Định nghĩa 1. Cho hai tập hợp $A$ và $B$ khác rỗng. Một quy tắc cho tương ứng mỗi phần từ $x \in A$ với một và chỉ một phần tử $y \in B$ được gọi là một ánh xạ từ $A$ vào $B$. Kí hiệu ánh xạ $f: A \rightarrow B, x \mapsto y=f(x)$.
Định nghĩa 2. Cho ánh xạ $f: A \rightarrow B$
$x \in A, y=f(x)$ thì $f(x)$ được gọi ảnh của $x$ qua ánh xạ $f$.
Với mọi $y \in B$, đặt $f^{-1}(y)={x \in A \mid f(x)=y}$ được gọi là tạo ảnh của $y$.
$f(A)={f(x) \mid x \in A}$ được gọi là tập ảnh của ánh xạ. Ví dụ 1.
1. Qui tắc $f: A \rightarrow A$ thỏa $f(x)=x$, tức là cho tương ứng mỗi phần tử với chính nó là một ánh xạ, được gọi là ánh xạ đồng nhất, đôi khi kí hiệu là $I_d$.
2. $f: \mathbb{Z} \rightarrow \{-1, 0, 1\}$ thỏa $f(x)=-1$ nếu $x<0$, $f(x)=1$ nếu $x>0$ và $f(x)=0$ nếu $x=0 $ là một ánh xạ.
3. Cho tập $X, A$ là tập con khác rỗng của $X$. Xét $f: X \rightarrow{0,1}$ thỏa $f(x)=1$ nếu $x \in A, f(x)=0$ nếu $x \notin A$ là một ánh xạ
4. $f: \mathbb{R} \rightarrow \mathbb{R} $ thỏa $x \mapsto y$ thỏa $y^2=x$ Không phải là ánh xạ.
5. Cho đường thẳng $d$, với mọi điểm $M$ cho tương ứng với $M’$ thuộc $d$ sao cho $MM’ \perp d$ nếu $M$ không thuộc $d$ và $M’ \equiv M$ nếu $M$ thuộc $d$ là một ánh xạ, được gọi là phép chiếu vuông góc trên đường thẳng $d$.
6. Cho $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa $f(x) = 3x + 1$ là ánh xạ.
Đơn ánh, toàn ánh, song ánh
Định nghĩa 3. Một ánh xạ được $f: A \rightarrow B$ được gọi là đơn ánh nếu và chỉ nếu $f(x) = f(y) \Rightarrow x = y$. Tức là với mọi $y$ thì $f^-1 (y)$ có không quá một phần tử.
Định nghĩa 4. Ánh xạ $f: A \rightarrow B$ là toàn ánh khi và chỉ khi mọi $y \in B$ thì tồn tại $x \in A$ sao cho $f(x)=y$. Với mọi $y \in B$ thì $f^{-1}(y)$ khác rỗng. Định nghĩa 5. Một ánh xạ là toàn ánh nếu nó vừa đơn ánh vừa toàn ánh. Tập $f^{-1}(y)$ có đúng một phần tử. Ví dụ 2. Trong các ánh xạ của ví dụ 1 thì 1,6 là song ánh, 2, 3, 5 là toàn ánh nhưng không phải song ánh.
Ánh xạ hợp – Ánh xạ ngược
Định nghĩa 6. Cho song ánh từ $f: A \rightarrow B$. Ta xây dựng một ánh xạ từ $B$ vào $A$ như sau: với mỗi phần tử $b \in B$ cho tương ứng với phần tử $a \in A$ thỏa $a=f^{-1}(b)$, ánh xạ đó được gọi là ánh xạ ngược của $f$, kí hiệu là $f^{-1}$. Ta có $$ f^{-1}: B \rightarrow A, f^{-1}(x)=y \Leftrightarrow f(y)=x $$ Ví dụ 3
a) Ánh xạ ngược của ánh xạ đồng nhất là ánh xạ đồng nhất. b) Cho $A={1,2,3}, B={a, b, c}$.Xét song ánh từ $A \rightarrow B$ là $f(1)=b, f(2)=$ $a, f(3)=c$. Khi đó ánh xạ ngược $f^{-1}$ từ $B \rightarrow A$ là $f^{-1}(a)=2, f^{-1}(b)=1, f^{-1}(c)=3$.
c) Ánh xạ ngược của $f: R \rightarrow R, f(x) = 3x + 1$ là $f: R\rightarrow f(x) = \dfrac{1}{3} (x-1)$.
Định nghĩa 7. Cho $f: A \rightarrow B, g: B \rightarrow C$ khi đó ánh xạ $g \circ f: A \rightarrow C$ thỏa $$ g \circ f(a)=g(f(a)) $$ được gọi là ánh xạ hợp.
Ví dụ 4. Cho $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 x+1, g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^2$. (a) Tìm $g \circ g, f \circ f$; (b) $g \circ f, f \circ g$.
Tính chất 1. Nếu $f: A \rightarrow B$ là song ánh thì $f \circ f^{-1} = I_d trên $B$, và $f^{-1} \circ f $ là ánh xạ đồng nhất trên $A$.
Ánh xạ và phép đếm
Định nghĩa 8. Cho tập $A$ số nguyên dương $n$ và $X={0,1,2, \cdots, n}$. Nếu tồn tại một song ánh từ $A$ vào $X$ thì khi đó ta nói $A$ có hữu hạn phần tử và số phần tử của $A$ là $n$. Kí hiệu $|A|=n$. Nếu $A$ không khác rỗng và không có hữu hạn phần tử, ta nói $A$ là tập vô hạn.
Tính chất 2. Cho $A, B$ là các tập hữu hạn.
Nếu tồn tại một đơn ánh từ $A$ vào $B$ thì $|A| \leq|B|$.
Nếu tồn tại một toàn ánh từ $A$ vào $B$ thì $|A| \leq|B|$.
Nếu tồn tại một song ánh từ $A$ vào $B$ thì $|A|=|B|$.
Trong tập hợp bao gồm các phần tử, tập không có phần tử nào gọi là tập rỗng, kí hiệu $\emptyset $.
Phần tử $a$ thuộc tập $X$, kí hiệu là $a \in X$. Phần tử $b$ không thuộc tập $X$ kí hiệu là $b \notin X$.
Cách cho tập hợp:
Cho bằng cách liệt kê. Ví dụ $A = \{1, 2, 3, 4, 5 \}$.
Cho bằng đặc trưng của tập hợp $A = \{n \in \mathbb{N}|n \vdots 5 \}$.
2.Tập hợp con – Tập hợp bằng nhau.
Tập $A$ là tập con của $B$ (hay $A$ chứa trong $B$) khi và chỉ khi mọi phần tử của $A$ đều là phần tử của $B$.
$(A \subset B) \Leftrightarrow (\forall x \in A \Rightarrow x \in B) $
Ta có các tình chất sau:
Tập rỗng là con của mọi tập hợp.
Một tập là tập con của chính nó
Nếu $A \subset B$ và $B \subset C$ thì $A \subset C$.
3. Các phép toán trên tập hợp
a. Giao của hai tập hợp.
$A \cap B = \{x| x\in A \wedge x \in B \}$.
b. Hợp của hai tập hợp.
$A \cup B = \{x|x \in A \vee x \in B$\}$.
c. Hiệu – Phần bù
$A \setminus B = \{x|x \in A \wedge x \notin B \}$
Ví dụ. Cho $A = \\{1, 2, 3, 4 \\}, B = \\{3, 4, 5, 6 \\}, C = \\{5, 6, 1, 8\\}$.
Khi đó $A \cap B = \\{3, 4 \\}, A \cup C = \\{1, 2, 3, 4, 5, 6, 8\\}, A \setminus B = \\{1, 2\\}, B \setminus A = \\{5, 6\\}$.
4. Các tập hợp số
a) Tập các số tự nhiên $\mathbb{N} = \\{0, 1, 2, …\\}$.
Tính chất.
Một tập con của $\mathbb{N}$ luôn có phần tử nhỏ nhất.
Tập số tự nhiên không có số lớn nhất.
Giữa hai số tự nhiên liên tiếp không có số tự nhiên nào.
b) Tập các số nguyên $\mathbb{Z} = \\{…,-2,-1,0,1,2,…\\}$
c) Tập các số hữu tỉ. $\mathbb{Q} = \\{\dfrac{m}{n}|m, n \in \mathbb{Z}, n \neq 0 \\}$.
Tính chất.
Tổng hiệu tích thương (mẫu khác 0) của hai số hữu tỉ là một số hữu tỉ.
Giữa hai số hữu tỉ bất kì luôn có một số hữu tỉ
d) Tập các số thực. Hợp của tập các hữu tỷ và vô tỷ.
Các tập con của tập các số thực.
Bài tập.
Cho $A = \{0, 1, 2, 3, 4, 5 \}, B = \{2,3, 4, 8 \}, C = \{3, 4, 10, 11 \}$. Tìm $A \setminus B, A \cap B, (A \cup B) \setminus C$.
Cho $A = [-4;2], B = (-1;5), C = (-\infty;0)$. Tìm $\mathbb{R} \setminus A, A \cup B, C \setminus B, (A\cap B) \setminus C$.
Cho hai tập A, B thoả mãn $C_{R}A=(2, +\infty), C_{R}B=(- \infty,1) \cup [3, + \infty)$. Hãy xác định các tập $A \cap B, A \cup B, A \setminus B, B \setminus A$ và phần bù của các tập trên.
Cho $A=[\dfrac{1}{2}, +\infty), B=\{x \in \mathbb{R}: |2x-1| \le 1\}$. Tìm $A \cap B, A \cup B, A \setminus B, B \setminus A$ và phần bù của các tập trên.
Cho $A=(2m-1, 2m+3), B=(-6,1]$. Tìm $m$ để a. $A \subset B.$ b. $B \subset A.$
Lớp 10A có 40 học sinh, trong đó có 15 bạn được xếp học lực giỏi, 20 bạn được xếp hạnh kiểm tốt, 10 bạn vừa học lực giỏi vừa hạnh kiểm tốt. a. Hỏi lớp 10A có bao nhiêu bạn được khen thưởng, biết để được khen thưởng thì bạn đó hoặc phải có học lực giỏi hoặc phải có hạnh kiểm tốt. b. Lớp 10 A có bao nhiêu bạn chưa có học lực giỏi và chưa có hạnh kiểm tốt?
Mệnh đề luôn nhận chân trị đúng được gọi là mệnh đề hằng đúng, kí hiệu là Đ. Mệnh đề luôn nhận chân trị sai được gọi là mệnh đề hằng sai, kí hiệu là S.
Ví dụ 7. $P \vee \overline{P}$ là hằng đúng, $P \wedge \overline{P}$ là hằng sai.
h. Tương đương logic.
Hai biểu thức mệnh đề $P$ và $Q$ được gọi là tương đương logic nếu $P \Leftrightarrow Q$ là hằng đúng. Ta có thể kí hiệu $P = Q$ nếu chúng tương đương logic.
a)Hà Nội là thủ đô của Lào . b) Danh đẹp trai! c) Tú Anh hát thật hay! d) Thành phố Hồ Chí Minh là thủ đô của Pháp. e) Có phải em là mùa thu Hà Nội?
Bài 2. Trong các câu sau, câu nào là mệnh đề?
a) $\pi$ là số thập phân vô hạn tuần hoàn. b) Đức vô định Fifa World Cup 2014. c) Việt Nam đạt 3 HCV Toán Quốc tế năm 2014. d) $x + 1 = 2$ e) $x + y = z$ f) Mọi số tự nhiên đều là số không âm. g) 5 là số vô tỷ.
Bài 3. Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng? mệnh đề nào là mệnh đề sai?
a) Số 2015 chia hết cho 3. b) Số 8 là số nguyên tố. c) 121 là số chính phương (số chính phương là bình phương của một số nguyên) d)Tam giác có hai góc bằng nhau là tam giác đều. e) Phương trình $x^2 + 3x + 1=0$ vô nghiệm. f) Tam giác có độ dài 3 cạnh lần lượt là 3, 4, 5 là tam giác vuông. g) Hai phương trình $x^2-4x+3= 0$ và phương trình $\sqrt{3x+1}+\sqrt{x}=3$ có nghiệm chung.
Bài 4. Hãy viết mệnh đề phủ định của các mệnh đề sau và cho biết mệnh đề phủ định đúng hay sai?
a) Thành phố Hồ Chí Minh là thủ đô của Việt Nam. b) 13 là số nguyên tố . c) 25 < 37. d) $\sqrt{2}$ là số hữu tỷ. e) Tổng 3 góc trong một tam giác bằng $360^o$. f) Tổng hai cạnh của một tam giác lớn hơn cạnh còn lại. g) Tổng hai đường chéo của một tứ giác nhỏ hơn nửa chu vi.
Bài 5. Viết mệnh đề hội của các cặp mệnh đề sau và cho biết mệnh đề hội là đúng hay sai?
a) P:”30 chia hết cho 5” ; Q:”30 chia hết cho 3”. b) P: “Thầy Vũ đã có vợ” ; Q:”Thầy Vũ dạy trường Phổ Thông Năng Khiếu” c) P:”25 là số chính phương”; Q:”25 là số âm” d) P:”Tam giác vuông có một góc bằng $90^o$”; Q:”Tam giác vuông có hai cạnh bằng nhau”; e) P:”Việt Nam là nước thuộc vùng Đông Nam Á” ; Q:” Việt Nam là nước khí hậu gió mùa nhiệt đới ẩm”
Bài 6. Hãy viết mệnh đề tuyển của các mệnh đề sau và cho biết mệnh đề tuyển là đúng hay sai?
a) P:” 30 là số nguyên tố” Q:”30 là số chính phương” b) P:” – 2 = 2” Q:” – 5 < 6” c) P:”$\dfrac{1}{3}$ là số hữu tỷ” Q:” $\pi$ là số vô tỷ”
Bài 7. Cho các cặp mệnh đề sau:
1) P: “ – 2 = 2” Q:” $(-2)^2 = 2^2$” 2) P:” Xuân Diệu là nhà Toán học vĩ đại” Q:” Galois là nhà thơ lớn người Việt Nam” 3) Cho tam giác ABC. P:”Tam giác ABC có$\angle B = \angle C$ ” Q:”Tam giác ABC có AB = AC” 4) P:” – 5 < – 6 “ Q:” 100 > 1000″ 5) P:” $\dfrac{1}{3}$ là số hữu tỷ” Q:”3 là hợp số”a) Viết mệnh đề $P \Rightarrow Q$ và cho biết mệnh đề này đúng hay sai? b) Viết mệnh đề $P \Leftrightarrow Q$ và cho biết mệnh đề này đúng hay sai? c) Viết mệnh đề $\overline{Q} \Rightarrow P$ và cho biết mệnh đề này đúng hay sai?
Bài 8. Cho các hai mệnh đề P và Q. Chứng minh rằng:a) Mệnh đề $P \wedge \overline{P}$ hằng sai. b) Mệnh đề $P \vee \overline{P}$ hằng đúng. c) Mệnh đề $\overline{P \wedge Q}$ và $\overline{P} \vee \overline{Q}$ cùng chân trị. d) Mệnh đề $\overline{P \vee Q}$ và $\overline{P} \wedge \overline{Q}$ cùng chân trị.
Giải hệ phương trình: $\left\{\begin{array}{l}x_1=\frac{1}{2}\left(x_2+\frac{1}{x_2}\right) \\ x_2=\frac{1}{2}\left(x_3+\frac{1}{x_3}\right) \\ \cdots \\ x_{2002}=\frac{1}{2}\left(x_1+\frac{1}{x_1}\right)\end{array}\right.$
Câu 2
Chứng minh rằng: Phần nguyên của $(\sqrt{11}+3)^{3 \mathrm{n}+1}$ thì chia hết cho $2^{\mathrm{n}+1}$ và không chia hết cho $2^{\mathrm{n}+2}$ với mọi $\mathrm{n}$ là số tự nhiên.
Câu 3
Cho tam giác $\mathrm{ABC}$ thỏa:
$\quad\quad\quad\quad\quad\frac{\sin ^2 A+\sin ^2 B+\sin ^2 C}{\cot g A+\cot g B+\cot g C}=\sqrt{\frac{\sin ^2 A \cdot \sin ^2 B \cdot \sin ^2 C}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2} \cdot \operatorname{tg} \frac{C}{2}}}$
Chứng minh rằng: Tam giác $\mathrm{ABC}$ đều.
Câu 4
Giả sử điểm $\mathrm{M}$ nằm trong tam giác $\mathrm{ABC}$ sao cho: $\widehat{\mathrm{AMC}}=90^{\circ}$; $\widehat{\mathrm{AMB}}=150^{\circ} ; \widehat{\mathrm{BMC}}=120^{\circ}$. Gọi các điểm $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ lần lượt là tâm các đường tròn ngoại tiếp của tam giác $\mathrm{AMC}, \mathrm{AMB}, \mathrm{BMC}$.
Chứng minh rằng:
LỜI GIẢI
Câu 1
Giải hệ phương trình: $\left\{\begin{array}{l}x_1=\frac{1}{2}\left(x_2+\frac{1}{x_2}\right) \\ x_2=\frac{1}{2}\left(x_3+\frac{1}{x_3}\right) \\ \cdots \\ x_{2002}=\frac{1}{2}\left(x_1+\frac{1}{x_1}\right)\end{array}\right.$
Lời Giải
Nhận xét: Nếu $\left(x_1, x_2, \ldots, x_{2002}\right)$ là nghiệm thì $x_1, x_2, \ldots, x_{2002}$ phải cùng dấu và khác 0
Đồng thời $\left(-x_1,-x_2, \ldots,-x_{2002}\right)$ cũng là nghiệm, nên ta chỉ cần xét với $x_1, x_2, \ldots, x_{2002}$ dương.
Theo bất đẳng thức Côsi: $x_i+\frac{1}{x_i} \geq 2(I=1,2, \ldots, 2002)\quad\quad\quad (1)$
Từ các phương trình trong hệ và (1) ta được: $2 x_i \geq 2$ hay $x_i \geq 1\quad\quad\quad (2)$
Vậy hệ có 2 nghiệm: $\left[\begin{array}{l}x_1=x_2=\ldots=x_{2002}=1 \\ x_1=x_2=\ldots=x_{2002}=-1\end{array}\right.$
Câu 2
Chứng minh rằng: Phần nguyên của $(\sqrt{11}+3)^{3 \mathrm{n}+1}$ thì chia hết cho $2^{\mathrm{n}+1}$ và không chia hết cho $2^{\mathrm{n}+2}$ với mọi $\mathrm{n}$ là số tự nhiên.
Lời Giải
Trước hết, nhận xét rằng: $(\sqrt{11}+3)^{2 \mathrm{n}+1}-(\sqrt{11}-3)^{2 \mathrm{n}+1}$ là một số tự nhiên. Thật vậy, ta có:
(Vì: $\mathrm{a}-\mathrm{b}=\mathrm{k} \in \mathrm{N} \Rightarrow \mathrm{a}=\mathrm{k}+\mathrm{b}$ với $\mathrm{b} \in(0 ; 1)$ nên $[\mathrm{a}]=\mathrm{k}^{\prime}=\mathrm{a}-\mathrm{b}$, kí hiệu $[$.$] là$ phần nguyên của số thực)
Với n $=0:(\sqrt{11}+3)^1-(\sqrt{11}-3)^1=6$ chia hết cho $2^{0+1}=2$ nhưng không chia hết cho $2^2=4$
Lại có: $(\sqrt{11}+3)^2-(\sqrt{11}-3)^2=40 \Rightarrow$ với $\mathrm{n}=1$ thì
$=\underbrace{2^3 5 \cdot\left[(\sqrt{11}+3)^{2 \mathrm{n}-1}-(\sqrt{11}-3)^{2 \mathrm{n}-1}\right]}_{\text {chia hết cho } 2^{\mathrm{n}}}-$
$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad -\underbrace{2^2 \cdot\left[(\sqrt{11}+3)^{2 \mathrm{n}-3}-(\sqrt{11}-3)^{2 \mathrm{n}-3}\right]}_{\text {chia hết cho } 2^{\mathrm{u}-1} \text { nhưng không chia hết cho } 2^{\mathrm{n}}}$
Vậy $\left[(\sqrt{11}+3)^{2 n+1}\right]$ chia hết cho $2^{n+1}$ nhưng không chia hết cho $2^{n+2}$.
Câu 3
Cho tam giác $\mathrm{ABC}$ thỏa:
$\quad\quad\quad\quad\quad\frac{\sin ^2 A+\sin ^2 B+\sin ^2 C}{\cot g A+\cot g B+\cot g C}=\sqrt{\frac{\sin ^2 A \cdot \sin ^2 B \cdot \sin ^2 C}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{2} \cdot \operatorname{tg} \frac{C}{2}}}$
Chứng minh rằng: Tam giác $\mathrm{ABC}$ đều.
Lời Giải
Ta có: $\mathrm{a}^2=\mathrm{b}^2+\mathrm{c}^2-2 \mathrm{bc} \cdot \cos \mathrm{A}$
$\quad\quad\quad\Leftrightarrow \frac{\sin ^2 \mathrm{~A}+\sin ^2 \mathrm{~B}+\sin ^2 \mathrm{C}}{\cot g \mathrm{~A}+\cot g \mathrm{~B}+\cot g \mathrm{C}}=\frac{\mathrm{S}}{\mathrm{R}^2}\quad(1)$
Mặt khác:
$\quad\quad\quad\quad a^2=b^2+c^2-2 b c \cdot \cos A \geq 2 b c-2 b c \cdot \cos A=4 b c \cdot \sin ^2 \frac{A}{2}=4 S \cdot \operatorname{tg} \frac{A}{2} $
Tữ (1) và (2) suy ra: $\sqrt[3]{\frac{\sin ^2 A \cdot \sin ^2 B \cdot \sin ^2 C}{\operatorname{tg} \frac{A}{2} \cdot \operatorname{tg} \frac{B}{C} \cdot \operatorname{tg} \frac{C}{2}}} \geq \frac{\sin ^2 A+\sin ^2 B+\sin ^2 C}{\cot g A+\cot g B+\cot g C}$
Dấu “=” xảy ra khi $\mathrm{a}=\mathrm{b}=\mathrm{c} \Leftrightarrow \triangle \mathrm{ABC}$ đều. Từ đó suy ra điều phải chứng minh.
Câu 4
Giả sử điểm $\mathrm{M}$ nằm trong tam giác $\mathrm{ABC}$ sao cho: $\widehat{\mathrm{AMC}}=90^{\circ}$; $\widehat{\mathrm{AMB}}=150^{\circ} ; \widehat{\mathrm{BMC}}=120^{\circ}$. Gọi các điểm $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ lần lượt là tâm các đường tròn ngoại tiếp của tam giác $\mathrm{AMC}, \mathrm{AMB}, \mathrm{BMC}$.
Chứng minh rằng:
Lời Giải
$A, M$ đối xứng nhau qua $P Q$.
$\mathrm{B}, \mathrm{M}$ đối xứng nhau qua $\mathrm{QR}$.
$\mathrm{C}, \mathrm{M}$ đối xứng nhau qua $\mathrm{RP}$.
Bài 1. Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a^{4}+b^{4}+2}{\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)}$, với $a, b \in \mathbb{R}$. Bài 2. Tìm tất cả các hàm $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$thỏa mãn
$$
f\left(x^{2} f(y)^{2}\right)=f(x)^{2} f(y), \text { với mọi } x, y \in \mathbb{Q}^{+} .
$$ Bài 3. Cho $x_{1}, x_{2}, x_{3}, \ldots$ là dãy số nguyên thỏa mãn đồng thời hai điều kiện $1=$ $x_{1}<x_{2}<x_{3} \ldots$ và $x_{n+1} \leq 2 n$ với $n=1,2,3 \ldots$ Chứng minh rằng với mọi số nguyên dương $k$, tồn tại các số nguyên $i>j$ sao cho $x_{i}-x_{j}=k$.
Bài 4. Cho tam giác $A B C$ cân tại $A$, nội tiếp đường tròn tâm $O$ bán kính $R$. Gọi $M$ là điểm trên cạnh $A B$ sao cho $\overrightarrow{A M}=\frac{1}{3} \overrightarrow{A B}$. Đường tròn tâm $M$ bán kính $M B$ cắt đường tròn tâm $O$ tại điểm thứ hai là $D$. Một đường thẳng qua $M$ song song với $A D$ cắt $A C$ tại $N$. Chứng minh rằng $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$.
Đáp án
Bài 1. Với mọi $x \in \mathbb{R}$, ta có
$$
x^{4}+1-\frac{2}{9}\left(x^{2}-x+1\right)^{2}=\frac{1}{9}(x+1)^{2}\left(7 x^{2}-10 x+7\right) \geq 0 .
$$
Vì thế nên ta có
$$
P \geq \frac{2}{9} \frac{\left(a^{2}-a+1\right)^{2}+\left(b^{2}-b+1\right)^{2}}{\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)}=\frac{2}{9}\left(\frac{a^{2}-a+1}{b^{2}-b+1}+\frac{b^{2}-b+1}{a^{2}-a+1}\right) \geq \frac{4}{9} .
$$
Suy ra giá trị nhỏ nhất của $P$ là $\frac{4}{9}$, đạt được khi $a=b=-1$.
Bài 2. Giả sử $f$ là một hàm thỏa mãn các yêu cầu của bài toán. Đặt $f(1)=a>$ 0 , trong phương trình đề cho, thay $x=y=1$ ta có $f\left(a^{2}\right)=a^{3}$.
Từ đó, tiếp tục lần lượt thay $x$ bởi $a^{2}, y$ bởi 1 và $x$ bởi $1, y$ bởi $c^{2}$ vào phương trình ấy, ta thu được
$$
a^{7}=f\left(a^{6}\right)=a^{5} .
$$
Chú $\hat{y} a>0$ nên ta có $a=1$, tức $f(1)=1$. Thay $x$ bởi 1 vào phương trình đề cho, ta có
$$
f\left(f(y)^{2}\right)=f(y) \text {, với mọi } y \in \mathbb{Q}^{+} \text {. }
$$
Lại thay $y$ bởi 1 vào phương trình đề cho, ta có
$$
f(x)^{2}=f\left(x^{2}\right), \text { với mọi } x \in \mathbb{Q}^{+} .
$$
Suy ra
$$
f(x)=f\left(f(x)^{2}\right)=f(f(x))^{2}=\ldots=f^{n+1}(x)^{2^{n}}, \text { với mọi } x \in \mathbb{Q}^{+},
$$
trong đó $f^{n+1}(x)$ là $n+1$ lần tác động $f$ vào $x$. Từ đó, nếu tồn tại $q \in \mathbb{Q}^{+}$sao cho tồn tại $p \in \mathbb{P}$ thỏa mãn $v_{p}(f(q)) \neq 0$ thì ta có
$$
v_{p}(f(q))=v_{p}\left(f^{n+1}(q)^{2^{n}}\right)=2^{n} v_{p}\left(f^{n+1}(q)\right) \neq 0 .
$$
Trong đẳng thức trên, cho $n \rightarrow+\infty$ ta thấy điều vô lý. Suy ra $v_{p}(f(q))=0$ với mọi $q \in \mathbb{Q}^{+}, p \in \mathbb{P}$, hay $f(x) \equiv 1$.
Thử lại, ta kết luận $f(x) \equiv 1$ là hàm duy nhất thỏa mãn yêu cầu bài toán.
Bài 3. Với $k$ nguyên dương, ta xét $k+1$ số hạng của dãy là $x_{1}, x_{2}, \ldots, x_{k+1}$. Ta có $x_{1}=1 \leq k$, gọi $q$ là số lớn nhất thỏa mãn $x_{q} \leq k$ thì ta có $q<k+1$ và
$$
1 \leq x_{1}<x_{1}<\cdots<x_{q} \leq k<x_{q+1}<\cdots<x_{k+1}<2 k \text {. }
$$
Nếu tồn tại $1 \leq j<i \leq k+1$ sao cho $x_{i}-x_{j}=k$ thì ta có ngay điều cần chứng minh. Ngược lại, ta có các số
$$
x_{1}+k, x_{2}+k, \ldots, x_{q}+k, x_{q+1}, \ldots, x_{k+1}
$$
là $k+1$ số nguyên đôi một phân biệt, tất cả đều lớn hơn $k$ nhưng lại không vượt quá $2 k$, vô lí!
Từ đó suy ra với mọi $k$ nguyên dương, luôn tồn tại các số nguyên $i>j$ sao cho $x_{i}-x_{j}=k$.
Bài 4. Ta có $O B=O D, M B=M D$ nên dễ thấy $O M$ là phân giác ngoài của góc $A M D$, mà $O A=O D$ nên suy ra $O \in(A M D)$.
Gọi $N^{\prime}$ là giao điểm khác $A$ của $(A M D)$ và $A C$. Ta chứng minh $N$ trùng $N^{\prime}$. Thật vậy, ta có $\overrightarrow{A M}=\frac{1}{3} \overrightarrow{A B}$ nên $\angle A M O$ tù, do đó nếu $N^{\prime}$ nằm ngoài tia $A C$ thì $N^{\prime}$ nằm khác phía $O$ so với $A M$ nên
$$
\angle A M O=\angle A N^{\prime} O=\angle C A O-\angle A O N^{\prime}<\angle C A O<90^{\circ},
$$
vô lý. Suy ra $N^{\prime}$ nằm trên tia $A C$, kéo theo $A O$ là phân giác trong góc $M A N^{\prime}$ nên $O M=O N^{\prime}$, mà $O A=O D$ nên $M N^{\prime}$ song song $A D$, suy ra $N$ trùng $N^{\prime}$.
Từ đó, dễ thấy $A M N D$ là hình thang cân nên $A N=M D=M B$, hơn nữa $N$ nằm trên tia $A C$ nên ta thu được
$$
\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}
$$
Ta có điều cần chứng minh.
Tài liệu tham khảo
[1] Nguyễn Tăng Vũ, Lê Phúc Lữ, Nguyễn Tiến Hoàng, Đề thi và đáp án kì thi dự tuyển và đội tuyển PTNK 2008-2021
Bài 1. Cho hàm số $y=x^{2}-4 x+3$. (1)
a) Khảo sát sự biến thiên và vē đồ thị hàm số.
b) Từ đồ thị hàm số (1), suy ra đồ thị hàm số $y=\left|x^{2}-4\right| x|+3|$. (2)
c) Dựa vào đồ thị hàm số (2), tìm $m$ để phương trình $\left|x^{2}-4\right| x|+3|=m^{2}+2 m$ có 3 nghiệm.
Bài 2. Giải phương trình và hệ phương trình sau:
a) $\sqrt{x-1}+\sqrt{6-x}+\sqrt{7 x-6-x^{2}}=5$
b) $\left\{ \begin{array}{l} \left(x^{2}+y\right)^{2}+\left(x+y^{2}\right)^{2}=8 \\ x^{2}+y^{2}+x+y=4\end{array}\right.$.
Bài 3. Tìm tham số $m$ để hệ phương trình $\left\{ \begin{array}{l} m x+(m-1) y=m+1 \\ (m-1) x+m y=m+1 \end{array}\right.$ có nghiệm duy nhất $\left(x_{0} ; y_{0}\right)$ thóa $x_{0}^{2}+y_{0}^{2}=2$.
Bài 4. Cho $x$ là số thực dương, đặt $A=x+\dfrac{1}{x}$.
a) Chứng minh rằng $A$ là số nguyên thì $A_{n}=x^{n}+\dfrac{1}{x^{n}}$ cūng là số nguyên với mọi số nguyên dương $n$.
b) Tìm giá trị lớn nhất của $B=-A^{2}+6 A+1$.
Bài 5. Cho tam giác $A B C$ nội tiếp đường tròn tâm $O$ đường kính $B C=2 R, \widehat{A B C}=60^{\circ} . D$ là điểm đối xứng của $A$ qua $B C$.
a) Chứng minh rằng với mọi điểm $M$ ta có: $\overrightarrow{M A} \cdot \overrightarrow{M D}=\overrightarrow{M B} \cdot \overrightarrow{M O}-\dfrac{R^{2}}{2}$.
b) Tìm $M$ để $S=M A^{2}-4 M B^{2}+M D^{2}$ đạt giá trị lớn nhất. Tìm giá trị lớn nhất theo $R$.
c) Cho $M$ thay đổi trên $A C . D M$ cắt $(O)$ tại $N$. Xác định $M$ để $\mathcal{P} {C/(AMB)}=2 \mathcal{P} {B/(CMN)}$. $a_12$
d) Tìm quy tích $M$ thỏa $\overrightarrow{M A} \cdot \overrightarrow{M D}-2 \overrightarrow{M B} \cdot \overrightarrow{M C}=-\dfrac{R^{2}}{2}$.
Lời giải
Bài 1.
a) Ta có $a=1>0, \dfrac{-b}{2 a}=2$ và $\dfrac{-\Delta}{4 a}=-1$.
Bảng biến thiên:
Vậy hàm số (1) đồng biến trên $(2 ;+\infty)$ và nghịch biến trên $(-\infty ; 2)$.
Đồ thị hàm số:
b) Từ đồ thị hàm số (1), ta suy ra đồ thị hàm số $y=x^{2}-4|x|+3$ như sau:
Khi đó, ta có được đồ thị hàm số $y=\left|x^{2}-4\right| x|+3|$ như sau:
c) Theo đồ thị hàm số (2), phương trình $\left|x^{2}-4\right| x|+3|=m^{2}+2 m$ có 3 nghiệm phân biệt khi và chỉ khi $m^{2}+2 m=3 \Leftrightarrow\left[\begin{array}{l}m=1 \\ m=-3\end{array}\right.$.
Bài 2.
a) $\sqrt{x-1}+\sqrt{6-x}+\sqrt{7 x-6-x^{2}}=5 \quad (1)$.
Đặt $a=\sqrt{x-1} \geq 0$ và $b=\sqrt{6-x} \geq 0$, khi đó $\left\{\begin{array}{l}a b=\sqrt{7 x-6-x^{2}} \\ a^{2}+b^{2}=5\end{array}\right.$.
Kết hợp với (1), ta có hệ phương trình sau: $\left\{\begin{array}{l}a+b+a b=5 \\ a^{2}+b^{2}=5 .\end{array} \Leftrightarrow\left\{\begin{array}{l}a+b=5-a b \quad (2) \\ a^{2}+b^{2}=5\end{array}\right.\right.$
Ta có: $5=a^{2}+b^{2}=(a+b)^{2}-2 a b=(5-a b)^{2}-2 a b=a^{2} b^{2}-12 a b+25$.
Do đó: $a^{2} b^{2}-12 a b+20=0 \Leftrightarrow\left[\begin{array}{l}a b=2 \\ a b=10\end{array}\right.$.
– Nếu $a b=2$, từ (2) ta suy ra $a+b=3$. Khi đó $a, b$ là nghiệm của phương trình:
+) Nếu $\left\{\begin{array}{l}a=1 \\ b=2\end{array} \Rightarrow\left\{\begin{array}{l}\sqrt{x-1}=1 \\ \sqrt{6-x}=2\end{array} \Leftrightarrow x=2\right.\right.$. Thử lại thấy nghiệm $x=2$ thỏa (1).
+) Nếu $\left\{\begin{array}{l}a=2 \\ b=1\end{array} \Leftrightarrow\left\{\begin{array}{l}\sqrt{x-1}=2 \\ \sqrt{6-x}=1\end{array} \Leftrightarrow x=5\right.\right.$. Thử lại thấy nghiệm $x=5$ thỏa (1).
– Nếu $a b=10$, từ (1) ta suy ra $a+b=-5$ (Loại vì $a, b \geq 0$ nên $a+b \geq 0)$.
Vậy tập nghiệm của phương trình (1) là $S=\{2 ; 5\}$.
b) $\left\{\begin{array}{l}\left(x^{2}+y\right)^{2}+\left(x+y^{2}\right)^{2}=8 \\ x^{2}+y^{2}+x+y=4\end{array}\right. \quad (I)$
Đặt $a=x^{2}+y$ và $b=x+y^{2}$ thì (I) trở thành:
$$\left\{\begin{array} { l } { a ^ { 2 } + b ^ { 2 } = 8 } \\ { a + b = 4 } \end{array} \Leftrightarrow \left\{\begin{array} { l } { ( a + b ) ^ { 2 } – 2 a b = 8 } \\ { a + b = 4 }\end{array} \Leftrightarrow \left\{\begin{array}{l} a b=4 \\ a+b=4 \end{array}\right.\right.\right. $$
Do đó $a, b$ là nghiệm của phương trình:
$$X^{2}-4 X+4=0 \Leftrightarrow X=2 $$
Suy ra $\left\{\begin{array}{l}a=2 \\ b=2\end{array} \Leftrightarrow\left\{\begin{array}{l}x^{2}+y=2 \\ x+y^{2}=2\end{array}\right.\right.$
Từ (1) và (2) ta suy ra $x^{2}+y=x+y^{2} \Leftrightarrow(x-y)(x+y-1)=0 \Leftrightarrow\left[\begin{array}{l}y=x \\ y=1-x\end{array}\right.$.
– Nếu $y=x$, thay vào $(1)$, ta được: $x^{2}+x+2=0 \Leftrightarrow\left[\begin{array}{l}x=1 \\ x=-2\end{array}\right.$.
+) Với $x=1$, suy ra $y=1$.
+) Với $x=-2$, suy ra $y=-2$.
– Nếu $y=1-x$, thay vào $(1)$, ta được: $x^{2}+1-x=2 \Leftrightarrow x^{2}-x-1=0 \Leftrightarrow\left[\begin{array}{l}x=\dfrac{1+\sqrt{5}}{2} \\ x=\dfrac{1-\sqrt{5}}{2}\end{array}\right.$
+) Với $x=\dfrac{1+\sqrt{5}}{2}$, suy ra $y=\dfrac{1-\sqrt{5}}{2}$.
+) Với $x=\dfrac{1-\sqrt{5}}{2}$, suy ra $y=\dfrac{1+\sqrt{5}}{2}$.
Thử lại thấy các cặp nghiệm trên đều thỏa.
Vậy tập nghiệm của (I) là $(x ; y)=\left\{(1 ; 1),(-2 ;-2),\left(\dfrac{1+\sqrt{5}}{2} ; \dfrac{1-\sqrt{5}}{2}\right),\left(\dfrac{1-\sqrt{5}}{2} ; \dfrac{1+\sqrt{5}}{2}\right)\right\}$.
Để (I) có nghiệm duy nhất $\Leftrightarrow D \neq 0 \Leftrightarrow 2 m-1 \neq 0 \Leftrightarrow m \neq \dfrac{1}{2}$.
Khi đó nghiệm của (I) là $\left\{\begin{array}{l}x_{0}=\dfrac{D_{x}}{D}=\dfrac{m+1}{2 m-1} \\ y_{0}=\dfrac{D_{y}}{D}=\dfrac{m+1}{2 m-1}\end{array}\right.$
Vậy $m=0$ hoặc $m=2$ thì (I) có nghiệm duy nhất $\left(x_{0} ; y_{0}\right)$ thỏa $x_{0}^{2}+y_{0}^{2}=2$.
Bài 4.
a) – Ta có: $A_{1}=x+\dfrac{1}{x}=A \in \mathbb{Z}, A_{2}=x^{2}+\dfrac{1}{x^{2}}=\left(x+\dfrac{1}{x}\right)^{2}-2 \in \mathbb{Z}$.
– Giả sử $A_{k} \in \mathbb{Z}$ với mọi $k \leq n$ ( $n$ nguyên dương và $n \geq 2$ ), hay $x^{k}+\dfrac{1}{x^{k}} \in \mathbb{Z}$.
Ta chứng $\operatorname{minh} A_{n+1} \in \mathbb{Z}$, tức là $x^{n+1}+\dfrac{1}{x^{n+1}} \in \mathbb{Z}$.
– Thật vậy, vì $x^{n}+\dfrac{1}{x^{n}}$ và $x+\dfrac{1}{x}$ là các số nguyên nên $\left(x^{n}+\dfrac{1}{x^{n}}\right)\left(x+\dfrac{1}{x}\right) \in \mathbb{Z}$.
Mặt khác, $\left(x^{n}+\dfrac{1}{x^{n}}\right)\left(x+\dfrac{1}{x}\right)=x^{n+1}+x^{n-1}+\dfrac{1}{x^{n-1}}+\dfrac{1}{x^{n+1}}=\left(x^{n+1}+\dfrac{1}{x^{n+1}}\right)+\left(x^{n-1}+\dfrac{1}{x^{n-1}}\right)$.
Do đó $\left(x^{n}+\dfrac{1}{x^{n}}\right)\left(x+\dfrac{1}{x}\right)=A_{n+1}+A_{n-1}$.
Suy ra $A_{n+1}+A_{n-1} \in \mathbb{Z}$, mà $A_{n-1} \in \mathbb{Z}$ nên $A_{n+1} \in \mathbb{Z}$.
Như vậy, theo nguyên lí quy nạp, ta có $A_{n} \in \mathbb{Z}$ với mọi số nguyên dương $n$.
$I A^{2}-4 I B^{2}+I D^{2}=2 I A^{2}-4 I B^{2}=2\left(I K^{2}+K A^{2}\right)-4 I B^{2}=2\left(R^{2}+\dfrac{3}{4} R^{2}\right)-4 \cdot \dfrac{R^{2}}{4}=\dfrac{5}{2} R^{2} .$
Vậy giá trị lớn nhất của $M A^{2}-4 M B^{2}+M D^{2}$ là $\dfrac{5}{2} R^{2}$ khi và chỉ khi $M \equiv I$.
d) Lấy $L$ đối xứng với $O$ qua $C$. Khi đó $\overrightarrow{L O}=2 \overrightarrow{L C}$.
Do đó $\overrightarrow{M O}-2 \overrightarrow{M C}=\overrightarrow{M L}+\overrightarrow{L O}-2 \overrightarrow{M L}-2 \overrightarrow{L C}=-\overrightarrow{M L}$.
Ví dụ 1. Tìm $n$ lớn nhất sao cho tồn tại $n$ điểm mà 3 điểm bất kì đều tạo thành tam giác vuông.
Lời giải.
Ta thấy $n=3, n=4$ đều tồn tại. Ta chứng minh $n\geq 5$ thì không tồn tại. \
Giả sử ngược lại, tồn tại 5 điểm, sao cho 3 điểm bất kì đều tạo thành tam giác vuông. Khi đó ta chọn hai điểm sao cho có độ dài lớn nhất. Khi đó các điểm còn lại đều nằm trên đường tròn đường kính là đoạn thẳng này. Khi đó 3 điểm thuộc 2 nửa đường tròn, khi đó có ít nhất 2 điểm cùng thuộc một nửa, từ đó tồn tại một tam giác khác vuông có đỉnh là 2 điểm này cùng một điểm thuộc đường kính. Do đó không thỏa đề bài.
Nhận xét. Đây là một bài toán cực trị dạng tìm số nhỏ nhất, lớn nhất của n để thỏa điều kiện nào đó. Những kiểu bài tập này thường ta cứ xét các trường hợp nhỏ và cố gắng xây dựng cấu hình thỏa, đối với bài này cấu hình rất dễ tìm, với trường hợp $ n = 5$, để chứng minh không tồn tại, ta sử dụng cực biên, kết hợp với phản chứng để cho lời giải trọn vẹn, chọn độ dài lớn nhất giúp mình gôm hết các điểm vào thành một đường tròn, từ đó giúp giải được bài toán.
Ví dụ 2. Trên một mặt bàn đặt một số các đồng xu với kích cỡ không giống nhau đôi một (các đồng xu không được đè lên nhau và phải nằm sấp hoặc ngửa trên bàn). Chứng minh rằng dù ta đặt như thế nào đi nữa, cũng luôn tồn tại một đồng xu chỉ tiếp xúc được với nhiều nhất 5 đồng xu khác.
Lời giải. Đồng xu càng to thì nhiều đồng xu có thể tiếp xúc với nó, còn ngược lại thì càng nhỏ, do đó để càng ít đường tròn tiếp xúc nó, ta chọn đồng xu nhỏ nhất.
Chọn đồng xu có bán kính nhỏ nhất, thì đồng xu này chỉ tiếp xúc không quá 5 đồng xu khác. Giả sử nó có thể tiếp xúc với 6 đồng xu khác. Khi đó $A$ là tâm đường tròn, tâm các đường tròn còn lại là $A_1, \cdots, A_6$. Khi đó tồn tại $A_iA_{i+1} \leq 60^\circ$, suy ra $A_iA_{i+1} < AA_i$ vô lý, vì bán kính của $(A)$ là nhỏ nhất.
Ví dụ 3. Cho $n$ điểm trong mặt phẳng biết rằng cứ 3 điểm bất kì tạo thành một tam giác có diện tích không lớn hơn 1. Chứng minh rằng $n$ điểm thuộc một hình tam giác có diện tích không lớn hơn 4.
Lời giải. Gọi $A, B, C$ là 3 điểm tạo thành tam giác sao cho $ABC$ có diện tích lớn nhất. Từ $A, B, C$ vẽ các đường song song với các cạnh đối diện, các đường thẳng cắt nhau tại $A’, B’, C’$ ta chứng minh các điểm thuộc cạnh hoặc miền trong tam giác $A’B’C’$. \
Thật vậy, nếu có điểm nào nằm ngoài tam giác $A’B’C’$ thì điểm đó kết hợp với hai trong 3 điểm $A, B, C$ sẽ có diện tích lớn hơn diện tích tam giác $ABC$, vô lý. \
Do $S_{A’B’C’} = 4S_{ABC} \leq 4$.
Ví dụ 4. (Sylvester) Trong mặt phẳng cho $n$ điểm phân biệt, sao cho mỗi đường thẳng đi qua hai điểm thì đi qua ít nhất một điểm khác. Chứng minh rằng $n$ điểm này cùng thuộc một đường thẳng.
Lời giải. Giả sử không phải tất cả các điểm cùng thuộc một đường thẳng. Khi đó ta xét khoảng cách từ một điểm đến đường thẳng qua ít nhất 3 điểm, trong các khoảng cách này có khoảng cách nhỏ nhất. Giả sử $P$ là điểm có khoảng cách từ $P$ đến $d$ là nhỏ nhất, với $d$ là đường thẳng qua các điểm $A, B, C$ theo thứ tự. \
Gọi $H$ là hình chiếu của $P$ trên $d$, $D, E$ là hình chiếu của $A, B$ trên $B$ trên $PA, PC$. Nếu $H$ thuộc tia $BA$ thì $BE < PH$, nếu $H$ thuộc đoạn $BC$ thì $BD < PH$. Mâu thuẫn với $PH$ là nhỏ nhất. \
Vậy tất cả các điểm cùng thuộc một đường thẳng.
Việc chọn phần tử lớn nhất, nhỏ nhất thể hiện ưu thế của của các phần tử đó so với các đối tượng khác, đó chưa chắc là cái thỏa, nhưng cũng cũng có ưu thế hơn, giống khi xét tuyển, các thí sinh có điểm trung bình cao chưa chắc là giỏi nhất, nhưng là những người có ưu thế hơn điểm thấp, khi chọn trong nhóm đó sẽ tìm được nhiều người giỏi hơn là chọn trong nhóm thấp điểm, do đó vượt trội một khía cạnh nào tính ra là một lợi thế để so sánh.
Ta tiếp tục với việc chứng minh các bài toán về tồn tại các đối tượng thỏa yêu cầu nào đó.
Ví dụ 5. Cho 3 trường, mỗi trường có $n$ học sinh, biết rằng cứ mỗi học sinh thì quen ít nhất $n + 1$ học sinh của hai trường khác. Chứng minh rằng có thể chọn được từ mỗi trường một bạn sao cho 3 bạn này đôi một quen nhau.
Lời giải. Giả sử 3 trường là $X, Y, Z$. Tồn tại một người có số người quen ở cùng một trường khác là nhiều nhất, giả sử $A$ thuộc $X$ có số người quen ở trường $Y$ nhiều nhất là $k$. Khi đó số người quen của $A$ ở $Z$ ít nhất là $n+1-k$. Nếu nhóm người quen $A$ ở $Z$ quen với số người quen $A$ ở $X$ có hai người quen nhau thì ta có điều chứng minh.\
Ngược lại xét người quen $A$ ở $Z$, đặt là $B$ quen số người ở $Y$ tối đa là $n-k$, khi đó $B$ quen ở $X$ ít nhất là $n+1 – (n-k) = k+1$, mâu thuẫn với cách chọn $A$. (Mâu thuẫn).
Ví dụ 6. Một bảng $2n \times 2n$ ô, người ta đánh dấu bất kì $3n$ ô trong bảng. Chứng minh rằng tồn tại $n$ dòng và $n$ cột sao cho $3n$ ô được đánh dấu thuộc $n$ dòng và $n$ cột này.
Lời giải. Chọn $n$ dòng sao cho số ô được tô là lớn nhất, ta chứng minh rằng số ô được tô trong $n$ dòng này là không ít hơn $2n$ ô.
Thực vậy giả sử số ô được tô là ít hơn $2n$, khi đó $n$ dòng còn lại có nhiều hơn $n$ ô được tô, nên có ít nhất một một dòng có 2 ô được tô.
Do đó $n$ dòng đã chọn, mỗi dòng ít nhất 2 ô được tô nên tổng số ô hơn hoặc bằng $2n$ (mâu thuẫn).
Vậy ta chỉ cần chọn $n$ cột chứa các ô được tô màu nhưng chưa được chọn trong $n$ dòng trên thì sẽ có điều cần chứng minh.
Ví dụ 7. Một bữa tiệc có 10 học sinh tham gia, biết rằng mỗi học sinh quen với ít nhất là 5 người. Chứng minh rằng có thể sắp xếp 10 học sinh ngồi vào một bàn tròn sao cho hai người kế nhau thì quen nhau.
Lời giải. Giả sử chuỗi người quen dài nhất có độ dài là $k$, $A_1A_2…A_k$, ta thấy các người còn lại không ai quen $A_1, A_k$ nên suy ra $k \geq 6$. \
Nếu $k = 6$, suy ra $A_1$ và $A_6$ quen nhau, khi đó trong các người còn lại $A_7$ quen một trong cái người giả sử là $A_i$, khi đó ta có chuỗi $A_7A_iA_{i-1}A_1A_6A_{i+1}$ có độ dài hơn 6, vô lý.\
Nếu $k =7$, khi đó $A_1$ quen từ $A_2$ đến $A_6$ và $A_7$ quen $A_2$ tới $A_6$, khi đó có một vòng $A_2A_7A_6A_5A_4A_3A_1A_2$. Khi đó sẽ có một người trong nhóm còn lại thì ta sẽ có chuỗi dài hơn, mâu thuẫn.\
Nếu $k=8,9$ xét tương tự, ta sẽ có $k=10$. Giả sử có chuỗi $A_1\cdots A_{10}$. Khi đó tồn tại $k>i$ sao cho $A_1$ quen $A_k$ và $A_{10}$ quen $A_i$, khi đó có cách xếp thỏa đề bài là $A_1A_k\cdot A_iA_{10}A_9…A_k$.
Bài 1. Cho hàm số $y=x|x-4|$
a) Vẽ đồ thị $(\mathrm{C})$ của hàm số.
b) Cho đường thẳng $(\mathrm{d}): y=m x$ ( $\mathrm{m}$ là tham số). Tìm $\mathrm{m}$ để $(\mathrm{d})$ cắt $(\underline{\mathrm{C}})$ tại $\mathrm{A}, \mathrm{B}$ khác gốc tọa độ và $A B=2 \sqrt{2}$.
Bài 2. Giải các phương trình và hệ phương trình sau:
a) $2+\sqrt{4 x^{2}-10 x+7}=2 x+\sqrt{3-2 x} \quad$ b) $\left\{\begin{array}{l}x+\dfrac{1}{x^{2}+1}=y+\dfrac{1}{y^{2}+1} \\ \sqrt{y^{2}+\dfrac{4}{x^{2}}}=\dfrac{x^{2}+x-2}{y}\end{array}\right.$ Bài 3 .
a) Cho số tự nhiên $\mathrm{n}$ thỏa $C_{n}^{2}+C_{n+1}^{3}+2 n=128$. Tìm số hạng không chứa $x$ trong khai triển $P(x)=\left(\sqrt{x}-\frac{2}{3 \sqrt[4]{x}}\right)^{n+1},(x>0)$.
b) Cho các số tự nhiên $\mathrm{m}, \mathrm{n}, \mathrm{k}$ thỏa $0 \leq m \leq k \leq n$. Chứng minh rằng $C_{n}^{k} C_{k}^{m}=C_{n}^{m} C_{n-m}^{k-m}$
Bài 4. Lớp 10 Toán có 6 bạn học sinh nữ và 30 bạn học sinh nam.
a) Cần chọn ra 10 bạn để tham gia kéo co trong đó có 5 bạn nam và 5 bạn nữ. Hỏi có bao nhiêu cách chọn?
b) Cần chọn ra 5 bạn để thể hiện một tiết mục văn nghệ, hỏi có bao nhiêu cách chọn có it nhất 2 bạn nam và î nhất 1 bạn mữ?
Bài 5. Cho tam giác đều $\mathrm{ABC}$ nội tiếp đường tròn $(\mathrm{O})$ bán kính $\mathrm{R}$. $\mathrm{AO}$ cắt $(\mathrm{O})$ tại $\mathrm{D}$.
a) Chứng minh rằng với mọi điểm $\mathrm{M}$ thì $\overrightarrow{M B} \cdot \overrightarrow{M C}=\overrightarrow{M D} \cdot \overrightarrow{M O}-\frac{R^{2}}{2}$
b) Cho $\mathrm{M}$ thay đổi trên $(\mathrm{O})$. Tìm giá trị lớn nhất của $\overrightarrow{M B} \cdot \overrightarrow{M C}-\overrightarrow{M D} \cdot \overrightarrow{M A}$
c) Cho điểm $M$ thay đổi trên cạnh $A B, D M$ cắt $(O)$ tại $N$. Xác định $M$ để phương tích của
$\mathrm{D}$ với đường tròn ngoại tiếp tam giác $\mathrm{AMN}$ bằng $2 \mathrm{R}^{2}$.
d) Cho điểm $M$ thay đổi trên đoạn $A D$. ( $K$ ) là đường tròn qua $M$ và tiếp xúc với $(O)$ tại $B .$
Đường tròn $(\mathrm{K})$ cắt đường tròn đường kính $\mathrm{AM}$ tại $\mathrm{T}$. Chứng minh đường thẳng $\mathrm{MT}$ đi qua một điểm cố định $\mathrm{E}$. Tính phương tích của $\mathrm{E}$ đối với $(\mathrm{O})$.
Bài 2. Tìm tất cả các số nguyên dương $m,n$ để $\dfrac{5mn+5m}{3m^2+2n^2}$ là số nguyên.
Bài 3. Cho tập hợp $X={1,2,\ldots,2n-1}$ gồm $2n-1$ số tự nhiên $(n\ge 2)$. Tô màu ít nhất $n-1$ phần tử của $X$ với điều kiện sau: nếu $a,b\in X$ (không nhất thiết phân biệt) được tô màu thì $a+b$ cũng được tô màu, miễn là $a+b\in X$. Gọi $S$ là tổng tất cả các số không được tô màu của $X$.
a/Chứng minh rằng $S\le n^2$.
b/Chỉ ra tất cả các phép tô màu sao cho $S=n^2$.
Bài 4. Cho đường tròn $(O)$ và dây cung $AB$ cố định khác đường kính. Gọi $C$ là điểm chính giữa cung lớn $AB$. Đường thẳng $d$ thay đổi qua $C$ cắt tiếp tuyến tại $A$ và tiếp tuyến tại $B$ của $(O)$ lần lượt tại $D,E$. Gọi $Q$ là giao điểm của $AE$ và $BD$. Chứng minh rằng đường thẳng $PQ$ luôn đi qua một điểm cố định khi $d$ thay đổi.
Giải
Bài 1. Ta xét các trường hợp sau:
Nếu $ab<0$, ta có vế trái dương và vế phải âm nên bất đẳng thức đúng.
Nếu $ab \ge 0$, kết hợp với $a+b \ge 0$, ta suy ra $a,b \ge 0.$
Áp dụng lần lượt các đánh giá $4xy \le (x+y)^2$ và $2xy \le x^2 + y^2$ thì:
Nếu $k=1$ thì $\Delta = n^2 + 50n +25 = x^2$ ($x \in \mathbb{N}$) nên suy ra $$(n+x+25)(n-x+25) = 600.$$
Từ đây với lưu ý $n+x+25 > n-x+25 > 0, n+x+25 > 25$ ta có $$n \in \left\{ {126;52;28;10;6} \right\}.$$ Thay vào phương trình đầu, ta tìm được $$(m;n)=(9;6),(5;10),(32;28),(32;52),(81;126).$$
Bài 3.
(a) Rõ ràng nếu $1$ được tô thì tất cả các số cũng sẽ được tô, kéo theo $S=0 \le n^2$, thỏa mãn. Do đó, ta chỉ cần xét $1$ không được tô. Gọi các số được tô là $$1 < a_1 < a_2 < \ldots < a_m \le 2n-1,$$
trong đó $m \ge n-1$. Ta sẽ chứng minh rằng với mọi $k$ mà $1 \le k \le m/2$ thì
$$a_k + a_{m-k+1} \ge 2n.$$
Giả sử ngược lại rằng $a_k+a_{m-k+1} <2n$ thì tổng hai số trên phải là số được tô màu. Do đó, nó phải thuộc tập hợp
$$Q = \left\{ {{a_{m – k + 2}};{a_{m – k + 3}};\ldots;{a_m}} \right\}.$$
Mặt khác lại xét chỉ số $i < k$ thì rõ ràng do dãy đang xét là tăng nên ta cũng có tổng ${a_i} + {a_{m – k + 1}}$ thuộc tập hợp $Q$ ở trên. Suy ra $|Q| \ge k,$ mâu thuẫn vì rõ ràng $Q$ chỉ có $k-1$ phần tử. Vì thế nên ta phải có $a_k + a_{m-k+1} \ge 2n.$
Đến đây, ta có ${a_k} + {a_{m – k + 1}} \ge 2n$ với mọi $k \in \left\{ {1;2;3;\ldots;m} \right\}$ nên
(b) Để có $S=n^2$ thì dấu bằng xảy ra ở tất cả các đánh giá trên, tức là ta tô được đúng $m=n-1$ số và $a_k+a_{n-k}=2n$ với mọi $1 \le k \le n-1.$
Ta có $(2{{a}_{1}},{{a}_{1}}+{{a}_{2}},{{a}_{1}}+{{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}})$ là một hoán vị của các số $({{a}_{2}},{{a}_{3}},\ldots ,{{a}_{n-1}}).$
Do tính tăng của hai dãy này nên ta có $$2{{a}_{1}}={{a}_{2}},{{a}_{1}}+{{a}_{2}}={{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}}={{a}_{n-1}}.$$ Vì thế nên ${{a}_{k}}=k{{a}_{1}}$ với mọi $1\le k\le n-1.$ Mà $2n={{a}_{1}}+{{a}_{n-1}}=n{{a}_{1}}$ nên ta có ${{a}_{1}}=2,$ từ đây tìm được các tô duy nhất là $(2,4,6,\ldots ,2n-2)$ thỏa mãn đề bài.
Bài 4.
Giả sử $AD\cap BE=T,AB\cap DE=I$ và $TQ$ cắt $DE,AB$ lần lượt ở $X,S.$ Khi đó dễ thấy rằng
$(IX,DE)=(IS,AB)=-1.$
Mà $PI$ đi qua trung điểm cung lớn $AB$ của $(O)$ nên $PI$ là phân giác ngoài, kéo theo $PS$ là phân giác trong nên nó đi qua $N$ là trung điểm cung nhỏ $AB$ của $(O)$.
Gọi $M$ là trung điểm $AB.$ Theo tính chất phương tích thì $TN\cdot TC=T{{A}^{2}}=T{{B}^{2}}=TM\cdot TO$, mà $O$ là trung điểm $CN$ nên theo hệ thức Maclaurin thì $(TM,NC)=-1.$
Lại có $(TQ,XS)=-1$ nên chùm $P(XS,QT)=-1$, mà $PX$ đi qua $C,$ $PS$ đi qua $N$ nên ta phải có $PQ$ đi qua $M$ là điểm cố định.
Nhận xét: Bài toán có thể xử lý theo hướng tự nhiên hơn bằng cách dùng định lý Ceva sin. Từ kết quả trên, ta còn thấy được rằng nếu lấy $CQ$ cắt $AB$ ở $K$ thì $PK$ là đối trung của tam giác $PAB,$ kéo theo $P,K,T$ thẳng hàng.