tứ giác $ADNP, ABMQ$ nội tiếp. b) Chứng minh $MNQP$ nội tiếp. Lời giải.
Tứ giác $APND$ có $\angle PAN = \angle PDN = 45^\circ$ nên là tứ giác nội tiếp. Tương tự thì $ABMQ$ cũng là tứ giác nội tiếp. Từ $ADNP, ABMQ$ nội tiếp suy ra $\angle APN = 180^\circ – \angle ADN = 90^\circ$ và $\angle AQM = 180^\circ -\angle ABM = 90^\circ$. Tứ giác $MPQN$ có $\angle MPN = \angle MQN = 90^\circ$ nên là tứ giác nội tiếp. Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Phân giác trong góc $A$ cắt $(O)$ tại $D$. Gọi $M, N$ lần lượt là trung điểm $AB, AC$. $DM, DN$ cắt $(O)$ tại $E, F$ khác $M$, $AD$ cắt $MN$ tại $S$. a) Chứng minh rằng 4 điểm $M, N, E, F$ cùng thuộc một đường tròn. b) $OD$ cắt $BC$ tại $P$, đường tròn ngoại tiếp tam giác $DPS$ cắt $BC$ tại $Q$ khác $P$. Chứng minh $QA$ là tiếp tuyến của $(O)$. Lời giải. 
Gọi $K$ là giao điểm của $AD$ và $BC$. a) Ta có $\angle AED = \angle ABD = \angle AKC$. Mà $MN \parallel BC \Rightarrow \angle AKC = \angle ASN$. Suy ra $\angle AED = \angle ASN \Rightarrow AEMS$ nội tiếp. Do đó $DM \cdot DE = DS \cdot DA$. Chứng minh tương tự ta có $MN \cdot DF = DS \cdot DA$. Suy ra $DM \cdot DE = DN \cdot DF$, từ đó dẫn đến tứ giác $MNFE$ nội tiếp. b) Ta có $OD \bot BC$ tại $P$. Suy ra $\angle QPD = \angle QPD = 90^\circ$. Tam giác $AQK$ có $QS \bot AK$ và $S$ là trung điểm $AK$ nên $QAK$ cân tại $Q$. Suy ra $\angle QAK = \angle AKQ = \angle ACD$, suy ra $QA$ là tiếp tuyến của $(O)$. Bài 5. Cho tam giác $ABC$ cân tại $A$. Từ một điểm $M$ tùy ý trên cạnh $BC$ kẻ các đường song song với các cạnh bên cắt $AB$ tại $P$ và cắt $AC$ tại $Q$. $D$ là điểm đối xứng của $M$ qua $PQ$. Chứng minh rằng $ADBC$ nội tiếp đường tròn. Lời giải. Tứ giác $APMQ$ là hình bình hành, $D$ đối xứng với $M$ qua $PQ$ ta suy ra được $ADPQ$ là hình thang cân. Suy ra $\angle DAP = 180^\circ – \angle DPQ$.\hfill (1) Ta có $PB = PM = PD$ nên $B, M, D$ thuộc đường tròn tâm $P$, suy ra $\angle MBD = \dfrac{1}{2}(360^\circ – \angle DPM) = \angle DPQ$. \hfill (2) Từ (1) và (2) ta có $\angle DAQ + \angle MBD = 180^\circ$, suy ra $ADBC$ nội tiếp. Bài 6. Cho hai đường tròn $(O)$ và $(O’)$ cắt nhau tại $A, B$. Qua điểm $I$ nằm trên $AB$ vẽ cát tuyến $IMN$ đến $(O)$ và cát tuyến $IPQ$ đến $(O’)$. Chứng minh rằng $M, N, P, Q$ cùng thuộc một đường tròn. Lời giải. Ta có $\angle INA = \angle IBN$, suy ra $\triangle INA \backsim \triangle IBN$ (g.g), khi đó $\dfrac{IA}{IB} = \dfrac{IA}{IN} \Rightarrow IN^2 = IA \cdot IB \Rightarrow IN = \sqrt{IA \cdot IB}$. Chứng minh tương tự thì $IP = \sqrt{IA \cdot IB}$. Mặt khác $IM = IN, IP = IQ$ nên $IM = IN = IP = IQ$, do đó $M, N, P, Q$ cùng thuộc đường tròn tâm $I$. Bài 7. Cho tam giác $ABC$ nhọn, $D$ thuộc cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt cạnh $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $F$. $BE, CF$ cắt nhau tại $K$. Chứng minh đường tròn ngoại tiếp tam giác $BKC$ qua trực tâm $H$ của tam giác $ABC$. Lời giải. Các tứ giác $AEDB, ADDC$ nội tiếp nên ta có $\angle AFB = \angle ADB$ và $\angle AEC = \angle ADC$; Suy ra $\angle AFB + \angle AEC = \angle ADB + \angle ADC = 180^\circ$, suy ra $AEKF$ nội tiếp. Suy ra $\angle EKF = 180^\circ – \angle BAC$, mà $\angle BKC = \angle EKF$ nên $\angle BKC= 180^\circ – \angle BAC$.\hfill (1) Mặt khác, từ $H$ là trực tâm của tam giác $ABC$ nên $\angle BHC = 180^\circ – \angle BAC$. \hfill (2) Từ (1) và (2), ta có $\angle BHC = \angle BKC$, suy ra $BHKC$ nội tiếp. Bài 8. Cho tam giác $ABC$ có đường tròn nội tiếp tiếp xúc với $AB, BC$,$AC$ lần lượt tại $M, D, N$. Lấy điểm $E$ thuộc miền trong của tam giác $ABC$ sao cho đường tròn nội tiếp tam giác $EBC$ cũng tiếp xúc với $BC$ tại $D$ và tiếp xúc với $EB, EC$ tại $P, Q$. Chứng minh rằng $MNPQ$ nội tiếp đường tròn. Lời giải.
Gọi $T$ là giao điểm của $MN$ và $BC$. Chứng minh được $\dfrac{TB}{TC} = \dfrac{TB}{TC}$ và $PM \cdot PN = PD^2$. Gọi $T’$ là giao điểm của $PQ$ và $BC$ ta cũng có $\dfrac{T’B}{T’C} = \dfrac{DB}{DC}$. Suy ra $\dfrac{TB}{TC} = \dfrac{T’B}{T’C} = \dfrac{DB}{DC}$, do đó $T’ \equiv T$. Và $TP \cdot TQ = TD^2$. Từ đó ta có $TM \cdot TN = TP \cdot TQ$. Suy ra 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn. Bài tập tự luyện.  Bài 9. Cho đường tròn tâm $O$ và dây cung $AB$ khác đường kính. $C$ là một điểm thuộc cung nhỏ $AB$. Tiếp tuyến tại $A$ và $B$ của $(O)$ cắt nhau tại $P$. $AC$ cắt $BP$ tại $D$ và $BC$ cắt $AP$ tại $E$. Gọi $Q$ là giao điểm của đường tròn ngoại tiếp tam giác $AEC$ và $BCD$. a) Chứng minh $Q$ là giao điểm của đường tròn ngoại tiếp các tam giác $APD$ và $BPE$. b) Chứng minh $Q$ thuộc đường tròn ngoại tiếp tam giác $OPC$. Bài 10. Cho hình bình hành $ABCD$ có góc $A$ tù. Gọi $F$ là trung điểm cạnh $AD, CF$ cắt đường tròn ngoại tiếp tam giác $ACD$ tại $K$ khác $C$. Đường tròn ngoại tiếp tam giác $BCK$ cắt $CD$ tại $E$. a) Chứng minh $AE \bot CD$. b) $BD$ cắt $AC$ tại $I$ và đường tròn ngoại tiếp tam giác $BCK$ tại $G$. Chứng minh 4 điểm $E, F, G, I$ cùng thuộc một đường tròn. Tài liệu tham khảo. 
  1. Chuyên đề hình học 9 – Bồi dưỡng học sinh năng khiếu, Nguyễn Tăng Vũ, NXB GD 2018.

Định lý Ceva và Menelaus – Phần 3

Phần 2

Ví dụ 10. (USAMO 2012) Gọi $P$ là một điểm thuộc miền trong tam giác $ABC$ và $d$ là một đường thẳng qua $P$. Đường thẳng đối xứng của $PA$ qua $d$ cắt $BC$ tại $A’$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng $A’, B’, C’$ thẳng hàng.

Lời giải

Ta có $\dfrac{A’B}{A’C} = \dfrac{S_{A’PC}}{S_{A’PC}} = \dfrac{PB\cdot \sin A’PB}{PC\cdot\sin A’PC}$. (1)
Tương tự ta cũng có $\dfrac{B’C}{B’A} = \dfrac{PC \cdot \sin B’PC}{PA \cdot \sin B’PA}$ và $\dfrac{C’A}{C’B} = \dfrac{PA \cdot \sin C’PA}{PB \cdot \sin C’PB}$. (2)
Theo tính chất đối xứng ta có $\sin A’PB = \sin B’PA,\\ \sin A’PC = \sin C’PA, \sin B’PC = \sin C’PB$. (3)
Từ (1), (2), (3) ta có $$\dfrac{A’B}{A’C}\cdot \dfrac{B’C}{B’A}\cdot \dfrac{C’A}{C’B} = 1$$
Do đó $A’,B’,C’$ thẳng hàng.

Ví dụ 11. Cho tam giác $ABC$. Ba đường tròn $w_a, w_b, w_c$ lần lượt đi qua các cặp đỉnh $B,C$; $C, A$; và $A, B$. Gọi $D, E, F$ lần giao điểm thứ hai của ba đường tròn này. Đường thẳng qua $D$ vuông góc với $AD$ cắt $BC$ tại $X$; các điểm $Y, Z$ được xác định tương tự. Chứng minh rằng $X, Y, Z$ thẳng hàng.

Lời giải

Ta có $\dfrac{XB}{XC} = \dfrac{DB\sin XDB}{DC \sin XDC}$;
$\dfrac{DB}{DC} = \dfrac{R_c \sin DAB}{R_b \sin DAC}$ và $\dfrac{\sin ADB}{\sin XDC} = \dfrac{\cos ADB}{\cos ADC}$;
Tương tự cho các phân thức $\dfrac{YC}{YA}, \dfrac{ZA}{ZB}$.
Mặt khác ta có $AD, BE, CZ$ đồng quy tại tâm đẳng phương nên $\dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin FCA}{\sin FCB} = 1$.
Từ đó ta có $\dfrac{XB}{XC} \cdot \dfrac{YC}{YA} \cdot \dfrac{ZA}{ZB}=1$.
Vậy $X, Y, Z$ thẳng hàng.

Ví dụ 12. (IMO shortlist 2013) Cho tam giác $ABC$ nhọn. Gọi $O$ là tâm ngoại tiếp và $H$ là trực tâm tam giác $ABC$. Chứng minh rằng tồn tại các điểm $D, E, F$ thuộc các cạnh $BC, AC, AB$ thỏa: $OD + DH = OE+EH = OF + FH$ và $AD, BE, CF$ đồng quy.

Lời giải

Gọi $H_1$ là điểm đối xứng của $H$ qua $BC$, thì $H_1 \in (O)$.
Gọi $D$ là giao điểm của $OH_1$ và $BC$, khi đó $OD + DH = OD + DH_1 = OH_1 = R$.
Các điểm $E, F$ được xác định tương tự ta có $OD + DH = EO +EH = OF + FH$.
Ta cần chứng minh $AD, BE, CF$ đồng quy bằng định lý Ceva dạng sin.
Ta có $\dfrac{DB}{DC} = \dfrac{S_{BH_1D}}{S_{CH_1D}} = \dfrac{BH_1.\sin BH_1D}{CH_1 \sin CH_1D} = \dfrac{BH}{CH}\dfrac{\sin B}{\sin C}$
Các đẳng thức kia tương tự, nhân lại ta có điều cần chứng minh.

Ví dụ 13. Cho tam giác $ABC$ khác tam giác cân nội tiếp đường tròn $w$, các đường trung tuyến từ $A, B,C$ cắt $w$ tại $A’, B’, C’$. Gọi $A_1$ là giao điểm của tiếp tuyến tại $A’$ với $BC$; các điểm $B_1, C_1$ được xác định tương tự. Chứng minh rằng $A_1, B_1, C_1$ thẳng hàng.

Lời giải

Ta có $A_1B\cdot A_1C = A_1A’^2 \Rightarrow \dfrac{A_1B}{A_1C} = \dfrac{A_1B^2}{A_1A’^2} = \dfrac{\sin^2 A_1A’B}{\sin^2 A_1BA’} = \dfrac{\sin^2 A’AB}{\sin^2 A’AC}$.
Chứng minh tương tự cho các đẳng thức kia và nhân lại, áp dụng ceva sin cho 3 đường $AA’, BB’, CC’$ đồng quy.

Bài tập rèn luyện

 

Bài 1. Cho tứ giác $ABCD$, gọi $I$ là giao điểm của $AC$ và $BD$, $K$ là giao điểm của $AB$ và $CD$. Đường thẳng $IK$ cắt các cạnh $BC$ và $AD$ tại $P, Q$.
Chứng minh rằng: $ \dfrac{\overline{IP}}{\overline{IQ}} = -\dfrac{\overline{KP}}{\overline{KQ}}$

Bài 2. Cho tứ giác $ABCD$ ngoại tiếp đường tròn $w$, $w$ tiếp xúc với các cạnh $AB, BC, CD, DA$ lần lượt tại $M, N, P, Q$. Chứng minh $MQ, BD, PN$ song song hoặc đồng quy.

Bài 3. Cho tam giác $ABC$, đường phân giác ngoài góc $A$ cắt đường thẳng vuông góc với $BC$ kẻ từ $B$ và $C$ lần lượt tại $D$ và $E$. Chứng minh rằng $BE, CD$ và $AO$ đồng quy, với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Bài 4. Gọi $I$ là tâm đường tròn nội tiếp của tam giác $ABC$. Gọi $A’, B’, C’$ lần lượt là điểm đối xứng của $I$ qua $BC, AC, AB$. Chứng minh rằng $AA’, BB’, CC’$ đồng quy.

Bài 5. Cho tam giác $ABC$. Về phía ngoài tam giác dựng các hình vuông $BCDE, ACFG, ABHK$ với tâm lần lượt là $O_1, O_2, O_3$. Chứng minh $AO_1, BO_2, CO_3$ đồng quy.

Bài 6. Cho tam giác $ABC$ không cân tại $A$. $M$ là một điểm nằm trong tam giác thỏa $\angle AMB – \angle ACB = \angle AMC – \angle ABC$. Chứng minh rằng đường thẳng nối tâm đường tròn nội tiếp tam giác $AMB$ và $AMC$ đi qua một điểm cố định.

Bài 7. Cho tam giác $ABC$ và điểm $M$ nằm trong tam giác. $AM, BM, CM$ cắt $BC, AC, AB$ lần lượt tại $A’, B’, C’$. Gọi $P$ là giao điểm của $BB’$ và $A’C’$; $Q$ là giao điểm của $CC’$ và $A’B’$. Chứng minh rằng: $$\angle MAP = \angle MAQ \Leftrightarrow \angle MAB = \angle MAC$$

Bài 8. Cho tam giác $ABC$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$; $O_1, O_2, O_3$ lần lượt là tâm ngoại tiếp các tam giác $BCO, ACO$ và $ABO$. Chứng minh rằng $AO_1, BO_2, CO_3$ đồng quy tại một điểm.(Điểm Kosnita)

Bài 9. Cho tam giác $ABC$ có $M$ là trung điểm cạnh $AB$. $CE$ là phân giác góc $\angle ACB$. $D$ thuộc tia đối của tia $CA$ sao cho $CD = CB$. Gọi $K$ là giao điểm của $DM$ và $CE$. Chứng minh rằng $\angle KBC = \angle BAC$.

Bài 10. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ và có trực tâm $H$. Gọi $A_o, B_o, C_o$ là trung điểm của $BC, AC, AB$. $A_1$ là giao điểm của $AA_o$ và $(O)$, $A_2$ là giao điểm của $H$ qua $A_o$; đường thẳng $A_1A_2$ cắt $BC$ tại điểm $S_a$; các điểm $S_b, S_c$ được xác định tương tự. Chứng minh $S_a, S_b, S_c$ thẳng hàng.

Bài 11. Cho tam giác $ABC$. Các điểm $A_1, B_1, C_1$ lần lượt thuộc các cạnh $BC, AC, AB$ sao cho các đường thẳng $AA_1, BB_1, CC_1$ đồng quy.

a) Gọi $A_2$ là điểm đối xứng của $A_1$ qua trung điểm cạnh $BC$; các điểm $B_2, C_2$ được xác định tương tự. Chứng minh rằng $AA_2, BB_2, CC_2$ cũng đồng quy.
b) Đường tròn ngoại tiếp tam giác $A_1B_1C_1$ cắt $BC, AC, AB$ tại $A_3, B_3, C_3$. Chứng minh $AA_3, BB_3, CC_3$ đồng quy.

 

Bài 12. Cho tam giác $ABC$. Các điểm $A_1, B_1, C_1$ lần lượt thuộc các cạnh $BC, AC$ và $AB$. Gọi $G_a, G_b, G_c$ lần lượt là trọng tâm các tam giác $AB_1C_1, BC_1A_1, CA_1B_1$. Chứng minh rằng $AG_a, BG_b, CG_c$ đồng quy khi và chỉ khi $AA_1, BB_1, CC_1$ đồng quy.

Bài 13.(IMO SL 1995) Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. $X$ là điểm bên trong tam giác $ABC$ sao cho đường tròn nội tiếp tam giác $XBC$ tiếp xúc với $BC$ tại $D$, tiếp xúc với $CX, BX$ tại $Y, Z$. Chứng minh rằng $E, F, Z, Y$ cùng thuộc một đường tròn.

Bài 14. Cho $P$ là điểm thuộc miền trong của tam giác $ABC$. Gọi $D, E, F$ là hình chiếu của $P$ trên $BC, AC, AB$. Gọi $X$ là điểm trên $EF$ sao cho $PX \bot PA$; các điểm $Y, Z$ được xác định tương tự. Chứng minh rằng các điểm $X, Y, Z$ thẳng hàng.

Bài 15. (IMO SL 2006) Cho tam giác $ABC$ có $\angle ACB < \angle BAC < 90^o$.Lấy $D$ là điểm thuộc cạnh $AC$ sao cho $BD = BA$. Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với $AB$ tại $K$ và $AC$ tại $L$. Gọi $J$ là tâm đường tròn nội tiếp tam giác $BCD$. Chứng minh rằng đường thẳng $KL$ chia đôi đoạn $AJ$.

Bài 18. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$. Gọi $A_1$ là điểm đối xứng của $A$ qua $O$, gọi $A_2$ là điểm đối xứng của $O$ qua $BC$; các điểm $B_1, B_2, C_1, C_2$ được xác định tương tự. Chứng minh rằng đường tròn ngoại các tam giác $OA_1A_2 OB_1B_2$ và $OC_1C_2$ cùng đi qua 2 điểm.

Bài 19. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. $X$ là điểm nằm trong tam giác $DEF$, gọi $A_1, A_2$ là giao điểm của $DX$ với $EF$ và $(I)$; các điểm $B_1,B_2$;$C_1,C_2$ được xác định tương tự.

a) Chứng minh $AA_2, BB_2, CC_2$ đồng quy tại $Y$; $AA_1, BB_1, CC_1$ đồng quy tạu $Z$.
b) Chứng minh $X, Y, Z$ thẳng hàng.

 

Bài 20. Cho một đường tròn với hai dây $AB$ và $CD$ không song song. Đường vuông góc với $AB$ kẻ từ $A$ cắt đường vuông góc với $CD$ kẻ từ $C$ và từ $D$ lần lượt tại $M, P$. Đường vuông góc với $AB$ kẻ từ $B$ cắt đường vuông góc với $CD$ kẻ từ $C$ và $D$ lần lượt tại $Q$ và $N$. Chứng minh rằng các đường thẳng $AD, BC, MN$ đồng quy và các đường thẳng $AC, BD, PQ$ cũng đồng quy.

Bài 21. (IMO shortlis 2011) Cho $ABC$ là một tam giác với đường tròn nội tiếp tâm $I$ và đường tròn ngoại tiếp $(C)$. $D$ và $E$ là giao điểm thứ hai của $(C)$ với các tia $AI$ và $BI$ tương ứng. $DE$ cắt $AC$ tại điểm $F$, và cắt $BC$ tại điểm $G$. $P$ là giao điểm của đường thẳng đi qua $F$ song song với $AD$ và đường thẳng qua $G$ song song với $BE$. Giả sử rằng $K$ là giao điểm của các tiếp tuyến của $(C)$ tại $A$ và $B$. Chứng minh rằng ba đường thẳng $AE, BD$ và $KP$ là song song hoặc đồng quy.

Bài 22. (China TST 2014) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$; $H_a$ là chân đường cao hạ từ $A$ của tam giác $ABC$. $AO$ cắt đường tròn ngoại tiếp tam giác $BOC$ tại $A’$. Gọi $D, E$ là hình chiếu của $A’$ trên $AB$ và$AC$; và $O_a$ là tâm đường tròn ngoại tiếp tam giác $DEH_a$; Ta định nghĩa các điểm $H_b, O_b, H_c, O_c$ tương tự. Chứng minh rằng $H_aO_a, H_bO_b$ và $H_cO_c$ đồng quy.

 

Định lý Ceva và Menelaus – Phần 2

Trong hình học ta gặp nhiều bài toán về chứng minh ba đường đồng quy và ba điểm thẳng hàng, một trong những công cụ quen thuộc và kinh điển nhất là định lý Ceva và định lý Menelaus. Ngoài việc áp dụng chứng minh thẳng hàng đồng quy, các định lý Ceva và Nemelaus còn áp dụng chứng minh các đẳng thức về độ dài, góc, là cơ sở của những phương pháp mạnh khác như: hàng điểm điều hòa, cực đối cực,…

Hai định lý được phát biểu với dạng hình học, dạng đại số và dạng lượng giác, trong phần này ta ưu tiên các phát biểu dưới dạng độ dài hình học, góc hình học vì sự đơn giản của nó.

Định lý Ceva

(Dạng độ dài hình học) Cho tam giác $ABC$, nếu $A_1, B_1, C_1$ là là các điểm thuộc các cạnh $BC, AC, AB$. Khi đó $AA_1, BB_1, CC_1$ đồng quy khi và chỉ khi:

\begin{equation} \dfrac{A_1B}{A_1C} \cdot \dfrac{B_1C}{B_1A}\cdot \dfrac{C_1A}{C_1B} = 1
\end{equation}

(Dạng độ dài đại số) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các đường thẳng $AA_1, BB_1, CC_1$ song song hoặc đồng quy khi và chỉ khi:
\begin{equation}\label{ceva2}
\dfrac{\overline{A_1B}}{\overline{A_1C}}.\dfrac{\overline{B_1C}}{\overline{B_1A}}.\dfrac{\overline{C_1A}}{\overline{C_1B}}=-1
\end{equation}

(Dạng lượng giác) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các đường thẳng $AA_1, BB_1, CC_1$ song song hoặc đồng quy khi và chỉ khi:
\begin{equation}\label{ceva3}
\dfrac{\sin(AA_1;AB)}{\sin(AA_1;AC)}\cdot \dfrac{\sin(BB_1;BC)}{\sin(BB_1;BA)}\cdot \dfrac{\sin(CC_1;CA)}{\sin(CC_1;CB)}=-1
\end{equation}

Định lý Menelaus

(Dạng độ dài hình học) Cho tam giác $ABC$, các điểm $C_1$ thuộc cạnh $AB$; $B_1$ thuộc cạnh $AC$ và $A_1$ thuộc phần kéo dài của cạnh $BC$. Khi đó $A_1, B_1, C_1$ thẳng hàng khi và chỉ khi
\begin{equation}\label{mene1}
\dfrac{A_1B}{A_1C} \cdot \dfrac{B_1C}{B_1A}\cdot \dfrac{C_1A}{C_1B} = 1 \end{equation}

(Dạng độ dài đại số) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các điểm $A_1, B_1, C_1$ thẳng hàng khi và chỉ khi:
\begin{equation}\label{mene2}
\dfrac{\overline{A_1B}}{\overline{A_1C}}\cdot \dfrac{\overline{B_1C}}{\overline{B_1A}}\cdot \dfrac{\overline{C_1A}}{\overline{C_1B}}= 1
\end{equation}

(Dạng lượng giác) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các điểm $A_1, B_1, C_1$ thẳng hàng khi và chỉ khi:
\begin{equation}\label{mene3}
\dfrac{\sin(AA_1;AB)}{\sin(AA_1;AC)}\cdot \dfrac{\sin(BB_1;BC)}{\sin(BB_1;BA)}\cdot \dfrac{\sin(CC_1;CA)}{\sin(CC_1;CB)}=1
\end{equation}

Các ví dụ về định lý Ceva và Menelaus

Ví dụ 1. Cho tứ giác $ABC$, các đường chéo $AC, BD$ cắt nhau tại $I$; $AD, BC$ cắt nhau tại $E$; $AB, CD$ cắt nhau tại $F$. $EI$ cắt $AB, CD$ tại $K, L$. Khi đó $\dfrac{LC}{LD} = \dfrac{FC}{FD}$.

Lời giải

Áp dụng định lý Ceva cho tam giác $ECD$ ta có $$\dfrac{LD}{LC} \cdot \dfrac{BC}{BA} \cdot \dfrac{AE}{AD} = 1$$
Áp dụng Menelaus cho cho tam giác $ECD$ với 3 điểm $F, A, B$ ta có: $$\dfrac{FD}{FC}\cdot \dfrac{BC}{BA} \cdot \dfrac{AE}{AD} = 1$$
Từ trên ta có $\dfrac{LD}{LC} = \dfrac{FD}{FC}$.

Ví dụ 2. (Đường thẳng Gauss) Cho tứ giác $ABCD$ khác hình thang. Gọi $I$ là giao điểm của $AD, BC$; gọi $J$ là giao điểm của $AB, CD$. Chứng minh rằng trung điểm của các đoạn $AC, BD$ và $IJ$ cùng thuộc một đường thẳng.

Lời giải

Gọi $E, F, H$ lần lượt là trung điểm của $AD, IC, CD$. \\Rõ ràng $P \in EF, M \in FH, N \in EH$. \\
Ta có $\dfrac{PE}{PF} = \dfrac{JD}{JC}$; $\dfrac{NH}{NE} = \dfrac{BC}{BI}$ và $\dfrac{MF}{MH} = \dfrac{AI}{AD}$.\hfill (1)\\
Áp dụng Menelaus cho tam giác $IDC$ với 3 điểm thẳng hàng $J, A, B$ ta có: \\
$\dfrac{JD}{JC}\cdot \dfrac{BC}{BI}\cdot \dfrac{AI}{AD} = 1$. \hfill (2)\\
Từ (1) và (2) suy ra $\dfrac{PE}{PF}\cdot \dfrac{JD}{JC}\cdot \dfrac{MF}{MH}= 1$.\\ Do đó 3 điểm $P, N, M$ thẳng hàng.

Ví dụ 3. Cho tứ giác $ABCD$, trên các cạnh $AD, BC$ lấy các điểm $P, Q$ sao cho $\dfrac{AP}{AD} = \dfrac{BQ}{BC}$. Gọi $I$ là giao điểm $AC, BD$ và $K$ là giao điểm của $DQ, CP$. Chứng minh $PQ$ đi song song với đường thẳng qua trung điểm của $AB, CD$.

Lời giải

Gọi $E$ là giao điểm của $AD, BC$; $X, Y$ lần lượt là trung điểm của $IE$ và $PQ$; $M, N$ là trung điểm $AB, CD$. \\
Theo định lý đường thẳng Gauss ta có $M, N, X$ thẳng hàng. \\
Mặt khác do $\dfrac{AP}{AD} = \dfrac{BQ}{BC}$ nên $Y, M, N$ thẳng hàng. Do đó 4 điểm $X, M, N, Y$ thẳng hàng.\\
Theo định lý Thales ta có $XM \parallel IK$.\\
Từ đó ta có $IK \parallel MN$.

Ví dụ 4. Cho tam giác $ABC$ ngoại tiếp đường tròn $w$ tâm $I$, $w$ tiếp xúc với các cạnh $BC, AC, AB$ lần lượt tại $D, E, F$.

a) Chứng minh các đường thẳng $AD, BE$ và $CF$ đồng quy tại một điểm. (Điểm Gergonne)
b) Gọi $D’, E’, F’$ lần lượt là điểm đối xứng của $D, E, F$ qua $I$. Chứng minh rằng $AD’, BE’, CF’$ đồng quy tại một điểm.(Điểm Nagel)

Lời giải

a)Ta có $BD = BF, CD = CE, AE = AF$. Suy ra $\dfrac{BD}{CD}\cdot \dfrac{CE}{AE}\cdot \dfrac{AE}{AF} = 1$. Do đó $AD, BE, CF$ đồng quy.
b) Cho $AD’$ cắt $BC$ tại $D_1$; các điểm $E_1, F_1$ được xác định tương tự. \\
Vẽ đường thẳng qua $D’$ song song với $BC$ cắt $AB, AC$ tại $L,K$. Ta có $D’K\cdot CD = KE\cdot CE = IE^2$; $D’L\cdot BD = LF\cdot BF = ID^2$.\\
Suy ra $D’K\cdot CD = D’L\cdot BD$, suy ra $\dfrac{D’K}{D’L} =\dfrac{DB}{CD}$.\\
Mặt khác $\dfrac{D’K}{CD_1} = \dfrac{AD’}{AD_1} = \dfrac{D’L}{BD_1}$, suy ra $\dfrac{D’K}{D’L} = \dfrac{CD_1}{BD_1}$.\\
Do đó $\dfrac{BD}{CD} = \dfrac{CD_1}{CD_1}$, suy ra $BD = CD_1$.\\
Chứng minh tương tự ta có $CE = AE_1, BF = AF_1$.
Từ đó ta có các đường thẳng $AA_1, BB_1, CC_1$ đồng quy.

Ví dụ 5. Cho tam giác $ABC$ nội tiếp đường tròn $w$. Tiếp tuyến tại $A$ của $w$ cắt $BC$ tại $A’$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng $A’, B’, C’$ thẳng hàng.

Lời giải

Mà $\triangle A’AB \backsim \triangle A’CA$ nên $\dfrac{A’A^2}{A’C^2} = \dfrac{AB^2}{AC^2}$. \\
Chứng minh tương tự ta có: $\dfrac{B’C}{B’A}= \dfrac{BC^2}{AB^2}, \dfrac{C’A}{C’B} = \dfrac{AC^2}{BC^2}$.\\
Khi đó $\dfrac{A’B}{A’C}\cdot \dfrac{B’C}{B’A}\cdot \dfrac{C’A}{C’B} = 1$.
Vậy $A’, B’, C’$ thẳng hàng.

Ví dụ 6. Cho tam giác $ABC$ khác tam giác cân. Đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với các cạnh $BC, AC, AB$ lần lượt tại $D, E, F$. Chứng minh rằng tâm đường tròn ngoại tiếp các tam giác $ADI, BEI, CFI$ thẳng hàng.

Lời giải

Gọi $D’$ là chân đường phân giác ngoài của góc $A$, khi đó $I, A, D, D’$ thuộc đường tròn đường kính $ID’$, suy ra tâm $O_1$ của $(IDA)$ là trung điểm của $ID’$. \\
Xác định tương tự cho $E’, F’$. Ta có tâm của $(IBE), (ICF)$ lần lượt là trung điểm của $IE’, IF$. \\
Sử dụng Menelaus ta chứng minh được $D’, E’, F’$ thẳng hàng.
Do đó $O_1, O_2,O_3$ thẳng hàng.

Ví dụ 7. (Định lý Jacobi) Cho tam giác $ABC$. Về phía ngoài tam giác lấy các điểm $D, E, F$ sao cho $\angle DBC = \angle FBA, \angle DCB = \angle ECA, \angle EAC = \angle FAB$. Chứng minh rằng các đường thẳng $AD, BE$ và $CF$ đồng quy.

Lời giải

Để chứng minh định lý này, ta sử dụng định lý Ceva dạng sin, ta cần chứng minh $$\dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin EBC}{\sin EBA} \cdot \dfrac{\sin FCA}{\sin FCB} = 1$$
Áp dụng định lý Cevasin cho 3 đường đồng quy $AD, BD, CD$ ta có:
\begin{equation}
\dfrac{\sin DAB }{\sin DAC}\cdot \dfrac{\sin DBC}{\sin DBA}\cdot \dfrac{\sin DCA}{\sin DCB}
\end{equation}
Tương tự ta cũng có \begin{equation}
\dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin ECA}{\sin ECB}\cdot \dfrac{EAB}{\sin EAC} = 1 \end{equation} và
\begin{equation}
\dfrac{\sin FCA}{\sin FCB}\cdot \dfrac{FAB}{\sin FAC}\cdot \dfrac{FBC}{\sin FBA} = 1
\end{equation}
Nhân 3 đẳng thức lại và kết hợp $\angle DBC = \angle DBA, \angle DBA = \angle FBC, \angle DCB = \angle EDA \\ \angle DCA = \angle ECB, \angle FAB = \angle EAC, \angle FAC = \angle EAB$.
Ta có \begin{equation}
\dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin EBC}{\sin EBA }\cdot \dfrac{\sin FCA}{\sin FCB} =1
\end{equation}
Do đó $AD, BE, CF$ đồng quy.

Ví dụ 8. (Cevian Nest) Cho các đường thẳng $AX, BY, CZ$ đồng quy của tam giác $ABC$. Giả sử $XD, YE, CF$ là các đường đồng quy của tam giác $XYZ$. Chứng minh rằng $AD, BE, CF$ đồng quy.

Lời giải

Ví dụ 9. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các tam giác $ABD, ACE$ vuông tại $B, C$ và đồng dạng. Chứng minh rằng giao điểm của $BE$ và $CD$ thuộc đường cao hạ từ $A$ của tam giác $ABC$.

Lời giải

Áp dụng định lý Ceva sin cho các đường thẳng $BE, AE, CE$ ta có:
\begin{equation}
\dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin ECA}{\sin ECB}\cdot \dfrac{\sin EAB}{\sin EAC} = 1
\end{equation}

Tương tự ta có
\begin{equation}
\dfrac{\sin DCA}{\sin DCB}\cdot \dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin DBC}{\sin DBA} = 1
\end{equation}

Vẽ $AH \bot BC$, ta có $\sin BAH = \sin DBC, \sin CAH = \angle ECB$.\\
Hơn nữa $\angle EAB = \angle DAC, \angle ECA = \angle DBA = 90^\circ$. (3)\\
Nhân (1) và (2) kết hợp với 3 ta có:
\begin{equation}
\dfrac{\sin BAH}{\sin CAH}\cdot \dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin DCA}{\sin DCB} = 1
\end{equation}
Vậy $AH, BE, CD$ đồng quy.

Các bài toán biến đổi góc cạnh – Bài tập

BÀI TẬP CÁC BÀI TOÁN BIẾN ĐỔI GÓC

 

Bài 1 Cho tam giác $ABC$ các đường cao cắt nhau tại $H$. Chứng minh rằng đường tròn Euler của các tam $ABH, ACH, BCH$ và $ABC$ là trùng nhau

Bài 2 Cho tứ giác $ABCD$. Chứng minh rằng đường tròn Euler của các tam giác $ABC, ACD, ABD, BCD$ cùng đi qua một điểm.

Bài 3 Cho tứ giác $ABCD$ nội tiếp. Gọi $d_a$ là đường thẳng simson của tam giác $BCD$ ứng với điểm $A$; các đường thẳng $d_b, d_c, d_d$ được định nghĩa tương tự. Chứng minh rằng các đường thẳng $d_a, d_b, d_c, d_d$ đồng quy.

Bài 4 Cho hai điểm $P, Q$ thuộc miền trong của tam giác $ABC$ sao cho $$\angle ACP = \angle BCQ, \angle CAP = \angle BAQ$$ Gọi $D, E, F$ là hình chiếu vuông góc của $P$ trên các đường thẳng $BC, AC, AB$. Chứng minh rằng nếu $\angle DEF = 90^\circ$ thì $Q$ là trực tâm của tam giác $BDF$.

Bài 5(IMO 2007) Xét 5 điểm $A, B, C, D, E$ sao cho $ABCD$ là hình bình hành và $B, C, D, E$ cùng thuộc một đường tròn. Gọi $d$ là đường thẳng qua $A$, giả sử $d$ cắt đoạn $BC$ tại $F$ và $BC$ tại $G$. Giả sử $EF = EG = EC$, chứng minh rằng $d$ là phân giác góc $\angle DAB$.

Bài 6(VMO 2009) Trong mặt phẳng cho hai điểm $A$ và $B$ cố định ($A$ khác $B$). Một điểm $C$ di động trên mặt phẳng sao cho $\angle ACB = \alpha (0^o < \alpha < 180^o)$. Đường tròn tâm $I$ nội tiếp tam giác $ABC$ và tiếp xúc với $AB, BC, CA$ lần lượt tại $D, E, F$. $AI, BI$ cắt $EF$ tại $M, N$.

a) Chứng minh $MN$ có độ dài không đổi.
b) Chứng minh rằng đường tròn ngoại tiếp tam giác $DMN$ luôn đi qua một điểm cố định khi $C$ lưu động.

Bài 7 Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $AD$ và $BD$. Gọi $M$ là trung điểm $AB$, phân giá trong góc $\angle BCA$ cắt $DE$ tại $P$ và cắt $(O)$ tại $Q$. Gọi $C’$ là điểm đối xứng của $C$ qua $AB$. Tính $\angle C$ biết rằng 4 điểm $M, P, Q$ và $C’$ cùng thuộc một đường tròn.

Bài 8 Cho tam giác $ABC$, $M$ là trung điểm $BC$. Trên đoạn $AM$ lấy điểm $P$. Gọi $D$ là hình chiếu của $P$ trên $BC$. $E$ là một điểm thuộc đoạn $PD$. Gọi $H, K$ là hình chiếu của $E$ trên $AB, AC$. Chứng minh rằng $H, P, K$ thẳng hàng khi và chỉ khi $\angle EAB = \angle EAC$.

Bài 9 Cho tam giác $ABC$ với $I$ là tâm đường tròn nội tiếp. Gọi $K, L$ lần lượt là trực tâm các tam giác $IBC$ và $IAC$. Gọi $T$ là tiếp điểm của đường tròn bàng tiếp góc $C$ với cạnh $AB$. Chứng minh rằng $CT$ và $KL$ cắt nhau tại một điểm thuộc đường tròn $(I)$.

Bài 10 Cho đoạn thẳng $AB$ và điểm $C$ thuộc đoạn $AB (AC < BC)$. Đường tròn $w$ tâm $O$ thay đổi tiếp xúc với $AB$ tại $C$. Từ $A$ và $B$ vẽ các tiếp tuyến $AD$ và $BE$ ($D, E$là hai tiếp điểm khác $C$). $AD$ và $BE$ cắt nhau tại $P$.

a) Chứng minh rằng $DE$ luôn đi qua một điểm cố định
b) Gọi $F$ là giao điểm của $OC$ và $DE$. Chứng minh $PF$ luôn đi qua một điểm cố định.

Bài 11 Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $PA, PB$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $AB$, tiếp tuyến tại $C$ cắt $PA, PB$ và $PO$ lần lượt tại $D, E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $PAB, PDE$ và $PCF$ cùng đi qua một điểm khác $P$.

Bài 12(Chọn đội tuyển Toán Việt Nam năm 2000) Cho hai đường tròn $(C_1)$ và $(C_2)$ cắt nhau tại $P$ và $Q$. Tiếp tuyến chung (tiếp tuyến gần $P$) tiếp xúc với $(C_1)$ tại $A$ và tiếp xúc với $(C_2)$ tại $B$. Tiếp tuyến của $(C_1)$ và $(C_2)$ tại $P$ cắt hai đường tròn tại $E$ và $F$ (khác $P$). Gọi $H$ và $K$ là các điểm trên tia $AF$ và $BE$ sao cho $AH = AP$ và $BK = BP$. Chứng minh rằng $A, H, Q, K, B$ cùng thuộc một đường tròn.

Bài 13(IMO 2009) Cho tam giác $ABC$ cân tại $A$. Phân giác trong góc $A$ và $B$ cắt $BC$ và $AC$ lần lượt tại $D$ và $E$. Gọi $K$ là tâm đường tròn nội tiếp tam giác $ACD$. Cho $\angle BEK = 45^o$. Tìm tất cả các giá trị của $\angle BAC$.

Bài 14 Cho tam giác $ABC$ ngoại tiếp đường tròn tâm $I$. Trên các đoạn $AI, BI$ và $CI$ lấy các điểm $A’,B’,C’$. Đường trung trực của các đoạn $AA’, BB’, CC’$ đôi một cắt nhau tại $A_1, B_1, C_1$. Chứng minh rằng tâm đường tròn ngoại tiếp của tam giác $ABC$ và tam giác $A_1B_1C_1$ trùng nhau khi và chỉ khi $I$ là trực tâm của tam giác $A’B’C’$.

Bài 15 (IMO 2017) Cho $R,S$ là hai điểm phân biệt trên đường tròn $\Omega$ sao cho $RS$ không phải đường kính. Gọi $d$ là tiếp tuyến của $\Omega$ tại $R$. Lấy điểm $T$ sao cho $S$ là trung điểm của đoạn thẳng $RT$. Lấy điểm $J$ trên cung nhỏ $RS$ của $\Omega$ sao cho $(JST)$ cắt $d$ tại hai điểm phân biệt. Gọi $A$ là giao điểm gần $R$ nhất của $d$ và $(JST)$. $AJ$ cắt lại $\Omega$ tại $K$. Chứng minh $KT$ tiếp xúc với $(JST)$.

Bài 16(Đề thi HSG Bulgari năm 2016) Cho tam giác $ABC$ cân tại $C$, trên tia đối của tia $CA$ lấy điểm $D$ sao cho $AC > CD$. Phân giác $\angle BCD$ cắt $BD$ tại $N$. $M$ là trung điểm $BD$, tiếp tuyến tại $M$ của $(AMD)$ cắt $BC$ tại $P$. Chứng minh rằng 4 điểm $A, P, M, N$ cùng thuộc một đường tròn.

Bài 17(Đề thi HSG Iran 2018 – Vòng 3) Cho tam giác $ABC$, đường tròn $w$ thay đổi qua $B, C$ cắt các cạnh $AB, AC$ tại $E$ và $F$. $BF, CE$ cắt $(ABC)$ tại $B’, C’$. $A’$ là điểm thuộc $BC$ sao cho $\angle C’A’B = \angle B’A’C$. Chứng minh rằng đường tròn ngoại tiếp tam giác $A’B’C’$ luôn đi qua một điểm cố định.

Bài 18(IMO shortlist 2017) Cho tam giác $ABC$ nhọn nội tiếp đường tròn tâm $O$. Đường thẳng $OA$ cắt đường cao từ $B$ và $C$ của tam giác $ABC$ lần lượt tại $P$ và $Q$. $H$ là trực tâm tam giác $ABC$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $HPQ$ thuộc đường trung trung tuyến của tam giác $ABC$.

Bài 19 Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Tiếp tuyến tại $A$ và $B$ cắt nhau tại $N$, tiếp tuyến tại $B$ và $C$ của $(O)$ cắt nhau tại $P$; tiếp tuyến tại $A$ và $C$ cắt nhau tại $M$.
a) Chứng minh $PA, CN$ và $BM$ đồng quy tại một điểm $L$.
b) Gọi $X, Y, Z$ là hình chiếu của $L$ trên $BC, AC$ và $AB$. Chứng minh $L$ thuộc đường thẳng Euler của tam giác $XYZ$.
c) Gọi $A’, B’, C’$ là trung điểm của $OP, OM$ và $ON$. Chứng minh rằng các đường thẳng $AA’, BB’$ và $CC’$ đồng quy.

Bài 20 Cho tam giác $ABC$ có các đường cao $AD, BE, CF$ cắt nhau tại $H$. Đường tròn đường kính $BH$ cắt $DE$ tại $K$, đường tròn đường kính $CH$ cắt $DF$ tại $L$. Chứng minh $KL$ vuông góc với đường thẳng euler của tam giác $ABC$.

Bài 21 Cho tam giác $ABC$ có $\angle A = 45^o$. Các đường cao $AD, BE, CF$. Gọi $A’, B’, C’$ lần lượt là hình chiếu của $A, B, C$ trên $EF, DF, DE$. Chứng minh rằng tâm đường tròn ngoại tiếp của tam giác $A’B’C’$ thuộc đường tròn euler của tam giác $ABC$.

Bài 22 Cho tam giác $ABC$, đường thẳng $d$ cắt các cạnh $AB, AC$ tại $D, E$ và đường thẳng $BC$ tại $F$. Gọi $O,O_a, O_b, O_c$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $ABC, ADE, BDF, CEF$.

a) Chứng minh rằng 4 điểm $O, O_a, O_b, O_c$ cùng thuộc một đường tròn.
b) Chứng minh trực tâm tam giác $O_aO_bO_c$ thuộc $d$.

Bài 23(IMO 2019) Cho tam giác $ABC$, các điểm $A_1$ thuộc cạnh $BC$ và $B_1$ thuộc cạnh $AC$. Trên đoạn $AA_1, BB_1$ lấy $P, Q$ sao cho $PQ$ song song $AB$. Trên tia $PB_1$ lấy $P_1$ sao cho $\angle PP_1C = \angle BAC$, trên tia $QA_1$ lấy điểm $Q_1$ sao cho $QQ_1C = \angle ABC$. Chứng minh 4 điểm $P, Q, P_1, Q_1$ đồng viên.

Bài 24 Cho tứ giác $ABCD$ nội tiếp đường tròn tâm $O$. Các đường phân giác trong của các góc $A, B, C, D$ cắt nhau tạo thành tứ giác nội tiếp tâm $I$. Các đường phân giác ngoài cắt nhau tạo thành tứ giác nội tiếp tâm $J$. Chứng minh rằng $O$ là trung điểm của $IJ$.

Bài 25 Cho tứ giác $ABCD$ nội tiếp đường tròn tâm $O$, $AD$ và $BC$ cắt nhau tại $K$. Đường tròn ngoại tiếp tam giác $KAC$ và $KBD$ có tâm là $I$ và $J$ cắt nhau tại $M$. Chứng minh
a) $O, J, I, M$ đồng viên.
b) $OM \bot KM$.

Bài 26 Cho tam giác $ABC$ nội tiếp đường tròn $w$. Trung tuyến $BM$ và $CN$ cắt $w$ tại $D$ và $E$. Đường tròn tâm $O_1$ qua $D$ và tiếp xúc với $AC$ tại $C$; đường tròn $O_2$ qua $E$ và tiếp xúc với $AB$ tại $B$.

a) Chứng minh rằng $O_1 O_2$ qua tâm đường tròn euler của tam giác $ABC$.
b) Gọi $K$ là giao điểm của $O_1M$ và $O_2N$. Chứng minh rằng $AK\bot BC$.

 

Bài 27 (IMO Shorlist 2019) Cho tam giác $ABC$, đường tròn $w$ qua $A$ cắt các cạnh $AB, AC$ tại $D$ và $E$ tương ứng; $w$ cắt $BC$ tại $F$ và $G$ sao cho $F$ nằm giữa $B$ và $G$. Tiếp tuyến tại $F$ của $(BDF)$ và tiếp tuyến tại $G$ của $(CEG)$ cắt nhau tại $T$. Giả sử $A, T$ phân biệt. Chứng minh rằng $AT$ song song $BC$.

Bài 28 (ISL 2107) Cho tam giác $ABC$ khác tam giác cân. Các đường cao từ $B$ và $C$ cắt nhau tại $H$. Đường thẳng $OA$ cắt $BH, CH$ tại $P$ và $Q$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $HPQ$ thuộc trung tuyến của tam giác $ABC$.

 

Bài 29 (ISL 2015 – G2) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Đường tròn $w$ tâm $A$ cắt cạnh $BC$ tại $D, E$ sao cho $D$ nằm giữa $B$ và $E$; $w$ cắt $(O)$ tại $F$ và $G$, trong đó $F$ thuộc cung nhỏ $AB$. Đường tròn ngoại tiếp tam giác $BDF$ cắt $AB$ tại $K$; đường tròn ngoại tiếp tam giác $CEG$ cắt $AC$ tại $L$. Gọi $X$ là giao điểm của $FK$ và $GL$. Chứng minh $A, X, O$ thẳng hàng.

Bài 30 (IMO 2013 – G6) Cho tam giác $ABC$, gọi $A_1$ là tiếp điểm của đường tròn bàng tiếp góc $A$ với $BC$; các điểm $B_1, C_1$ được xác định tương tự. Giả sử tâm đường tròn ngoại tiếp tam giác $A_1B_1C_1$ thuộc đường tròn ngoại tiếp tam giác $ABC$. Chứng minh tam giác $ABC$ vuông.

 

Sách tham khảo hình học

Hình hình học phẳng là một trong các nội dung quan trọng trong các kì thi học sinh giỏi các cấp, đặc biệt trong các năm gần đây bài hình học chiếm khá nhiều, và nhiều bài toán hay được đề xuất, các em học sinh có thể tìm được nhiều sách, nhiều tài liệu hay một cách dễ dàng, nhân đây mình cũng muốn giới thiệu một số sách hình học cho các bạn đam mê và muốn tham khảo.

Sách tham khảo trung học phổ thông

Sách tham khảo trung học cơ sở

Các bài toán tổ hợp trong kì thi Junior Bankan – P1

Lê Phúc Lữ – Phạm Khánh Vĩnh

(Bài viết trích từ Tập san Star Education – Số 5)

Bài 1. (JBMO 1998)
Hỏi có tồn tại hay không $16$ số có ba chữ số tạo thành từ ba chữ số phân biệt cho trước mà không có hai số nào có cùng số dư khi chia cho $16$?

Lời giải

Câu trả lời là phủ định.
Giả sử tồn tại các số thỏa mãn đề bài thì vì chúng có số dư đôi một khác nhau nên sẽ có đầy đủ các số dư $0,1,2,3,\ldots ,15$. Điều này có nghĩa là trong đó, có $8$ số chẵn và $8$ số lẻ. Suy ra, ba chữ số $a,b,c$ để tạo thành các số đã cho không thể có cùng tính chẵn lẻ. Ta có hai trường hợp:

  • Trong các số $a,b,c$, có hai số chẵn là $a,b$ và số $c$ lẻ. Ta có tất cả $9$ số lẻ tạo thành từ các chữ số này là:
    $aac,abc,acc,bac,bbc,bcc,cac,cbc,ccc$.
    Gọi ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{9}}$ là số có hai chữ số tạo thành bằng cách xóa đi chữ số cuối từ dãy trên.
    Rõ ràng số $\overline{{{a}_{i}}k}$ và $\overline{{{a}_{j}}k}$ với $i\ne j$ khác số dư với nhau theo modulo $16$ nếu như hiệu của chúng không chia hết cho $16$, suy ra ${{a}_{i}}-{{a}_{j}}$ không chia hết cho $8.$ Tuy nhiên, ta lại có đến $9$ số nên điều này không thể xảy theo nguyên lý chuồng bồ câu.
  • Trong các số $a,b,c$, có hai số lẻ là $a,b$ và số $c$ chẵn: cũng dẫn đến mâu thuẫn tương tự.

Vậy không tồn tại các số thỏa mãn đề bài.

Bài 2: (JBMO 2000)

Trong một giải thi đấu tennis, số lượng nam gấp đôi số nữ. Mỗi cặp vận động viên thi đấu với nhau đúng một lần và không có trận hòa, chỉ có thắng – thua. Tỷ số giữa trận thắng của nữ và của nam là $\frac{7}{5}$. Hỏi có bao nhiêu vận động viên trong giải thi đấu?

 

Lời giải

Gọi số nam là $2n$, số nữ là $n$ và tổng số vận động viên là $3n.$ Tổng số trận đấu là

$\frac{3n(3n-1)}{2}.$ \medskip

 

Theo giả thiết thì số trận thắng bởi nam là $$\frac{5}{12}\cdot \frac{3n(3n-1)}{2}=\frac{5n(3n-1)}{8}.$$

Số trận đấu giữa các nam là $\frac{2n(2n-1)}{2}=n(2n-1)$ và rõ ràng số trận này không vượt quá số trận thắng của các nam.

Suy ra $$\frac{5n(3n-1)}{8}\ge n(2n-1)\Leftrightarrow n\le 3.$$ Mặt khác, $5n(3n-1)$ phải chia hết cho $8$ nên $n=3.$ Do đó, số vận động viên của giải đấu là $9.$

Bài 3: (JBMO 2006)

Xét bảng ô vuông kích thước $2n\times 2n$ với $n$ nguyên dương. Người ta xóa đi một số ô của bảng theo quy tắc sau đây:

 

  •  Nếu $1\le i\le n$ thì ở dòng thứ $i$, xóa $2(i-1)$ ô ở giữa.
  •  Nếu $n+1\le i\le 2n$ thì ở dòng thứ $i,$ xóa đi $2(2n-i)$ ô ở giữa.

Hỏi có thể phủ được bảng bởi tối đa bao nhiêu hình chữ nhật kích thước $2\times 1$ và $1\times 2$ (không nhất thiết phải phủ kín toàn bộ) sao cho không có hai hình chữ nhật nào chồng lên nhau?

 

Lời giải

Với mọi bảng kích thước $2n\times 2n,$ tổng số ô bị xóa đi là $$2\times 2\times (1+2+3+\cdots +n-1)=2n(n-1).$$

Bảng sẽ còn lại ${{(2n)}^{2}}-2n(n-1)=2n(n+1)$ ô, tức là phủ được tối đa $n(n+1)$ ô vuông.

Không có mô tả.

 

Với $n=1,2,3,4,$ ta có thể kiểm tra trực tiếp được rằng kết quả lần lượt sẽ là $2,6,12,20$ bởi khi đó ta có thể phủ kín toàn bộ bảng. Còn với $n\ge 4$, ta xét hai trường hợp:

 

  • Nếu $n$ lẻ, khi đó ta chia bảng $2n\times 2n$ đã cho thành $4$ hình vuông nhỏ thì rõ ràng, mỗi hình sẽ có $\frac{n(n+1)}{2}$ ô còn trống. Tiếp theo, ta tô màu theo dạng bàn cờ cho bảng này (ô ở góc thì tô đen), ta sẽ có tất cả $\frac{{{(n+1)}^{2}}}{4}$ ô đen và $\frac{{{n}^{2}}-1}{4}$ ô trắng. Rõ ràng mỗi hình chữ nhật khi đặt lên bảng sẽ chứa một ô đen và một ô trắng nên số cặp ô trắng – đen tối đa trong hình vuông con là $\frac{{{n}^{2}}-1}{4}$, và tương ứng sẽ có tối đa $$4\cdot \frac{{{n}^{2}}-1}{4}={{n}^{2}}-1$$ hình chữ nhật $1\times 2,2\times 1$ phủ được trên bảng.

Ngoài ra, giữa các hình vuông con cạnh nhau, ta còn có hai ô màu đen cạnh nhau nên ta có thể lát thêm vào đó tổng cộng $4$ hình chữ nhật nữa, tổng cộng là ${{n}^{2}}-1+4={{n}^{2}}+3$.

  •  Nếu $n$ chẵn, bằng cách tương tự trên, ta phủ được hình bởi tối đa ${{n}^{2}}+4$ ô.

Tóm lại,

  •  Với $n=1,2,3,4$, đáp số lần lượt là $2,6,12,20.$
  •  Với $n>4$ và $n$ lẻ thì đáp số là ${{n}^{2}}+3.$
  •  Với $n>4$ và $n$ chẵn thì đáp số là ${{n}^{2}}+4.$

Bài 4: (JBMO 2008)

Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$

 

Lời giải

Ta thấy mỗi lần đổi màu không quá $5$ ô nên số lần đổi màu phải ít nhất là $4.$Hơn nữa, ta cũng có thể đổi màu tất cả sang đen như hình bên dưới, các ô được đánh dấu là các ô được chọn trong các thao tác.

Không có mô tả.

Mặt khác, với $n$ chẵn lớn hơn $4$, ta có thể chọn một trong các điểm trên hai lần và khi đó, màu của chúng sẽ đổi từ trắng sang đen, đen sang trắng, tức là không bị ảnh hưởng. Điều này có nghĩa là ta cũng có thể chuyển tất cả các ô sang màu đen như trường hợp $n=4.$ \medskip

Cuối cùng, ta sẽ chứng minh rằng $n$ lẻ không thỏa mãn đề bài.

Không có mô tả.

Tô màu xanh các ô vuông như hình vẽ. Ta thấy rằng ở mỗi lần thao tác thì có số lẻ ô xanh bị thay đổi ($1$ hoặc $3$) nên sau mỗi lần thao tác, số lượng ô trắng – đen trong vùng màu xanh bị thay đổi một số đồng dư $2$ modulo $4.$

Ban đầu chênh lệch đó là $10$ và nếu muốn đổi tất cả sang màu đen thì chênh lệch đó là $-10$; tức là thay đổi $-20$, chia hết cho $4$. Điều này không thể xảy ra nên $n$ lẻ không thỏa mãn đề bài.

Vậy các giá trị $n$ cần tìm là $n$ chẵn và $n\ge 4.$

Bài 5: (JBMO 2008)

Một bảng $4\times 4$ được chia thành $16$ ô vuông con và tất cả đều được tô màu trắng. Hai ô vuông được gọi là kề nhau nếu chúng có chung một cạnh. Một thao tác hợp lệ bao gồm việc chọn một ô vuông và đổi màu tất cả các ô kề với nó (kể cả nó): trắng sang đen, đen sang trắng. Sau $n$ thao tác, tất cả ô vuông của bảng chuyển sang màu đen. Tìm tất cả các giá trị có thể có của $n.$

 

Lời giải

Ta thấy mỗi lần đổi màu không quá $5$ ô nên số lần đổi màu phải ít nhất là $4.$Hơn nữa, ta cũng có thể đổi màu tất cả sang đen như hình bên dưới, các ô được đánh dấu là các ô được chọn trong các thao tác.

Mặt khác, với $n$ chẵn lớn hơn $4$, ta có thể chọn một trong các điểm trên hai lần và khi đó, màu của chúng sẽ đổi từ trắng sang đen, đen sang trắng, tức là không bị ảnh hưởng. Điều này có nghĩa là ta cũng có thể chuyển tất cả các ô sang màu đen như trường hợp $n=4.$ \medskip

Cuối cùng, ta sẽ chứng minh rằng $n$ lẻ không thỏa mãn đề bài.

Tô màu xanh các ô vuông như hình vẽ. Ta thấy rằng ở mỗi lần thao tác thì có số lẻ ô xanh bị thay đổi ($1$ hoặc $3$) nên sau mỗi lần thao tác, số lượng ô trắng – đen trong vùng màu xanh bị thay đổi một số đồng dư $2$ modulo $4.$

Ban đầu chênh lệch đó là $10$ và nếu muốn đổi tất cả sang màu đen thì chênh lệch đó là $-10$; tức là thay đổi $-20$, chia hết cho $4$. Điều này không thể xảy ra nên $n$ lẻ không thỏa mãn đề bài.

Vậy các giá trị $n$ cần tìm là $n$ chẵn và $n\ge 4.$

Bài 6:

(JBMO 2010)

Một hình chữ nhật $9\times 7$ được lát bởi hai loại gạch như hình bên dưới: chữ $L$ và hình vuông.

 

Không có mô tả.

 

Tìm tất cả các giá trị có thể có của số lượng các viên gạch hình vuông đã được dùng.

 

Lời giải

Câu trả lời là $0$ hoặc $3.$

Gọi $x$ là số viên gạch chữ $L$ và $y$ là số viên gạch hình vuông $2\times 2.$ Đánh dấu chéo $20$ hình vuông của hình chữ nhật như sơ đồ bên dưới.

Không có mô tả.

Rõ ràng mỗi viên gạch sẽ chứa không quá một dấu chéo. Suy ra $x+y\ge 20.$

Ngoài ra ta cũng có $3x+4y=63.$

Từ đó suy ra $y\le 3$ và $y$ chia hết cho $3$, dựa theo điều kiện thứ hai.

Do đó $y=0$ hoặc $y=3.$ Dưới đây là các cách lát thỏa mãn điều kiện đó.

Không có mô tả.

Bài 7: (JBMO 2013)

Cho $n$ là một số nguyên dương. Có hai người chơi là Alice và Bob chơi một trò chơi như sau:

 

  •  Alice chọn $n$ số thực, không nhất thiết phân biệt.
  •  Alice viết tất cả các tổng theo cặp của tất cả các số lên giấy và đưa nó cho Bob (rõ ràng có tất cả $\frac{n(n-1)}{2}$ cặp và không nhất thiết phân biệt).
  •  Bob sẽ thắng nếu như có thể tìm lại được $n$ số ban đầu được chọn bởi Alice.

Hỏi Bob có thể có cách chắc chắn thắng hay không với

 

  •  $n=5?$
  •  $n=6?$
  •  $n=8?$

 

 

Lời giải

1) Câu trả lời là khẳng định.

 

Giả sử các số Alice đã chọn là $a\le b\le c\le d\le e$. Rõ ràng mỗi số xuất hiện trong các tổng đúng $4$ lần nên bằng cách cộng tất cả $10$ tổng và chia hết quả cho $4$, Bod sẽ thu được

$a+b+c+d+e.$

Trừ đi tổng lớn nhất và nhỏ nhất, Bob sẽ thu được số lớn thứ ba là $c.$ Tiếp tục trừ $c$ vào tổng lớn thứ nhì, chính là $c+e$ thì Bob thu được $e.$ Trừ $e$ vào tổng lớn nhất, Bob thu được $d$. Bằng cách tương tự, Bob sẽ tìm ra được các giá trị $a,b.$ \medskip

 

2) Câu trả lời là khẳng định. Giả sử các số Alice đã chọn là $a\le b\le c\le d\le e\le f.$ Tương tự trên, ta cũng tính được tổng $S$ các số của bộ. Trừ $S$ cho tổng lớn nhất và nhỏ nhất, ta thu được tổng $c+d.$ \medskip

 

Trừ $S$ cho tổng lớn nhì và tổng nhỏ nhất, ta được $c+e.$ Trừ $S$ cho tổng lớn nhất và tổng nhỏ nhì, ta được $b+d.$

Từ đây suy ra $a+c=S-(b+d)-(e+f)$, trong đó ta biết $e+f$ vì đó là tổng lớn nhất.

Lúc bấy giờ, Bob đã tìm được ba tổng $a+b,a+c,b+c$ nên sẽ tính được $T=a+b+c$ và dễ dàng tìm được $a,b,c.$ Tương tự, Bob có thể tìm được $d,e,f.$ \medskip

 

3) Câu trả lời là phủ định.

Ta thấy rằng có hai bộ tám số là $1,5,7,9,12,14,16,20$ và $2,4,6,10,11,15,17,19$ đều cho cùng $28$ tổng theo đôi một giống nhau nên chắc chắn rằng Bob không thể biết được bộ mà Alice đã chọn.

 

Bài 8: (JBMO 2014)

Với mỗi số nguyên dương $n$, hai người $A,B$ chơi một trò chơi như sau: Cho một đống có $s$ viên sỏi và hai người chơi thay phiên nhau chơi, $A$ đi trước. Ở mỗi lượt, người chơi được bốc hoặc $1$ viên sỏi, hoặc một số $p$ nguyên tố các viên sỏi, hoặc một bội của $n$ các viên sỏi. Người bốc được viên cuối cùng là chiến thắng. Giả sử hai người đều chơi với chiến thuật tối ưu, hỏi có bao nhiêu giá trị $s$ để người $B$ có chiến thuật thắng?

 

Lời giải

Ta gọi các giá trị $s$ để cho người $A$ có chiến thuật thắng là vị trí thắng và các vị trí còn lại là vị trí thua. Ta cần tìm số lượng vị trí thua.

Giả sử có $k$ vị trí thua thuộc tập hợp $$X=\{{{s}_{1}},{{s}_{2}},{{s}_{3}},\ldots ,{{s}_{k}}\}.$$

Trước hết, ta thấy rằng mỗi bội của $n$ là vị trí thắng (vì người $A$ có thể lấy tất cả các viên sỏi ở ngay lần đi đầu tiên). Khi đó, nếu có ${{s}_{i}}\equiv {{s}_{j}}(\bmod n)$ và ${{s}_{i}}>{{s}_{j}}$ thì ở lượt đi đầu tiên, $A$ bốc ${{s}_{i}}-{{s}_{j}}$ viên sỏi (vì số này chia hết cho $n$). Nhưng lúc đó, còn lại ${{s}_{j}}$ viên sỏi và đây là vị trí thua của $B$ nên sẽ là vị trí thắng của $A$, mâu thuẫn.

Do đó, tất cả các số trong $X$ đều không đồng dư với nhau theo modulo $n$ hay $k=\left| X \right|\le n-1.$ \medskip

 

Ta sẽ chứng minh rằng $k=n-1.$ Thật vậy,

Để có được điều đó, ta sẽ chỉ ra rằng ở mỗi lớp thặng dư khác $0$ của $n$, luôn có một vị trí thua bằng phản chứng. Giả sử rằng tồn tại $r\in \{1,2,3,\ldots ,n-1\}$ sao cho $mn+r$ là vị trí thắng với mỗi số nguyên dương $m.$ Gọi $u$ là vị trị thua lớn nhất (nếu $k>0$) hoặc $0$ (nếu $k=0$).

Đặt $s$ là bội chung nhỏ nhất của tất cả các số nguyên dương từ $2$ đến $u+n+1.$ Khi đó, tất cả các số $s+2,s+3,\ldots ,s+u+n+1$ đều là hợp số. \medskip

 

Xét số nguyên dương ${m}’$ thỏa mãn

$s+u+2\le {m}’n+r\le s+u+n+1$.

Để ${m}’n+r$ là vị trí thắng thì phải có số tự nhiên $p$ là $1$, là số nguyên tố hoặc là bội của $n$ sao cho hiệu ${m}’n+r-p$ sẽ là vị trí thua, là $0$ hoặc là một số nhỏ hơn hoặc bằng $u.$ Chú ý rằng

$$s+2\le {m}’n+r-u\le p\le {m}’n+r\le s+u+n+1$$

nên $p$ phải là hợp số, chứng tỏ $p$ chỉ có thể là bội của $n$ (theo giả thiết của đề bài). \medskip

 

Đặt $p=qn$ thì ${m}’n+r-q=({m}’-q)n+r$ cũng sẽ là một vị trí thắng khác; tuy nhiên, theo nguyên lý trò chơi thì không thể đi từ vị trí thằng này đến vị trí thắng khác được. Điều mâu thuẫn này cho thấy không thể xảy ra trường hợp toàn bộ các số dạng $mn+r$ là vị trí thắng. \medskip

 

Từ đây ta suy ra rằng có ít nhất $n-1$ vị trí thua nên từ các điều trên, ta thấy có đúng $n-1$ vị trí thua hay có $n-1$ vị trí mà người $B$ có chiến lược để thắng.

Bài 9: (JBMO 2015)

Một khối chữ $L$ bao gồm ba khối vuông ghép như một trong các hình bên dưới:

 

 

Cho trước một bảng $5\times 5$ bao gồm $25$ ô vuông đơn vị, một số nguyên dương $k\le 25$ và một số lượng tùy ý các khối chữ $L$ nêu trên. Hai người chơi $A,B$ cùng tham gia một trò chơi như sau: bắt đầu bởi $A$, hai người sẽ lần lượt đánh dấu các ô vuông của bảng cho đến khi nào tổng số ô được đánh dấu bởi họ là $k.$ \medskip

 

Ta gọi một cách đặt các khối chữ $L$ trên các ô vuông đơn vị còn lại chưa được đánh dấu là tốt nếu như nó không bị chồng lên nhau, đồng thời mỗi khối đặt lên đúng ba ô vuông như một trong các hình ở trên. $B$ sẽ thắng nếu như với mọi cách đặt tốt ở trên, luôn luôn tồn tại ít nhất ba ô vuông đơn vị chưa được đánh dấu trên bảng. \medskip

 

Xác định giá trị $k$ nhỏ nhất (nếu có tồn tại) để $B$ có chiến lược thắng.

 

Lời giải

Ta sẽ chứng minh rằng $A$ sẽ thắng nếu $k=1,2,3$ và $B$ thắng nếu $k=4.$ Suy ra giá trị nhỏ nhất của $k$ là $4.$ \medskip

 

1) Nếu $k=1$ thì người chơi $A$ sẽ đánh dấu ô ở góc trên bên trái và đặt các khối như bên dưới

 

Không có mô tả.

 

Khi đó, rõ ràng $A$ thắng. \medskip

 

2) Nếu $k=2$ thì vẫn tương tự trên, $A$ đánh dấu vào ô ở góc trên bên trái. Khi đó, cho dù $B$ đánh dấu ô nào đi nữa thì $A$ cũng sẽ có cách đặt tương tự như trên, thiếu đi nhiều nhất là $2$ ô thuộc cùng khối vuông chữ $L$ với ô mà $B$ chọn. Điều này chứng tỏ $A$ vẫn thắng. \medskip

 

3) Nếu $k=3$ thì cũng tương tự, ở lượt sau, $A$ đánh dấu vào ô cùng khối chữ $L$ với ô mà $B$ đã đánh dấu. Khi đó, $A$ vẫn thắng. \medskip

 

4) Với $k=4$, ta sẽ chứng minh rằng $B$ sẽ luôn có chiến lược thắng cho dù $A$ đi thế nào đi nữa. Rõ ràng còn lại $21$ ô nên $A$ phải chọn cách đánh dấu sao cho có thể đặt được toàn bộ $7$ khối vuông chữ $L$ (vì nếu không thì sẽ còn lại ít nhất $3$ ô chưa được đặt). \medskip

 

Giả sử trong lượt đầu tiên, $A$ không chọn ô nào trong hàng cuối (vì nếu có thì ta xoay ngược bảng lại và lập luận tiếp một cách tương tự). Khi đó, $B$ sẽ chọn ô số $1$ như bên dưới.

Không có mô tả.

 

  •  Nếu trong lượt tiếp theo, $A$ không chọn ô nào trong các ô $2,3,4$ thì $B$ chọn ô số $3.$ Khi đó, rõ ràng ô số $2$ sẽ không thể đặt lên bởi bất cứ khối chữ $L$ nào và $B$ chiến thắng.
  •  Nếu trong lượt tiếp theo, $A$ chọn ô số $2$ thì $B$ chọn ô số $5$, dẫn đến ô số $3$ không thể đặt lên bởi khối $L$ nào.
  •  Nếu trong lượt tiếp theo, $A$ chọn một trong hai ô $3$ hoặc $4$ thì $B$ chọn ô còn lại, kết quả tương tự trên, ô số $2$ cũng sẽ không thể tiếp cận.

Vậy nói tóm lại, $k=4$ là giá trị nhỏ nhất cần phải tìm.

Bài 10: (JBMO 2016)

Một bảng kích thước $5\times 5$ được gọi là “tốt” nếu như mỗi ô của nó có chứa một đúng bốn giá trị phân biệt, và mỗi giá trị xuất hiện đúng một lần trong tất cả các bảng con $2\times 2$ của bảng đã cho. Tổng tất cả các số có trên bảng được gọi là “giá” của bảng. Với mỗi bộ bốn số thực, ta có thể xây dựng tất cả các bảng tốt và tính giá của nó. Tính số giá phân biệt lớn nhất có thể có.

 

Lời giải

Ta sẽ chứng minh rằng số giá phân biệt lớn nhất là $60.$ Ta có nhận xét sau: \medskip

 

Nhận xét:  Trong mỗi bảng tốt, mỗi hàng chứa đúng hai số trong các số hoặc mỗi cột chứa đúng hai số trong các số. \medskip

 

Thật vậy, ta thấy mỗi hàng của bảng đều chứa ít nhất hai số (vì nếu chứa toàn bộ là một số thì mâu thuẫn với giả thiết). Khi đó, nếu toàn bộ các hàng đều chứa hai số thì nhận xét đúng. \medskip

 

Giả sử ngược lại là có hàng $R$ chứa ít nhất ba số trong bốn số của bảng là $x,y,z,t$. Khi đó, các số đó phải có nằm ở vị trí liên tiếp nào đó trên hàng, giả sử là $x,y,z$ liên tiếp. Theo giả thiết thì trong mỗi bảng $2\times 2$, ta đều có đủ bốn giá trị nên trong hàng phía trên và phía dưới của $R$ phải chứa $z,t,x$ theo đúng thứ tự đó, và tương tự là $x,y,z$. Ta có bảng như bên dưới

 

* & x & y & z & * \\

* & z & t & x & * \\

* & x & y & z & * \\

* & z & t & x & * \\

* & x & y & z & * \\

 

Điền thêm các ô còn lại, dễ thấy rằng các cột đều chứa đúng hai số. Nhận xét được chứng minh. \medskip

 

Không mất tính tổng quát, ta có thể giả sử mỗi hàng của bảng đều có đúng hai số (nếu không thì có thể xoay bảng lại). Nếu không xét hàng đầu tiên và cột đầu tiên, ta sẽ có bảng $4\times 4$ mà trong đó, mỗi số trong $x,y,z,t$ đều xuất hiện $4$ lần nên tổng các số trong bảng này là $4(x+y+z+t).$

Do đó, ta chỉ cần tính xem có bao nhiêu cách khác nhau để đặt các số lên hàng đầu tiên ${{R}_{1}}$ và cột đầu tiên ${{C}_{1}}.$ Gọi $a,b,c,d$ là số lần xuất hiện của các số $x,y,z,t$ thì khi đó, tổng tất cả các số của bảng sẽ là

$$4(x+y+z+t)+xa+yb+zc+td.$$

Nếu hàng $1-3-5$ chứa các số $x,y$ với $x$ ở vị trí đầu tiên của hàng $1$ thì các hàng $2-4$ sẽ chứa các số $z,t$ (theo giả sử ở trên). Khi đó, ta có

$a+b=7$ và $a\ge 3,b\ge 2$,

$c+d=2$ và $c\ge d.$ \medskip

 

Khi đó $(a,b)=(5,2),(4,3)$ tương ứng với $(c,d)=(2,0),(1,1).$ Suy ra $(a,b,c,d)$ sẽ nhận các bộ là $$(5,2,2,0),(5,2,1,1),(4,3,2,0),(4,3,1,1).$$

Tổng số hoán vị của các bộ là $$\frac{4!}{2!}+\frac{4!}{2!}+4!+\frac{4!}{2!}=60.$$

Bằng cách chọn $x={{10}^{3}},y={{10}^{2}},z=10,t=1$ thì dễ thấy rằng các tổng tương ứng với mỗi hoán vị của bộ số trên đều phân biệt, nghĩa là giá của các bảng đều phân biệt. Vậy số lượng giá tối đa là $60.$

Dưới đây là một số bài toán để bạn đọc tự rèn luyện thêm:

Bài 11. (JBMO 2019) Cho bảng ô vuông $5\times 100$ được chia thành $500$ ô vuông con đơn vị, trong đó có $n$ được tô đen và còn lại tô trắng. Hai ô vuông kề nhau nếu chúng có cạnh chung. Biết rằng mỗi ô vuông đơn vị sẽ có tối đa hai ô vuông đen kề với nó. Tìm giá trị lớn nhất của $n.$

Bài 12. (JBMO 2020) Alice và Bob chơi một trò chơi như sau: Alice chọn một tập hợp $A={1,2,\ldots ,n}$ với $n\ge 2.$ Sau đó, bắt đầu bằng Bob, họ sẽ thay phiên chọn một số trong tập $A$ sao cho: đầu tiên Bob chọn bất kỳ số nào, sau đó, các số được chọn phải khác các số đã chọn và hơn kém đúng $1$ đơn vị so với số nào đó đã chọn. Trò chơi kết thúc khi tất cả các số trong $A$ đã được chọn. Alice thắng nếu tổng các số bạn ấy chọn được là hợp số. Ngược lại thì Bob thắng. Hỏi ai là người có chiến lược thắng?