Category Archives: Hình học

Một số bài toán về đường cao và trực tâm

Trong chương trình hình học chuyên toán dành cho lớp 9, có nhiều bài toán liên quan đến các đường cao và trực tâm tam giác, hôm nay chúng ta sẽ tìm hiểu một số tính chất và bài tập như thế.

Bài 1. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, các đường cao $AD, BE, CF$ cắt nhau tại $P$. $M$ là trung điểm của $BC$. Vẽ đường kính $AK$.

a) Chứng minh $H, M, K$ thẳng hàng;

b) Chứng minh $AH = 2 \cdot OM$.

c) Gọi $G$ là trọng tâm tam giác $ABC$. Chứng minh $H, G, O$ thẳng hàng và $GH = 2 \cdot OG$.

Hướng dẫn - Gợi ý

Bài 2. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$. Các đường cao $A D, B E, C F$ cắt nhau tại $H$. $A O$ căt $E F$ tại $K$ và $(O)$ tại $L$.
a) Chứng minh $\angle B A H=\angle C A O$ và $\angle A O \perp E F$.
b) $C F, B E$ cắt $(O)$ tại $Q, P$. Chứng minh $A P=A Q=A H$.
c) Tính $\angle A$ nếu $B, H, O, C$ cùng thuộc một đường tròn. Khi đó tính $\angle O H C$.

Hướng dẫn - Gợi ý

Bài 3. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$. Các đường cao $B E, C F$ cắt nhau tại $H$. Gọi $M$ là trung điểm $B C$. Gọi $K$ là điểm đối xứng của $H$ qua $M$.
a) Chứng minh $K \in(O)$.
b) Tia $M H$ cắt $(O)$ tại $Q$. Chứng minh $A E F Q$ nội tiếp.

Hướng dẫn - Gợi ý

Bài 4. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$. Các đường cao $B E, C F$ cắt nhau tại $H$. Gọi $M$ là trung điểm $A H$.
a) Chứng minh $M E D F$ nội tiếp.
b) $M E, M F$ là tiếp tuyến của đường tròn đường kính $B C$.
c) Gọi $K$ là giao điểm $A D$ và $E F ; T$ là giao điểm của $M B$ và đường tròn đường kính $B C$. Chứng minh rằng $T, K, C$ thẳng hàng và $K$ là trực tâm tam giác $M B C$.

Hướng dẫn - Gợi ý

Bài 5. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$. Các đường cao $B E, C F$ cắt nhau tại $H$. Gọi $M$ là trung điểm $B C$.Đường tròn đường kính $A H$ cắt $(O)$ tại $P$ khác $A$. $A P$ cắt $B C$ tại $K$.
a) Chứng minh các tứ giác $K B F P, K C E P$ nội tiếp.
b) Chứng minh $K, E, F$ thẳng hàng.
c) Chứng minh $H$ là trực tam giác $A K M$.

Hướng dẫn - Gợi ý

Bài 6. Cho tam giác $A B C$, các đường cao $B E, C F$. Các điểm $P \in B E, Q \in C F$ sao cho $\angle P A B=$ $\angle Q A C=90^{\circ}$. Chứng minh rằng đường thẳng qua $A$ vuông góc $P Q$ đi qua trung điểm $B C$.

Hướng dẫn - Gợi ý

Bài 7. Cho tam giác $A B C$ nội tiếp đường tròn tâm $O$ có trực tâm $H$. Đường trung trực $A H$ cắt $A B, A C$ tại $Q, P$. Chứng minh $O A$ là phân giác $\angle P O Q$.

Hướng dẫn - Gợi ý

Bài 8. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$, các đường cao $B D, B E, C F$ cắt nhau tại $H$. $A D$ cắt $(O)$ tại $K . K F$ cắt $(O)$ tại $P$.
a) Chứng minh $F H \cdot F C=F P \cdot F K$.
b) $C P$ cắt $D E$ tại $L$. Chứng minh $H L P F$ nội tiếp.
c) Chứng minh $C P$ qua trung điểm của $E F$.

Hướng dẫn - Gợi ý

Bài 9. Cho tam giác $A B C$ có các đường cao $B D, C E$ cắt nhau tại $H$. Gọi $K$ là hình chiếu vuông góc của $H$ trên $D E . M$ là trung điểm của $B C, L$ là giao điểm của $A M$ và $D E$. Chứng minh 4 điểm $B, C, L, K$ cùng thuộc một đường tròn.

Hướng dẫn - Gợi ý

Bài 10. Cho tam giác $A B C$ nhọn, $M$ trên cạnh $B C$. Trên các cạnh $A B, A C$ lấy điểm $D, E$ sao cho $M D=M B, M E=M C$. Gọi $H$ là trực tâm tam giác $M D E$. Chứng minh rằng 4 diểm $A, D, H, E$ cùng thuộc một đường tròn.

Hướng dẫn - Gợi ý

Bài tập rèn luyện

Bài 1. (Chuyên Tiền Giang) Cho tam giác nhọn $A B C$ có $A B<A C$ và nội tiếp đường tròn tâm $O$. Đường tròn tâm $K$ đường kính $B C$ cắt các cạnh $A B, A C$ lần lượt tại $E, F$. Gọi $H$ là giao điểm của $B F$ và $C E$.
a) Chứng minh tam giác $A E F$ và tam giác $A C B$ dồng dạng.
b) Gọi $A^{\prime}$ là điểm đối xứng của $A$ qua $O$. Chứng minh $A A^{\prime}$ vuông góc với $E F$.
c) Từ $A$ dựng các tiếp tuyến $A M, A N$ dến đường tròn $(K)$ với $M, N$ là các tiếp điểm. Chứng minh ba điểm $M, H, N$ thẳng hàng.

Bài 2. (Chuyên Thái Nguyên) Cho tam giác nhọn $A B C$ nội tiếp đường tròn $(O), A B<A C$, các đường cao $B D, C E$ cắt nhau tại $H$ ( $D$ thuộc $A C, E$ thuộc $A B$ ). Gọi $M$ là trung điểm của $B C$, tia $M H$ cắt đường tròn $(O)$ tại $N$.
a) Chứng minh rằng năm điểm $A, D, E, H, N$ cùng nằm trên một đường tròn.
b) Lấy điểm $P$ trên đoạn $B C$ sao cho $\widehat{B H P}=\widehat{C H M}, Q$ là hình chiếu vuông góc của $A$ trên đường thẳng $H P$. Chứng minh rằng tứ giác $D E N Q$ là hình thang cân.
c) Chứng minh rằng đường tròn ngoại tiếp tam giác $M P Q$ tiếp xúc với đường tròn $(O)$.

Bài 3. (Lê Quý Đôn – Bình Định ) Cho tam giác $A B C(A B<A C)$ có các góc đều nhọn, các đường cao $A D, B E, C F$ cắt nhau tại $H$. Đường thẳng $E F$ cắt đường thẳng $B C$ và $A D$ lần lượt tại $K$ và I. Qua $F$ kẻ đường thẳng song song với $A C$ cắt $A K, A D$ lần lượt tại $M$ và $N$. Gọi $O$ là trung điểm $B C$. Chứng minh
a) $D A$ là phân giác của $\widehat{F D E}$.
b) F là trung điểm của $M N$.
c) $O D \cdot O K=O E^2$ và $B D \cdot D C=O D \cdot D K$.

Bài 4. (Chuyên TPHCM – 2018) Cho tam giác $A B C(A B<A C)$ vuông tại $A$ có đường cao $A H$. Gọi $E, F$ lần lượt là hình chiếu của $H$ lên $A B, A C$.
a) Chứng minh rằng $B E \sqrt{C H}+C F \sqrt{B H}=A H \sqrt{B C}$.
b) Gọi $D$ là điểm đối xứng của $B$ qua $H$ và gọi $O$ là trung điểm của $B C$. Đường thẳng đi qua $D$ và vuông góc với $B C$ cắt $A C$ tại $K$. Chứng minh rằng $B K$ vuông góc với $A O$.

Bài 5. (PTNK) Cho tam giác $A B C$ nhọn. Một đường tròn qua $B, C$ cắt các cạnh $A B, A C$ lần lượt tại $E$ và $F ; B F$ cắt $C E$ tại $D$. Lấy điểm $K$ sao cho tứ giác $D B K C$ là hình bình hành.
a) Chứng minh rằng $\triangle K B C$ dồng dạng với $\triangle D F E, \triangle A K C$ dồng dạng với $\triangle A D E$.
b) Hạ $D M$ vuông góc với $A D, D N$ vuông góc với $A C$. Chứng minh rằng $M N$ vuông góc với $A K$.
c) Gọi $I$ là trung điểm $A D, J$ là trung điểm $M N$. Chứng minh đường thẳng $I J$ đi qua trung điểm của cạnh $B C$.
d) Đường thẳng $I J$ cắt đường tròn ngoại tiếp tam giác $I M N$ tại $T$ (khác $I$ ). Chứng minh rằng $A D$ tiếp xúc với đường tròn ngoại tiếp tam giác $D T J$.

Đường thẳng Simson của tam giác

Bài toán 1. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và $P$ là điểm thuộc cung $AC$ không chứa $B$. Gọi $D, E, F$ lần lượt là hình chiếu của $P$ trên các đường thẳng $BC, AC, AB$.

a) Chứng minh các tứ giác $PCDE, PDBF$ nội tiếp.

b) Chứng minh $D, P, E$ thẳng hàng.

c) Chứng minh tam giác $PDE$ và $PBA$ đồng dạng; tam giác $PFE$ và $PBC$ đồng dạng.

Lời giải.

a) Tứ giác $PCDE$ có $\angle PDC = \angle PEC = 90^\circ $ nên là tứ giác nội tiếp.

Tứ giác $PDFB $ có $\angle PDB + \angle PFB = 90^\circ + 90^\circ = 180^\circ$ nên là tứ giác nội tiếp.

b) Ta có $\angle PFE = \angle PAE$ vì $PFAE$ nội tiếp

Mà $\angle PAE = \angle PBC = \angle PFD$;

Do đó $\angle PFE = \angle PFD$, suy ra $F, E, D$ thẳng hàng.

c) Xét tam giác $PDE$ và $PBA$ có $\angle PDE = \angle PCA = \angle PBA, \angle PED = 180^\circ – \angle PCB = \angle PAB$, do đó $\triangle PDE \backsim \triangle PBA$.

Chú ý: Cho tam giác $ABC$ và $P$ là một điểm bất kì thuộc đường tròn ngoại tiếp tam giác, khi đó hình chiếu của $P$ trên các đường thẳng $BC, AC, AB$ cùng thuộc một đường thẳng. Đường thẳng này được gọi là đường thẳng Simson của điểm $P$ đối với tam giác $ABC$.

Sau đây ta xem một số bài toán liên quan đến đường thẳng simson

Bài 1. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O), P$ là điểm thay đổi trên cung $B C$ không chứa $A$. Gọi $D, E$ là hình chiếu vuông góc của $A$ trên $P B, P C$.
a) Tìm vị trí của $P$ để $A D \cdot P B+A E \cdot P C$ lớn nhất.
b) Chứng minh rằng $D E$ đi qua một điểm cố định. Tìm vị trí của $P$ để $D E$ lớn nhất.

Hướng dẫn

a) Ta có $AD \cdot BP +AE \cdot PC = 2S_{ABP} + 2S_{ACP} = 2S_{ABPC} = 2 (S_{ABC}+S_{PBC})$

Do đó $AD \cdot BP + AE \cdot PC $ lớn nhất khi $S_{PBC}$ lớn nhất, $P$ là điểm chính giữa cung $BC$.

b) Gọi $H$ là hình chiếu của $A$ trên $BC$, khi đó $D, E, H$ thẳng hàng, hay $DE$ qua $H$ cố định.

Bài 2. Cho tam giác $A B C$, nội tiếp đường tròn $(O), P$ là điểm thuộc cung $A C$, gọi $D, E$ là hình chiếu vuông góc của $P$ trên $B C, A C$.
a) $D E$ cắt $A B$ tại $F$. Chứng minh $P F \perp A B$.
b) Gọi $M, N$ lần lượt là trung điểm $A B, D E$. Tính $\angle P N M$.

Hướng dẫn

a) Tự giải

b) Tam giác $PDE$ và $PBA$ đồng dạng, $M, N$ lần lượt là trung điểm $AB, DE$ nên $PMB$ và $PNE$ đồng dạng, suy ra $\angle PNE = \angle PMB$, từ đó $PNFM$ nội tiếp, suy ra $\agle PNM = 90^\circ$.

Bài 3. Cho tam giác $A B C$ các đường cao $A D, B E, C F$. Gọi $M, N, P, Q$ lần lượt là hình chiếu vuông góc của $D$ trên $A B, A C, B E, C F$. Chứng minh $M, N, P, Q$ thẳng hàng.

Hướng dẫn

Tứ giác $BFHD$ nội tiếp, nên hình chiếu của $D$ trên $BF, BH, FH$ thẳng hàng, hay $M, P, Q$ thẳng hàng. Tương tự cho tứ giác $CDHE$ thì $N, P, Q$ thẳng hàng.

Bài 4. Cho tam giác $A B C$ nội tiếp đường tròn $(O), P Q$ là đường kính của $(O)$.

a) Chứng minh rằng đường thẳng simson của $P, Q$ ứng với tam giác $A B C$ thì vuông góc nhau tại $I$.

b) Chứng minh $I$ thuộc đường tròn Euler của tam giác $ABC$.

Hướng dẫn

a) Xét hình như hình trên, ta có $\angle EDC = \angle EPC$ và $\angle LKB = \angle LQC$

Suy ra $\angle EDC + \angle LKB = \angle EPC + \angle LQC = 90^\circ – \angle ECP + 90^\circ – \angle QCL = 180^\circ – \angle QCP = 90^\circ$, do đó tam giác $DIK$ vuông tại $I$ hay $DE \bot LK$ tại $I$.

b) Gọi $M, N, P$ lần lượt là trung điểm $BC, AC, AB$. Do $O$ là trung điểm $PQ$ nên $M$ cũng là trung điểm $DK$, $N$ là trung điểm $LE$.

Khi đó $IN =IL = IE, IM = ID = IK$, suy ra $\angle LIN = \angle ILN = \angle CQK, \angle DIM = \angle MDK = \angle EPC$.

Do đó $\angle MIN = 90^\circ + \angle LIN + \angle DIM = 90^\circ + \angle CQK + \angle EPC = 180^\circ – \angle ACB = 180^\circ – \angle MPN$, do đó $IMPN$ nội tiếp, hay $I$ thuộc đường tròn Euler của tam giác $ABC$.

Bài 5. (IMO 2007) Xét 5 diểm $A, B, C, D, E$, sao cho $A B C D$ là hình bình hành và $B, C, D, E$ cùng thuộc một đuoòng tròn. Gọi $d$ là đuoòng thẳng qua $\mathrm{A}$, giả sủ $d$ cắt đoạn $B C$ tại $F$ và $B C$ tại $G$. Giả sủ $E F=E G=E C$, chúng minh rằng $\mathrm{d}$ là phân giác của $\angle D A B$.

Hướng dẫn

Gọi $I, H$ là trung điểm của $C G, C F$. Ta có $E I \perp C G, E H \perp C F$. Ta có $O, H, I$ thẳng hàng do $O H, O I$ cùng song song với $d$.

Dễ dàng chứng minh được $E O \perp B D$. Suy ra tam giác $E B D$ cân. Từ đó suy ra $C E$ là phân giác góc $\angle B C G$ và $d$ là phân giác $\angle D A B$.

Bài 6. Cho tứ giác $A B C D$ nội tiếp. Gọi $d_a$ là đường thẳng simson của tam giác $B C D$ ứng với điểm $A$; các đường thẳng $d_b, d_c, d_d$ xác định tương tự. Chứng minh rằng $d_a, d_b, d_c, d_d$ đồng quy.

Hướng dẫn
  • Gọi $H_a, H_b$ là trự tâm tam giác $BCD, ACD$.
  • Chứng minh $d_a$ qua trung điểm $AH_a$;
  • Chứng minh $AH_aH_bB$ là hình bình hành.

Sử dụng vectơ chứng minh các điểm thẳng hàng

Chứng minh các điểm thẳng hàng là một trong các dạng toán thường gặp trong các bài toán về vector, trong bài trình trình bày một số ví dụ, thông qua đó các em có thêm kinh nghiệm giải dạng toán này.

Tính chất 1. Cho $A, B, C$ là 3 điểm phân biệt.
a) $A, B, C$ thẳng hàng khi và chỉ khi $\overrightarrow{A B}, \overrightarrow{A C}$ cùng phương khi và chỉ khi tồn tại $k$ sao cho $\overrightarrow{A B}=k \cdot \overrightarrow{A C}$.
b) Giả sử $\overrightarrow{A B}=x \vec{a}+y \vec{b}$ và $\overrightarrow{A C}=x^{\prime} \vec{a}+y^{\prime} \vec{b}$. Khi đó $A, B, C$ thẳng hàng khi và chỉ khi tồn tại $k$ để $x=k x^{\prime}, y=k y^{\prime}$ hay $\frac{x}{x^{\prime}}=\frac{y}{y^{\prime}}$.

Tính chất 2. Cho 2 điểm $A, B$ phân biệt và điểm $O$ nằm ngoài đường thẳng $A B$. Khi đó điểm $M$ thuộc đường thẳng $A B$ khi và chỉ khi tồn tại các số $x, y$ thỏa $x+y=1$ và
$$
\overrightarrow{O M}=x \cdot \vec{a}+y \cdot \vec{b}
$$

Ví dụ 1. Cho tam giác $A B C$. Gọi $M$ là trung điểm $A B, N$ thỏa $\overrightarrow{N A}+2 \overrightarrow{N C}=\overrightarrow{0}$ và P là điểm đối xứng của B qua C.
a) Chứng minh $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$
b) Chứng minh $\overrightarrow{N M}=\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}$.
c) Chứng minh $M, N, P$ thẳng hàng.

Lời giải

a) Ta có $\overrightarrow{0}=\overrightarrow{N A}+2 \overrightarrow{N C}=\overrightarrow{N A}+2 \overrightarrow{N A}+2 \overrightarrow{A C}=3 \overrightarrow{N A}+2 \overrightarrow{A C}$.
Suy ra $2 \overrightarrow{A C}=-3 \overrightarrow{N A}=3 \overrightarrow{A N}$.
Do đó $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$.
b) Ta có $\overrightarrow{N M}=\overrightarrow{A M}-\overrightarrow{A N}=\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}$.
c) Ta có $\overrightarrow{P M}=\overrightarrow{B M}-\overrightarrow{B P}$
$=-\frac{1}{2} \overrightarrow{A B}-2 \overrightarrow{B C}$
$=-\frac{1}{2} \overrightarrow{A B}-2 \overrightarrow{B A}-2 \overrightarrow{A C}$
$=\frac{3}{2} \overrightarrow{A B}-2 \overrightarrow{A C}$
$=3\left(\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}\right)$
$=3 \overrightarrow{N M}$. Suy ra $P, M, N$ thẳng hàng.

Ví dụ 2. Cho tứ giác $A B C D$. Gọi $M, N$ thuộc cạnh $A D, B C$ sao cho $A M=2 M D, B N=2 N C$. Chứng minh rằng trung điểm các đoạn thẳng $A B, M N$ và $C D$ thẳng hàng.

Lời giải

Gọi $P, Q, R$ lần lượt là trung điểm của $A B, M N$ và $C D$.

  • Ta có $\overrightarrow{P Q}=\frac{1}{2} \overrightarrow{A M}+\frac{1}{2} \overrightarrow{B N}=\frac{1}{3} \overrightarrow{A D}+\frac{1}{3} \overrightarrow{B C}$.
  • Ta cũng có $\overrightarrow{P R}=\frac{1}{2} \overrightarrow{A D}+\frac{1}{2} \overrightarrow{B C}$.
  • Từ đó suy ra $\overrightarrow{P Q}=\frac{2}{3} \overrightarrow{P R}$, suy ra $P, Q, R$ thẳng hàng.

Ví dụ 3. Cho tam giác $A B C$ và điểm $D$ thỏa mãn $\overrightarrow{A D}=\frac{3}{4} \overrightarrow{A C}$, I là trung điểm của $B D$. M là điể thỏa $\overrightarrow{B M}=x \overrightarrow{B C}, x \in \mathbb{R}$.
a) Tinh $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Tinh $\overrightarrow{A M}$ theo $x$ và $\overrightarrow{A B}, \overrightarrow{A C}$
c) Tìm $x$ để $A, I, M$ thẳng hàng.

Lời giải

a) Ta có $2 \overrightarrow{A I}=\overrightarrow{A B}+\overrightarrow{A D}=\overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C}$ $\Rightarrow \overrightarrow{A I}=\frac{1}{2} \overrightarrow{A B}+\frac{3}{8} \overrightarrow{A C}$.
b) Ta có $\overrightarrow{A M}=\overrightarrow{A B}+\overrightarrow{B M}=\overrightarrow{A B}+x \overrightarrow{B C}=\overrightarrow{A B}+x(\overrightarrow{A C}-\overrightarrow{A B})=(1-x) \overrightarrow{A B}+x \overrightarrow{A C}$.
c) Ta có:
$$
\left\{\begin{array}{l}
\overrightarrow{A I}=\overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C} \\\\
\overrightarrow{A M}=(1-x) \overrightarrow{A B}+x \overrightarrow{A C}
\end{array}\right.
$$

Khi đó, $A, M, I$ thẳng hàng $\Leftrightarrow \overrightarrow{A I}$ và $\overrightarrow{A M}$ cùng phương $\Leftrightarrow \frac{1-x}{1}=\frac{x}{\frac{3}{4}} \Leftrightarrow x=\frac{3}{7}$.

Bài tập rèn luyện

Bài 1. Cho tam giác $\mathrm{ABC}$. Hai điểm $\mathrm{M}, \mathrm{N}$ được xác định bởi hệ thức: $\overrightarrow{B C}+\overrightarrow{M A}=\overrightarrow{0}, \overrightarrow{A B}-$ $\overrightarrow{N A}-3 \overrightarrow{A C}=\overrightarrow{0}$. Chứng minh $M N \parallel A C$.

Bài 2. Cho $3 \overrightarrow{O A}+2 \overrightarrow{O B}-5 \overrightarrow{O C}=\overrightarrow{0}$. Chứng minh $A, B, C$ thẳng hàng.
Bài 3. Cho tam giác $A B C$ có trung tuyến $A M$. Gọi $I$ là trung điểm $A M$ và $K$ là trung điểm AC sao $A K=\frac{1}{3} A C$.
a) Biểu diễn các vectơ $\overrightarrow{B I}, \overrightarrow{B K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Chứng minh các điểm $B, I, K$ thẳng hàng.

Bài 4. Cho tam giác $A B C$ có trọng tâm $G$. Gọi $I, J$ là hai điểm xác định bởi $\overrightarrow{I A}=2 \overrightarrow{I B}, 3 \overrightarrow{J A}+$ $2 \overrightarrow{J C}=\overrightarrow{0}$.
a) Tính $\overrightarrow{I f}, \overrightarrow{I G}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Chứng minh $I, J, G$ thẳng hàng.

Bài 5. Cho tam giác $A B C$. Lấy các điểm $M, N, P$ thỏa mãn
$$
\overrightarrow{M A}+\overrightarrow{M B}=\overrightarrow{0}, 3 \overrightarrow{A N}-2 \overrightarrow{A C}=\overrightarrow{0}, \overrightarrow{P B}=2 \overrightarrow{P C}
$$

Chứng minh $M, N, P$ thẳng hàng.

Biểu diễn vectơ theo hai vectơ không cùng phương

Tính chất 1. Cho hai vectơ $\overrightarrow{a}, \overrightarrow{b}$ khác $\overrightarrow{0}$

a) Nếu $\overrightarrow{a}, \overrightarrow{b}$ cùng phương thì tồn tại số thực $k$ sao cho $\overrightarrow{a} = k \cdot \overrightarrow{b}$.

b) Nếu $\overrightarrow{a}, \overrightarrow{b}$ không cùng phương và $ x \cdot \overrightarrow{a}+y \cdot \overrightarrow{b} = \overrightarrow{0}$, suy ra $x = y = 0$.

Chứng minh.

a) Nếu $\vec{a}, \vec{b}$ cùng phương.

  • Trường hợp 1. Nếu $\vec{a}, \vec{b}$ cùng hướng. Đặt $k=\frac{|\vec{a}|}{|\vec{b}|}$, ta chứng minh $\vec{a}=k \cdot \vec{b}$.
    Thực vậy:
    Do $k>0$ nên $k \cdot \vec{b}$ cùng hướng $\vec{b}$ mà $\vec{b}$ cùng hướng $\vec{a}$ nên $k \cdot \vec{b}$ cùng hướng $a$; Và $|k \cdot \vec{b}|=|k| \cdot|\vec{b}|=|\vec{a}|$.
  • Trường hợp 2. Nếu $\vec{a}, \vec{b}$ ngược hướng. Đặt $k=-\frac{|\vec{a}|}{|\vec{b}|}$, chứng minh tương tự như trên ta cũng có $\vec{a}=k \cdot \vec{b}$.

b) Giả sử $x \neq 0$, suy ra $\overrightarrow{a} = \dfrac{-y}{x} \cdot \overrightarrow{b}$ cùng phương $\overrightarrow{b}$, mâu thuẫn, do đó $x = 0$, dẫn đến $y = 0$.

Tính chất 2. Cho $\overrightarrow{a}, \overrightarrow{b}$ không cùng phương, khi đó với mọi vectơ $\overrightarrow{c}$ tồn tại duy nhất cặp số $(x;y)$ thỏa mãn $$\overrightarrow{c} = x \cdot \overrightarrow{a} + y \cdot \overrightarrow{b}$$

Chứng minh

  • Lấy điểm $O$ ta dựng các vectơ $\overrightarrow{A O}=\vec{a} ; \overrightarrow{O B}=\vec{b} ; \overrightarrow{O C}=\vec{c}$.
  • Từ $C$ dựng các đường thẳng song song với $O B, O A$ cắt $O A, O B$ tại $D$ và $E$. Khi đó $\overrightarrow{O C}=\overrightarrow{O D}+\overrightarrow{O E}$.
  • Mà $\overrightarrow{O D}$ và $\overrightarrow{O A}$ cùng phương nên tồn tại $x$ thỏa $\overrightarrow{O D}=x \cdot \overrightarrow{O A}=x \cdot \vec{a}$; tương tự tồn tại $y$ sao cho $\overrightarrow{O E}=y \cdot \overrightarrow{O B}=y \cdot \vec{b}$.
  • Do đó $\vec{c}=x \cdot \vec{a}+y \cdot \vec{b}$.
  • Giả sử tồn tại $x^{\prime}, y^{\prime}$ thỏa $\vec{c}=x^{\prime} \cdot \vec{a}+y^{\prime} \cdot \vec{b}$. Khi đó $x \cdot \vec{a}+y \cdot \vec{b}=x^{\prime} \cdot \vec{a}+y^{\prime} \cdot b \Leftrightarrow$ $\left(x-x^{\prime}\right) \vec{a}+\left(y-y^{\prime}\right) \vec{b}=\overrightarrow{0}$.
  • Từ tính chất 1, ta có $x = x’, y = y’$. Ta có điều cần chứng minh.

Việc biểu diễn một vec tơ theo hai vec tơ không cùng phương có nhiều ứng dụng trong việc chứng minh vec tơ bằng nhau, cùng phương, dẫn đến các bài toán chứng minh thẳng hàng, tính toán độ dài, góc, …

Ví dụ 1. Cho tam giác $A B C$ và điểm $D$ thỏa mãn $\overrightarrow{A D}=\frac{3}{4} \overrightarrow{A C}$, I là trung điểm của $B D$.
a) Tính $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Cho $\overrightarrow{BM} = x \cdot \overrightarrow{BC}$. Tính $\overrightarrow{A M}$ theo $x$ và $\overrightarrow{A B}, \overrightarrow{A C}$

Lời giải.

a) Ta có $2 \overrightarrow{A I}=\overrightarrow{A B}+\overrightarrow{A D}=\overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C} \Rightarrow \overrightarrow{A I}=\frac{1}{2} \overrightarrow{A B}+\frac{3}{8} \overrightarrow{A C}$.
b) Ta có $\overrightarrow{A M}=\overrightarrow{A B}+\overrightarrow{B M}=\overrightarrow{A B}+x \overrightarrow{B C}=\overrightarrow{A B}+x(\overrightarrow{A C}-\overrightarrow{A B})=(1-x) \overrightarrow{A B}+x \overrightarrow{A C}$.

Ví dụ 2. Cho tam giác $A B C$ gọi $M$ là điểm thỏa $\overrightarrow{M A}+3 \overrightarrow{M B}=\overrightarrow{0}$.
Giả sử $\overrightarrow{C M}=x \cdot \overrightarrow{C A}+y \cdot \overrightarrow{C B}$. Tính $x, y$.

Lời giải.

Ta có $\overrightarrow{0}=\overrightarrow{M A}+3 \overrightarrow{M B}=\overrightarrow{C A}-\overrightarrow{C M}+3 \overrightarrow{C B}-3 \overrightarrow{C M}$

$ \Leftrightarrow 4 \overrightarrow{C M}=\overrightarrow{C A}+3 \overrightarrow{C B} \Leftrightarrow \overrightarrow{C M}=$

$\frac{1}{4} \overrightarrow{C A}+\frac{3}{4} \overrightarrow{C B}$.

Từ đó ta có $x=\frac{1}{4}, y=\frac{3}{4}$, do sự biểu diễn $\overrightarrow{C M}$ theo $\overrightarrow{A C}, \overrightarrow{C B}$ là duy nhất.

Ví dụ 3. Cho tam giác $A B C$ và các điểm $I$, J thỏa mãn $2 \overrightarrow{C I}+3 \overrightarrow{B I}=\overrightarrow{0}, 5 \overrightarrow{J B}-2 \overrightarrow{J C}=\overrightarrow{0}$.
a) Tinh $\overrightarrow{A I}, \overrightarrow{A J}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Gọi G là trọng tâm tam giác $A B C$. Tính $\overrightarrow{A G}$ theo $\overrightarrow{A I}, \overrightarrow{A J}$.

Lời giải
Ta có:
$2 \overrightarrow{C I}+3 \overrightarrow{B I}=\overrightarrow{0} \Leftrightarrow 2 \overrightarrow{C I}+3(\overrightarrow{B C}+\overrightarrow{C I})=\overrightarrow{0} $

$\Leftrightarrow 5 \overrightarrow{C I}+3 \overrightarrow{B C}=\overrightarrow{0} \Leftrightarrow \overrightarrow{C I}=\frac{3}{5} \overrightarrow{C B} $
$ 5 \overrightarrow{J B}-2 \overrightarrow{J C}=\overrightarrow{0} \Leftrightarrow 5 \overrightarrow{J B}-2(\overrightarrow{J B}+\overrightarrow{B C})=\overrightarrow{0} $

$\Leftrightarrow 3 \overrightarrow{J B}=2 \overrightarrow{B C} \Leftrightarrow \overrightarrow{B J}=-\frac{2}{3} \overrightarrow{B C}$
a) – Tính $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
Ta có:
$$
\overrightarrow{A I}=\overrightarrow{A C}+\overrightarrow{C I}=\overrightarrow{A C}+\frac{3}{5} \overrightarrow{C B}=\overrightarrow{A C}+\frac{3}{5}(\overrightarrow{A B}-\overrightarrow{A C})=\frac{3}{5} \overrightarrow{A B}+\frac{2}{5} \overrightarrow{A C}
$$

  • Tính $\overrightarrow{A J}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
    Ta có:
    $$
    \overrightarrow{A J}=\overrightarrow{A B}+\overrightarrow{B J}=\overrightarrow{A B}-\frac{2}{3} \overrightarrow{B C} \Leftrightarrow \overrightarrow{A B}-\frac{2}{3}(\overrightarrow{A C}-\overrightarrow{A B})=\frac{5}{3} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}
    $$

b) Tính $\overrightarrow{A G}$ theo $\overrightarrow{A I}, \overrightarrow{A J}$.
Đặt $\overrightarrow{A G}=x \overrightarrow{A I}+y \overrightarrow{A J}$.

$\overrightarrow{A G} =x\left(\frac{3}{5} \overrightarrow{A B}+\frac{2}{5} \overrightarrow{A C}\right)+y\left(\frac{5}{3} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}\right) $
$=\left(\frac{3 x}{5}+\frac{5 y}{3}\right) \overrightarrow{A B}+\left(\frac{2 x}{5}-\frac{2 y}{3}\right) \overrightarrow{A C}$

Mặt khác, $\overrightarrow{A G}=\frac{1}{3} \overrightarrow{A B}+\frac{1}{3} \overrightarrow{A C}$
$\Rightarrow \left\{\begin{array} { l }
{ \frac { 3 } { 5 } x + \frac { 5 } { 3 } y = \frac { 1 } { 3 } } \\\\
{ \frac { 2 } { 5 } x – \frac { 2 } { 3 } y = \frac { 1 } { 3 } }
\end{array} \right.$

$ \left \{\begin{array}{l}
x=\frac{35}{48} \\\\
y=-\frac{1}{16}
\end{array}\right. $

Vậy $\overrightarrow{A G}=\frac{35}{48} \overrightarrow{A I}-\frac{1}{16} \overrightarrow{A J}$

Bài tập rèn luyện

Bài 1. Cho tam giác $A B C$ và $M$ là trung điểm cạnh $B C ; N$ là điểm thuộc đoạn $A C$ sao cho $A N=2 N C$. Chứng minh rằng:
a) $\overrightarrow{A M}=\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})$.
b) $\overrightarrow{B N}=\frac{2}{3} \overrightarrow{A C}-\overrightarrow{A B}$
c) $\overrightarrow{M N}=\frac{1}{3} \overrightarrow{C A}-\frac{1}{2} \overrightarrow{C B}$.

Bài 2. Cho tam giác $A B C$ có $I$ là điểm đối xứng với $B$ qua $C, J$ là trung điểm $A C, K$ thuộc $A B$ thoả $A B=3 A K$.
a) Tính $\overrightarrow{B I}, \overrightarrow{B J}, \overrightarrow{B K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Tính $\overrightarrow{I f}, \overrightarrow{I K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.

Bài 3. Cho tam giác $A B C$. Lấy $M, N$ lần lượt là trung điểm $A B, A C$. $L$ là điểm thoả mãn $2 \overrightarrow{L A}+5 \overrightarrow{L B}+3 \overrightarrow{L C}=\overrightarrow{0}$
a) Tính $\overrightarrow{B M}, \overrightarrow{B M}, \overrightarrow{B L}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Tính $\overrightarrow{M N}, \overrightarrow{M L}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.

Định lý Lagrange – Jacobi và một số ứng dụng

Định lý 1. Cho tam giác $ABC$, các số $a, b, c$ thỏa $s = a+ b+ c $ khác 0. Điểm $M$ thỏa $$ a \cdot \overrightarrow{MA} + b \cdot \overrightarrow{MB} + c \cdot \overrightarrow{MC} = \overrightarrow{0}$$

a) Với mọi điểm $O$ thì $$a \cdot OA^2 + b\cdot OB^2 + c \cdot OC^2 = s \cdot OM^2 + (a \cdot IA^2 + b \cdot IB^2 + c \cdot IC^2)$$

b) $$a \cdot IA^2 + b \cdot IB^2 + c \cdot IC^2 = \dfrac{1}{s} (abAB^2 +ac AC^2 + bc BC^2)$$

c) Trường hợp $s=a+b+c = 1$ ta có $$OM^2 = a \cdot OA^2 + b \cdot OB^2 + c \cdot OC^2 – (ab AB^2 + ac AC^2 + bc BC^2)$$

Chứng minh định lý.

a) $a \cdot OA^2 + b \cdot OB^2 + c \cdot OB^2 = a(\overrightarrow{OM} + \overrightarrow{MA})^2+b(\overrightarrow{OM} + \overrightarrow{MB})^2+c(\overrightarrow{OM} + \overrightarrow{MC})^2$

$ = (a+b+c)OM^2 + a \cdot MA^2 + b \cdot MB^2 + c \cdot MC^2 + 2 \overrightarrow{OM}(a \cdot \overrightarrow{MA} + b \cdot \overrightarrow{MB} + c \cdot \overrightarrow{MC} )$

$ = s \cdot OM^2 + (a \cdot IA^2 + b \cdot IB^2 + c \cdot IC^2)$

b) Đặt $P = a \cdot IA^2 + b \cdot IB^2 + c \cdot IC^2$. Áp dụng ý a, ta thay điểm $O$ bằng $A$ ta có:

$b \cdot AB^2 + c \cdot AC^2 = s \cdot MA^2 + P$, nhân hai vế với $a$ ta có $ab \cdot AB^2 + ac \cdot AC^2 = as \cdot MA^2 + aP$ (1), tương tự cho khi thay $O$ bởi $B, C$ ta được các hệ thức $bc \cdot BC^2 + ab \cdot AB^2 = bs MB^2 + bP$ (2) và $bc \cdot BC^2 + ac \cdot AC^2 = cs \cdot MC^2 + cP$ (3)

Cộng các đẳng thức (1), (2), (3) ta có: $2 (ab \cdot AB^2 + bc \cdot BC^2 + ac \cdot AC^2) = s (a \cdot MA^2+ b \cdot MB^2 + c \cdot MC^2) + P(a+b+c) = 2s \cdot P$

Suy ra $P = \dfrac{1}{s} (ab \cdot AB^2 + ac \cdot AC^2 + bc \cdot BC^2)$

c) Từ a, b ta có $a \cdot OA^2 + b\cdot OB^2 + c \cdot OC^2 = s \cdot OM^2 +\dfrac{1}{s} (ab \cdot AB^2 + ac \cdot AC^2 + bc \cdot BC^2)$

Với $s = a+b+c = 1$ thì $a \cdot OA^2 + b\cdot OB^2 + c \cdot OC^2 = OM^2 +(ab \cdot AB^2 + ac \cdot AC^2 + bc \cdot BC^2)$, suy ra

$OM^2 = a \cdot OA^2 + b\cdot OB^2 + c \cdot OC^2 – (ab \cdot AB^2 + ac \cdot AC^2 + bc \cdot BC^2)$

Định lý 2. Tổng quát của định lý 1. Gọi $\mathrm{M}$ là tâm tỉ cự của hệ điểm $A_1, A_2, \ldots, A_n$ ứng với các hệ số $\alpha_1, \alpha_2, \ldots, \alpha_n$.

a) Khi đó với điểm $\mathrm{O}$ bất kì ta có:
$$
\sum_{i=1}^n \alpha_i O A_i^2=\left(\sum_{i=1}^n \alpha_i\right) M O^2+\sum_{i=1}^n \alpha_i O A_i^2
$$

b) Khi đó
$$
\sum_{i=1}^n \alpha_i G A_i^2=\frac{1}{\alpha} \sum_{1 \leq i<j \leq n} \alpha_i \alpha_j A_i A_j^2
$$

Trong đó $\alpha=\sum_{i=1}^n \alpha_i$
c) (Định lý lagrange – Jacobi)
$$
\sum_{i=1}^n \alpha_i O A_i^2=\left(\sum_{i=1}^n \alpha_i\right) M O^2+\dfrac{1}{\alpha} \sum_{1 \leq i<j \leq n} \alpha_i \alpha_j A_i A_j^2
$$

Định lý 2 chứng minh tương tự định lý 1. Bạn đọc tự làm nhé.

Sau đây là một số áp dụng cho định lý trên.

Bài toán 1. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$ bán kính $R$.

a) Chứng minh rằng với mọi điểm $M \in (O)$ thì $MA^2 + MB^2 + MC^2$ không đổi, tính giá trị đó theo $R$.

b) Tìm điểm $M$ thuộc $(O)$ sao cho $MA^2 + 2MB^2 + MC^2$ là nhỏ nhất.

Lời giải

a) Tam giác $ABC$ đều nên $O$ là trọng tâm tam giác, tức là $\overrightarrow{OA} + \overrightarrow{OB} +\overrightarrow{OC} = \overrightarrow{0}$.

Áp dụng định lý 1 ta có $MA^2 + MB^2 + MC^2= 3 MO^2 + \dfrac{1}{3} (AB^2+BC^2+AC^2) = 3R^2 + \dfrac{1}{3} (3R^2+3R^2+3R^2) = 6R^2$ không đổi.

b) Lấy điểm $I$ thỏa $\overrightarrow{IA} + 2 \overrightarrow{IB} +\overrightarrow{IC} = \overrightarrow{0}$, ta có $3 \overrightarrow{IO} + \overrightarrow{IB} = \overrightarrow{0}$, $I$ thuộc đoạn $OB$ và $IB = 2IO$.

Theo định lý trên, ta có $MA^2 + 2MB^2 + MC^2 = 4MI^2 + \dfrac{1}{4}(2AB^2+AC^2+2BC^2) = 4MI^2 + \dfrac{13}{4}R^2$, do đó $MA^2+2MB^2+MC^2$ nhỏ nhất khi và chỉ khi $MI$ nhỏ nhất, khi và chỉ khi $M$ là giao điểm của tia $OI$ với $(O)$.

Bài toán 2. Cho tam giác $A B C$ có $I$ là tâm nội tiếp và $O$ là tâm ngoại tiếp. Chứng minh rằng
a) $a \cdot I A^2+b \cdot I B^2+c \cdot I C^2=a b c$.
b) $I O^2=R^2 – 2 R r$ (Hệ thức Euler)

Lời giải

a) Ta có $a \cdot \overrightarrow{IA} + b \cdot \overrightarrow{IB} + c \cdot \overrightarrow{IC} = \overrightarrow{0}$

Theo định lý 1, ý b ta có $a \cdot IA^2 + b \cdot IB^2 + c \cdot IC^2 = \dfrac{1}{a+b+c} (ab AB^2 + ac AC^2 + bc BC^2) = abc$.

b) Theo định lý 1c) ta có $IO^2 = \dfrac{1}{a+b+c}(a \cdot OA^2 + b \cdot OB^2 + c \cdot OC^2) – \dfrac{1}{a+b+c} abc = R^2 – \dfrac{abc}{a+b+c}$.

Mặt khác ta có $S_{ABC} = \dfrac{abc}{4R} = pr$, suy ra $\dfrac{abc}{a+b+c} =2Rr$.

Do đó $IO^2 = R^2 – 2Rr$. (Hệ thức Euler)

Bài toán 3. Chứng minh rằng trong tam giác $A B C$ thì $a^2+b^2+c^2 \leq 9 R^2$

Lời giải

Áp dụng định lý 1 cho $M$ là trọng tâm tam giác, $O$ là tâm ngoại tiếp ta có:

Ta có $OA^2 + OB^2 +OC^2 = 3OG^2 + \dfrac{1}{3}(AB^2 +BC^2+AC^2)$

Hay $a^2+b^2+c^2 = 9R^2 – 9OG^2 \leq 9R^2$. Đẳng thức xảy ra khi $O \equiv G$, hay tam giác $ABC$ đều.

Tiếp theo ta dùng phương pháp này để chứng minh một định lý rất nổi tiếng trong hình học phẳng.

Bài toán 4. (Định lý Feuerbach) Chứng minh rằng trong một tam giác đường tròn Euler và đường tròn nội tiếp là tiếp xúc nhau.

Lời giải

Nhắc lại, đường tròn Euler là đường tròn qua trung điểm các cạnh và chân các đường cao, đường tròn Euler có bán kính bằng nửa bán kính đường tròn ngoại tiếp và tâm là trung điểm đoạn thẳng nối trực tâm với tâm đường tròn ngoại tiếp tam giác.

Xét tam giác $ABC$, gọi $H, O, I$ lần lượt là trực tâm, tâm ngoại tiếp và nội tiếp tam giác $ABC$, $N$ là tâm đường tròn Euler và $N$ là trung điểm $OH$. Để chứng minh $(I)$ và $(N)$ tiếp xúc, ta cần chứng minh $IN = \dfrac{1}{2}R – r$, trong đó $R, r$ lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp tam giác $ABC$.

Ta đi tính độ dài đoạn $IN$, như cách đã làm như các bài toán trên.

Ta có $a \cdot NA^2 + b \cdot NB^2 + c \cdot NC^2 = (a+b+c) NI^2 + \dfrac{1}{a+b+c} (ab AB^2+ac AC^2+bc BC^2) = (a+b+c)IN^2 + abc$.

$N$ là trung điểm $OH$ nên ta có $AN^2 = \dfrac{1}{2} AH^2 + \dfrac{1}{2} OA^2 – \dfrac{1}{4} OH^2$ (1)

Mà $AH = 2OM$ nên $AH^2 = 4OM^2 = 4(OC^2-MC^2) = 4R^2 – a^2$ (2)

$\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$, suy ra $OH^2 = OA^2 +OB^2+OC^2+ 2\overrightarrow{OA} \cdot \overrightarrow{OB}+2\overrightarrow{OA} \cdot \overrightarrow{OC}+2\overrightarrow{OB} \cdot \overrightarrow{OB}$

$ = 3R^2 + (OA^2+OB^2 -AB^2) + (OA^2+OC^2-AC^2) + (OB^2+OC^2-BC^2)$

$ = 9R^2 – (a^2+b^2+c^2)$ (3)

(Ta cũng có thể sử dụng $OH = 3OG$, và kết quả bài 2 để cho ra kết quả trên)

Từ (1), (2), (3) ta có $NA^2 = \dfrac{1}{2}(4R^2- a^2) + \dfrac{1}{2}R^2 – \dfrac{1}{4}(9R^2 – (a^2+b^2+c^2)) = \dfrac{1}{4}(R^2-a^2+b^2+c^2)$

Tương tự cho $NB^2, NC^2$, từ đó ta có

$a \cdot NA^2+b\cdot NB^2+c \cdot NC^2 = \dfrac{1}{4}((a+b+c)R^2+ a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-a^3-b^3-c^3)$

Khi đó $IN^2 = \dfrac{1}{4}R^2 + \dfrac{1}{4(a+b+c)}(a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-a^3-b^3-c^3) -\dfrac{abc}{a+b+c}$

Mà $a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-a^3-b^3-c^3)$

$ = (a+b-c)(b+c-a)(c+a-b) + 2abc = \dfrac{16s^2}{a+b+c} + 8Rs$

$=\dfrac{p^2r^2}{2p} + 8Rrp = \dfrac{16pr^2}{2} +8Rrp$

Suy ra $\dfrac{1}{4(a+b+c)}(a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-a^3-b^3-c^3) = r^2 + Rr$.

Kết hợp các kết quả trên ta có $IN^2 = \dfrac{1}{4}R^2 +r^2 – Rr = (\dfrac{R}{2}-r)^2$.

Từ đó ta có $IN = \dfrac{1}{2} R – r$, hay $(I)$ và $(N)$ tiếp xúc trong.

Trên đây chỉ là một số ví dụ khá đơn giản để khai thức định lý Lagrange và Jacobi, các bạn có thể thay $M, O$ bằng một số điểm đặc biệt khác trong tam giác để có thêm các đẳng thức hoặc bất đẳng thức khác.

Sử dụng kĩ thuật tính toán để chứng các bài toán hình học phẳng

Bài viết trình bày một số kĩ thuật tính toán hình học để chứng minh các bài toán hình học phẳng, các định lý được dùng chính là định lý Sin, Cosin, công thức diện tích, vectơ,..và một số tính chất, bổ đề đơn giản.

Một số kí hiệu thường dùng.

Trong tam giác $ABC$, đặt $BC = a, AC = b, AB = c, p = \dfrac{a+b+c}{2}, S = S_{ABC}$, $R$ là bán kính đường tròn ngoại tiếp, $r$ là bán kính đường tròn nội tiếp.

Sau đây là một số định lý quan trọng và đã có trong các phần khác, bạn đọc có thể tự chứng minh một cách dễ dàng.

Định lý 1. (Định lý Sin) Trong tam giác $ABC$ thì $$\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R$$

Định lý 2. (Định lý Cosin) Trong tam giác $ABC$ thì $a^2 =b^2 + c^2 – 2bc \cos A$ và các hệ thức tương tự.

Định lý 3. (Định lý Ceva dạng sin) Cho tam giác $ABC$, $P$ là điểm bất kì, khi đó $$\frac{\sin \left(A A_1 ; A B\right)}{\sin \left(A A_1 ; A C\right)} \cdot \frac{\sin \left(B B_1 ; B C\right)}{\sin \left(B B_1 ; B A\right)} \cdot \frac{\sin \left(C C_1 ; C A\right)}{\sin \left(C C_1 ; C B\right)}=-1$$

Một số tính chất và bổ đề cần dùng.

Tính chất 1. Nếu $\alpha$ là góc nhọn và $0^{\circ} \leq x, y \leq \alpha$ thỏa
$$
\frac{\sin x}{\sin (\alpha-x)}=\frac{\sin y}{\sin (\alpha-y)}
$$
thì $x=y$.

Tính chất 2. Cho tam giác $A B C$. Khi đó:
(a) $S_{A B C}=\frac{1}{2} A B \cdot A C \cdot \sin B A C$.
(b) $M$ là điểm trên cạnh $B C$, khi đó $\frac{B M}{C A M}=\frac{A B \cdot \sin M A B}{A C \cdot \sin M A C}$. $M$ là trung điểm $B C$ khi và chỉ khi $\frac{A B}{A C}=\frac{\sin M A C}{\sin M A B}$.

Tính chất 3. Cho tam giác $A B C$ cân tại $A, M$ là điểm thuộc cạnh $B C$. Khi đó:
$$
\frac{M B}{M C}=\frac{\sin M A B}{\sin M A C}
$$

Một số ví dụ áp dụng

Ví dụ 1. Cho tam giác $A B C$, đường tròn tâm $I$ nội tiếp tam giác $A B C$ tiếp xúc với $B C, A C, A B$ tại $D, E, F . D I$ cắt $E F$ tại $K$. Chứng minh $A K$ qua trung điểm của $B C$.
Hướng dẫn giải

Gọi $M$ là trung điểm $B C$, ta sẽ chứng minh tia $A K$ trùng tia $A M$. Từ 6.1.6 ta thấy rằng để chứng minh 2 tia này trùng nhau, ta chỉ cần chứng minh
$$
\dfrac{\sin B A K}{\sin C A K}=\dfrac{\sin B A M}{\sin C A M}(*)
$$

Ta có: $\dfrac{A B}{A C}=\dfrac{\sin C}{\sin B}=\dfrac{\sin K I E}{\sin K I F}=\dfrac{K E}{K F}=\dfrac{\sin K A E}{\sin K A F}$.

Mà $\dfrac{A B}{A C}=\dfrac{\sin M A B}{\sin M A C}$.

Từ (1) và (2) ta có $\dfrac{\sin K A E}{\sin K A F}=\dfrac{\sin M A E}{\sin M A F}$.

Ví dụ 2. Cho tam giác $A B C$ nhọn, tiếp tuyến tại $B, C$ của đường tròn ngoại tiếp tam giác cắt nhau tại $P$. Chứng minh rằng $\angle P A B=\angle C A M$ với $M$ là trung điểm $B C$.

Hướng dẫn giải.

Ta có $S_{A B M}=S_{A C M} \Leftrightarrow A B \cdot A M \sin B A M=A B \cdot A M \cdot \sin C A M \Rightarrow \dfrac{\sin B A M}{\sin C A M}=\dfrac{A C}{A B}$
(1) Ta có $\dfrac{S_{P A B}}{S_{P A C}}=\dfrac{A B \cdot A P \cdot \sin P A B}{A C \cdot A P \cdot \sin P A C}=\dfrac{A B \cdot \sin P A B}{A C \cdot \sin P A C}$.

Mà $\dfrac{S_{P A B}}{S_{P A C}}=\dfrac{A B \cdot P B \cdot \sin A B P}{A C \cdot P C \cdot \sin A C P}=\dfrac{A B}{A C} \cdot \dfrac{\sin A C B}{\sin A B C}=\dfrac{A B^2}{A C^2}$.
Từ (3) và (4) ta có $\dfrac{\sin P A B}{\sin P A C}=\dfrac{A B}{A C}=\dfrac{\sin C A M}{\sin B A M} \Rightarrow \angle P A B=\angle C A M$.

Ví dụ 3. (Đường thẳng Newton) Cho các tứ giác $A B C D$ ngoại tiếp đường tròn $(I)$. Gọi $E, F, G, H$ là tiếp điểm của $(I)$ với các cạnh $A B, B C, C D, D A ; M, N$ là trung điểm của $A C$ và $B D$.
(a) Chứng minh $A C, B D, E G, F H$ dồng quy.
(b) Chứng minh $I, M, N$ thẳng hàng và $\frac{I M}{I N}=\frac{B E+D H}{A E+C H}$.

Hướng dẫn giải.

Đặt $A E=A H=a, B E=B F=b, C F=C G=c, D G=D H=d$.

(a) Gọi $K$ là giao điểm của $E G$ và $A C$.

Ta có $\dfrac{A K}{A E}=\dfrac{\sin \angle A E K}{\sin A K E}$ và $\dfrac{C K}{C G}=\dfrac{\sin \angle C G K}{\sin \angle C K G}$.

Mà $\sin \angle A K E=\sin \angle C K G, \sin \angle A E K=\sin C G K$.
Do đó $\frac{A K}{C K}=\dfrac{A E}{C G}=\frac{a}{c}$.

Gọi $K^{\prime}$ là giao điểm của $H F$ và $A C$ ta cũng chứng minh được $\frac{A K^{\prime}}{C K^{\prime}}=\dfrac{a}{c}$. Do đó $K \equiv K^{\prime}$ hay $E G, H F, A C$ dồng quy.
Tương tự ta cũng có $B D, E G, H F$ dồng quy.

b) Ta có $A B \overrightarrow{I E}=b \overrightarrow{I A}+a \overrightarrow{I B}, B C \overrightarrow{I F}=b \overrightarrow{I C}+c \overrightarrow{I B}, C D \overrightarrow{I G}=c \overrightarrow{I D}+d \overrightarrow{I C}, A D \overrightarrow{I H}=d \overrightarrow{I A}+a \overrightarrow{I D}$.

Theo định lý con nhím ta có $A B \overrightarrow{I E}+B C \overrightarrow{I F}+C D \overrightarrow{I G}+A D \overrightarrow{I H}=\overrightarrow{0}$, suy ra $(a+c)(\overrightarrow{I B}+$ $\overrightarrow{I D})+(b+d)(\overrightarrow{I A}+\overrightarrow{I C})=\overrightarrow{0}$

Mà $\overrightarrow{I A}+\overrightarrow{I C}=2 \overrightarrow{I M}, \overrightarrow{I B}+\overrightarrow{I D}=2 \overrightarrow{I N}$.

Do đó $(a+c) \overrightarrow{I N}+(b+d) \overrightarrow{I M}=\overrightarrow{0}$, từ đó suy ra $I, M, N$ thẳng hàng và $\dfrac{I M}{I N}=\dfrac{b+d}{a+c}$.

Ví dụ 4. Cho tam giác $A B C$ nhọn có trực tâm $H$. Gọi $M$ là trung điểm $B C$, đường tròn tâm $M$ bán kính $M H$ cắt $B C$ tại $A_1, A_2$; các điểm $B_1, B_2, C_1, C_2$ được xác định tương tự. Chứng minh rằng 6 điểm $A_1, A_2, B_1, B_2, C_1, C_2$ cùng thuộc một đường tròn.

Hướng dẫn giải.

Ta dễ nhận ra rằng các điểm này cách đều tâm đường tròn ngoại tiếp tam giác $A B C$, vậy ta chỉ cần tính $O A_1$ sao cho không phụ thuộc vào vị trí của $A_1$, hay kết quả là một biểu thức đối xứng ta sẽ có điều cần chứng minh.

$O A_1^2=O M^2+M A_1^2=O M^2+M H^2$.

$M H^2=\dfrac{1}{2}\left(H B^2+H C^2\right)-\dfrac{1}{4} B C^2=2 O N^2+2 O P^2-\dfrac{1}{4} a^2=R^2\left(2 \cos ^2 B+2 \cos ^2 C-\sin ^2 A\right)$.

Khi đó
$$
O A_1^2=R^2\left(2 \cos ^2 B+2 \cos ^2 C+\cos ^2 A-\sin ^2 A\right)=R^2\left(2 \cos ^2 B+2 \cos ^2 C+2 \cos ^2 A-1\right)
$$

Tương tự cho các độ dài khác, từ đó ta có 6 điểm thuộc đường tròn tâm $O$.

Chú ý: Để ý vai trò như nhau của các đối tượng cần tính và cố gắng đưa về các yếu tố của hình gốc, cụ thể trong bài này là tam giác $ABC$.

Bài 5. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$. Tiếp tuyến tại $B, C$ cắt nhau tại $L$. Gọi $X$ là điểm đối xứng của $A$ qua $B C$, tiếp tuyến tuyến tại $A$ cắt $L X$ tại $K$. Chứng minh $K$ thuộc đường thẳng Euler của tam giác $A B C$.
Hướng dẫn giải

Gọi giao điểm của $O K$ với $A X$ là $J$, ta sẽ chứng minh $J$ là trực tâm của $\triangle A B C$. Gọi giao điểm của $O L$ với $A K$ là $I$, theo định lý Thales ta có $\dfrac{J A}{O I}=\dfrac{K J}{K O}=\dfrac{J X}{O L} \Leftrightarrow \dfrac{J A}{J X}=\dfrac{O I}{O L}$.

Gọi $H$ là trực tâm của tam giác $A B C$ và $P$ là giao của $A H$ và $(O)$, do tính đối xứng thì $A P=H X$. Ta cần chứng minh $\dfrac{H A}{H X}=\dfrac{J A}{J X}$, tức là $\dfrac{A H}{A P}=\dfrac{O I}{O L}(1)$.

Từ đây chú ý thêm $\angle O I A=90^{\circ}-\angle O A H=\angle A C P=\alpha$, hướng giải quyết của ta đã sáng sủa hơn, ta có : $O I=\dfrac{O A}{\sin \alpha} ; O L=\dfrac{O C}{\cos \angle B A C} \Rightarrow \dfrac{O I}{O L}=\dfrac{\cos \angle B A C}{\sin \alpha}$

Ta có $A H=2 R \cos \angle B A C ; A P=2 R$. $\sin \alpha$, suy ra $\dfrac{A H}{A P}=\dfrac{\cos \angle B A C}{\sin \alpha}=\frac{O I}{O L}$. Suy ra $\dfrac{H A}{H X}=$ $\dfrac{J A}{J X}$; nghĩa là $H$ trùng $J$, suy ra $K$ thuộc đường thẳng Euler của tam giác $A B C$.

(Hết phần 1)

Phép chiếu vectơ

  1. Định nghĩa. Cho đường thẳng $d$ và đường thẳng $l$ không song song $d$, và vectơ $\overrightarrow{AB}$. Đường thẳng qua $A, B$ song song với $l$ cắt $d$ tại$A’, B’$, Khi đó $\overrightarrow{A’B’}$ được gọi là hình chiếu của $\overrightarrow{AB}$ trên $d$ theo phương $l$. Trường hợp $l \perp d$ ta có phép chiếu vuông góc.

2. Tính chất

1) Hình chiếu của $\overrightarrow{a}$ trên $d$ là $\overrightarrow{0}$ khi và chỉ khi $\overrightarrow{a}$ cùng phương với $l$.

2) Nếu $\overrightarrow{a’}, \overrightarrow{b’}$ là hình chiếu của $\overrightarrow{a}, \overrightarrow{b}$ trên $d$ thì $\overrightarrow{a’} \pm \overrightarrow{b’}$ là hình chiếu của $\overrightarrow{a} \pm \overrightarrow{b}$ trên $d$.

3) Nếu $\overrightarrow{a’}$ là hình chiếu của $\overrightarrow{a}$ thì $k \cdot \overrightarrow{a’}$ là hình chiếu của $k \cdot \overrightarrow{a}$.

Phép chiếu bảo toán các phép toán cộng, trừ hai vectơ, tích một vectơ với một số, nhưng không bảo toàn tích vô hướng hai vectơ

3. Một số ví dụ áp dụng của phép chiếu vectơ

Ví dụ 1. Cho tam giác $ABC$, $M$ là trung điểm $BC$ và $G$ là trọng tâm tam giác $ABC$. Chứng minh

a) $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AM}$

b) $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

Lời giải.

a) Đặt $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{AC} -2\overrightarrow{AM}$

Xét phép chiếu vectơ theo phương $AB$ trên đường thẳng $BC$ ta có

$\overrightarrow{AB} \mapsto \overrightarrow{0}, \overrightarrow{AC} \mapsto \overrightarrow{BC}, \overrightarrow{AM} \mapsto \overrightarrow{BM}$

Do đó $\overrightarrow{u}\mapsto \overrightarrow{BC} – 2\overrightarrow{BM} = \overrightarrow{0}$, suy ra $\overrightarrow{u} || AB$.

Chứng minh tương tự thì $\overrightarrow{u} ||AC$

Do đó $\overrightarrow{u} = \overrightarrow{0}$

b) Đặt $\overrightarrow{u} = \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$. Thực phép chiếu theo phương $GA$ trên đường thẳng $BC$, ta có:

$\overrightarrow{GA} \mapsto \overrightarrow{0}, \overrightarrow{GB} \mapsto \overrightarrow{MB}, \overrightarrow{GC} \mapsto \overrightarrow{MC}$. Khi đó $\overrightarrow{u} \mapsto \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$

Do đó $\overrightarrow{u}$ cùng phương $GA$.

Chứng minh tương tự $\overrightarrow{u}$ cùng phương $GB, GC$

Do đó $\overrightarrow{u} = \overrightarrow{0}$

Ví dụ 2. (Định lý Jacobi) Cho tam giác $ABC$, $M$ là điểm nằm trong tam giác, đặt $S_a = S_{MBC}, S_b = S_{MAC}, S_c = S_{MAC}$. Chứng minh rằng

$$S_a \cdot \overrightarrow{MA} + S_b \cdot \overrightarrow{MB} + S_c \cdot \overrightarrow{MC} = \overrightarrow{0}$$

Lời giải. $AM$ cắt $BC$ tại $D$. Đặt $S_a \cdot \overrightarrow{MA} + S_b \cdot \overrightarrow{MB} + S_c \cdot \overrightarrow{MC} = \overrightarrow{u}$

Thực hiện phép chiếu xuống $BC$ theo phương $MA$, ta có $\overrightarrow{MA} \mapsto \overrightarrow{0}, \overrightarrow{MB} \mapsto \overrightarrow{DB}, \overrightarrow{MC} \mapsto \overrightarrow{DC}$

Do đó $\overrightarrow{u} \mapsto S_b \cdot \overrightarrow{DC} + S_b \cdot \overrightarrow{DB}$. (1)

Ta có $\overrightarrow{DB} = \dfrac{-DB}{DC} \overrightarrow{DB}$ và $\dfrac{DB}{DC} = \dfrac{S_b}{S_c}$, suy ra $\overrightarrow{DB} = \dfrac{-S_b}{S_c} \overrightarrow{DB}$, từ đó $S_c \cdot \overrightarrow{DB} + S_b \cdot \overrightarrow{DC} = \overrightarrow{0}$.

Vậy $\overrightarrow{u} \mapsto \overrightarrow{0}$, và $\overrightarrow{u}$ cùng phương với $MA$, tương tự ta cũng có $\overrightarrow{u}$ cùng phương $MB, MC$. Do đó $\overrightarrow{u} = \overrightarrow{0}$.

Bài tập rèn luyện.

Bài 1. Cho đa giác đều $A_1A_2\cdot A_n$ có tâm $O$. Chứng minh rằng $$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \overrightarrow{0}$$

Bài 2. Cho tam giác $ABC$, dự các vec tơ $\overrightarrow{a}$ hướng là ngoài tam giác và có độ dài $BC$, các vec tơ $\overrightarrow{b}, \overrightarrow{c}$ được dựng tương tự. Chứng minh rằng $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$

Bài 3. Cho tam giác $ABC$ có $O$ là tâm ngoại tiếp, $H$ là trực tâm. Chứng minh rằng $$ \overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

Một số bài đường tròn và tiếp tuyến

Bài 1. Cho đường tròn tâm $O$ đường kính $A B$. $C$ là một điểm thuộc đường tròn. $d_1$ và $d_2$ lần lượt là tiếp tuyến tại $A$ và $B$ của $(O)$. Tiếp tuyến tại $C$ cắt $d_1, d_2$ lần lượt tại $D$ và $E$. $B C$ cắt $d_1$ tại $F$.
a) Chứng minh $d_1 | d_2$ và $D$ là trung điểm của $A F$.
b) Vẽ đường cao $C H$. Chứng minh rằng $A E, B D$ và $C H$ dồng quy tại trung điểm của $C H$.
c) Chứng minh $O F \perp A E$.

Lời giải.

a) $d_1$ là tiếp tuyến tại $A$ nên $O A \perp d_1, d_2$ là tiếp tuyến tại $B$ nên $d_2 \perp O B$, mà $O, A, B$ thẳng hàng, suy ra $d_1 / / d_2$.
Ta có $\angle A C B=90^{\circ}$, suy ra $\angle D C F+$ $\angle D C A=\angle D F C+\angle D A C=90^{\circ}$. (1)
Hơn nữa $D A=D C$ (t/c tiếp tuyến), tam giác $D A C$ cân tại $D$, suy ra $\angle D C A=$ $\angle D A C$. (2)
Từ (1) và (2) ta có $\angle D C F=\angle D F C$, tam giác $D C F$ cân tại $D$.
Vậy $D F=D C=D A$, hay $D$ là trung điểm của $A F$.
b) Gọi $I$ là giao điểm của $B D$ và $A E$. Ta có $A D / / B E$ nên $\frac{B I}{I D}=\frac{E B}{A D}(3)$.
Mặt khác do $A D=D C$ và $E B=E C$, suy ra $\frac{E B}{A D}=\frac{E C}{D C}$ (4).

Từ (3) và (4) ta có $\frac{B I}{I D}=\frac{E C}{D C}$, suy ra $I C / / A D$ (Thalet đảo).

Mà $A D \perp A B$ nên $C I \perp A B$, vậy $C, I, H$ thẳng hàng.

Do đó $A E, B E, C H$ đồng quy tại $I$.
Ta có $\frac{C I}{A D}=\frac{E I}{E A}, \frac{I H}{A D}=\frac{B I}{B D}$ và $\frac{E I}{E A}=$ $\frac{B I}{B D}$, nên $\frac{C I}{A D}=\frac{I H}{A D}$, suy ra $I C=I H$ hay
$I$ là trung điểm của $C H$.
c) Ta có $E B \cdot A D=E C \cdot C D=O C^2=R^2$, mà $A F=2 A D$ nên $E B \cdot A F=2 R^2$.

Suy ra $E B \cdot A F=A O \cdot A B$, suy ra $\frac{E B}{A B}=\frac{O A}{A F}$, do đó $\tan E A B=\tan A F O$, suy ra $\angle E A B=$ $\angle A F O$.
Mà $\angle E A B+\angle E A F=90^{\circ}$ nên $\angle E A B+$ $\angle A F O=90^{\circ}$. Do đó $O F \perp A E$.

Bài 2. Cho đường tròn tâm $O$ bán kính $R$. $A$ là một điểm nằm ngoài đường tròn, từ $A$ dựng các tiếp tuyến $A B, A C$ dến $(O)$ với $B, C$ là các tiếp điểm. Một cát tuyết qua $A$ cắt $(O)$ tại $D$ và $E$ trong đó $D$ nằm giữa $A$ và $E$.Gọi $H$ là giao điểm của $O A$ và $B C$.
a) Chứng minh $O H \cdot O A=R^2$.
b) Gọi $M$ là trung điểm của $D E$. Chứng minh 4 điểm $O, M, B, C$ cùng thuộc đường tròn.
c) Tiếp tuyến tại $D$ và $E$ của $(O)$ cắt nhau tại điểm $P$. Chứng minh $P, B, C$ thẳng hàng.

Lời giải.

a) Ta có $A B, A C$ là tiếp tuyến nên $A B=A C$, và $O B=O C=R$, suy ra $O A$ là trung trực của $B C$, suy ra $O A \perp B C$ tại $H$.
Tam giác $O A B$ có $\angle O B A=90^{\circ}$ (t/c tiệp tuyến) và $B H \perp O A$ nên $O H \cdot O A=O B^2=$ $R^2$.
b) $M$ là trung điểm $D E$, suy ra $O M \perp D E$.
Ta có $\angle O B A=\angle O M A=\angle O C A=90^{\circ}$, suy ra 5 diểm $O, M, B, A, C$ cùng thuộc đường tròn đường kính $O A$.
c) Ta chứng minh được $O P \perp D E$, suy ra $O, M, P$ thẳng hàng và $O M . O P=O D^2=$ $R^2$.
Suy ra $O M \cdot O P=O H \cdot O A$, suy ra $\frac{O M}{O H}=$ $\frac{O P}{O A}$.
Xét tam giác $O M A$ và tam giác $O H P$ có:
$\angle A O P$ chung $\frac{O M}{O H}=\frac{O P}{O A}$ $\angle O H P=\angle O M A=90^{\circ}$.
Ta có $B C, P H$ vuông góc với $O A$ tại $H$ nên $P, B, C$ thẳng hàng.

Bài 3. Cho tam giác $A B C$ vuông tại $A(A B<A C)$. Vẽ đường tròn tâm $O$ đường kính $A C$ cắt cạnh $B C$ tại $D$. Gọi $H$ và $K$ lần lượt là trung điểm của hai cạnh $A D$ và $C D$. Tia $O H$ cắt cạnh $A B$ tại $E$. Tia $O K$ cắt đường thẳng $E D$ tại $N$ và cắt đường tròn tâm $O$ tại $I$.
(a) Chứng minh $D E$ là tiếp tuyến của $(O)$.
(b) Chứng minh $O H D K$ là hình chữ nhật.
(c) Chứng minh tia $D I$ là tia phân giác của $\angle N D C$.
(d) Gọi $S$ là giao điểm của $O B$ với $A D$. Từ $S$ vẽ đường thẳng vuông góc với $A O$ và cắt tia $O H$ tại $Q$. Chứng minh 3 điểm $A, Q, N$ thẳng hàng.

Lời giải.

Hình 1

a) $OH$ là trung trực của $AD$, suy ra $EA = ED$. Từ đó $\triangle EDO = \triangle EAO (ccc)$, suy ra $\angle EDO = \angle EAO = 90^\circ$. Do đó $ED$ là tiếp tuyến của $(O)$.

b) Do $K$ là trung điểm $CD$ nên $OK \bot CD$, tứ giác $OHDK$ có $\angle D = \angle H = \angle K = 90^\circ$ nên là hình chữ nhật.

c) Ta có tam giác $ODI$ cân tại $O$ nên $\angle ODI = \angle OID$ (1)
Mà $\angle ODI = \angle ODK + \angle KDI, \angle OID = \angle OND + \angle NDI$ (2)
Và $\angle OND = \angle ODK$ (vì cùng phụ $\angle DON$) (3)
Từ (1), (2), (3) ta có $\angle KDI = \angle NDI$

d) Gọi $L$ là giao điểm $AQ$ và $OS$.
Trong tam giác $ASO$ có $AQ, SQ$ là các đường cao, nên $Q$ là trực tâm, suy ra $AQ \bot OS$ tại $L$. (4)
Ta có $OL \cdot OB = OA^2$
và $OK \cdot ON = OD^2 = OA^2$
Suy ra $\angle OK \cdot ON = OL \cdot OB$
Suy ra $\triangle OLN \backsim \triangle OKB$, suy ra $\angle OLN = \angle OKB = 90^\circ$ (5)
Từ (4), (5) ta có $A, L, N$ thẳng hàng, hay $A, Q, N$ thẳng hàng.

Bài 4. Cho đường tròn $(O ; R)$ và một điểm $S$ nằm ngoài đường tròn $(O)$. Vẽ hai tiếp tuyến $S B, S C$ đến $(O)$ với $B, C$ là hai tiếp điểm. Gọi $H$ là giao điểm của $S O$ với $B C$.
(a) Vẽ đường kính $B A$ của $(O)$. Chứng minh $A C || S O$ và $H B \cdot H C=H O \cdot H S$.
(b) Vẽ đường thẳng $d$ vuông góc vớ $A B$ tại $O$, đường thẳng $d$ cắt đường thẳng $A C$ tại $E$. Chứng minh $S E=R$.
(c) Vẽ $C K$ vuông góc với $A B$ tại $K$. Gọi $I$ là trung điểm của cạnh $C K$. Chứng minh 3 điểm $S, I, A$ thẳng hàng.

Lời giải.

a) Do $AB$ là đường kính của $(O)$ nên $\angle ACB = 90^\circ$. (1)

Ta có $SB = SC$ và $SO$ phân giác $\angle BSC$ nên $SO$ là trung trực của $BC$, do đó $OS \bot BC$ tại $H$.

Từ đó ta có $AC ||OS$ vì cùng vuông góc $BC$.

b) $\triangle AOE = \triangle OBS (gcg)$, suy ra $OE = BS$.

Tứ giác $OESB$ có $OE||BS$ (Cùng vuông góc $AB$), và $OE = BS$ nên $OESB$ là hình bình hành, hơn nữa có $\angle OBS= 90^\circ$ nên là hình chữ nhật, do đó $SE = OB = R$.

c) Ta có $OASE$ là hình bình hành, suy ra $AS$ cắt $OE$ tại trung điểm $T$ của mỗi đoạn.
$CK ||OE$
Gọi $I’$ là giao điểm của $AS$ và $CK$
Ta có $\dfrac{I’K}{OT} = \dfrac{AI’}{AT} = \dfrac{CI’}{ET}$
Mà $OT = ET$ nên $KI’ = CI’$, hay $I’ \equiv I$
Vậy $A, I, S$ thẳng hàng

Bài 5. Cho đường tròn $(O ; R)$ và điểm $M$ ở ngoài đường tròn $(O)$. Kẻ tiếp tuyến $M A, M B$ đến $(O)$ với $A, B$ là hai tiếp điểm. Đường thẳng $A B$ cắt $(O)$ tại $K$.
(a) Kẻ đường kính $A N$ của $(O), B H \perp A N$ tại $H$. Chứng $\operatorname{minh} M B \cdot B N=B H \cdot M O$.
(b) Đường thẳng $M O$ cắt đường tròn $(O)$ tại $C$ và $D(C$ nằm giữa $O$ và $M)$. Chứng minh $O K \cdot M K=C K \cdot D K$.
(c) $E$ đối xứng với $C$ qua $K$. Chứng minh $E$ là trực tâm của tam giác $A B D$.
(d) Chứng minh $\sin \angle M^{\circ} A B=\frac{C K}{A K}+\frac{C K}{A M}$

Lời giải.

a) Chứng minh tam giác $OMB$ và $NBH$ đồng dạng.
b) $OK \cdot MK = AK^2 = KC \cdot KD$
c) $ACBE$ là hình thoi, suy ra $BE||AC$, mà $AC \bot AD$ suy ra $BE \bot AD$
$DE \bot AB$
Do đó $E$ là trực tâm tam giác $ABD$.

d) $\angle CAK = \angle CAM$ (chứng minh ở bài trên)
Do đó $\dfrac{CK}{CM} = \dfrac{AK}{AM}$, suy ra $\dfrac{CK}{AK} = \dfrac{CM}{AM}$
Từ đó $VP = \dfrac{CK}{AK} + \dfrac{CK}{AM} = \dfrac{CM}{AM} + \dfrac{CK}{AM} = \dfrac{KM}{AM} = \sin MAB$

Bài 6. Cho hình vuông $A B C D$ cạnh $a, E$ là cung thuộc cung nhỏ $B D$ của đường tròn tâm tâm $A$ bán kính $a$. Tiếp tuyến tại $E$ cắt $C D$ tại $F$ và $B C$ tại $G$.
(a) Chứng minh chu vi tam giác $C F G$ bằng $2 a$.
(b) $A F, A G$ cắt $B D$ tại $I$ và $H$. Chứng minh $H E=$ $H B, I E=I D$

và $H I^2=D I^2+B H^2$
(c) Chứng minh $F H, G I$ và $A E$ đồng quy.

Lời giải.

a) $CD, CB, FG$ là tiếp tuyến của $(A;a)$
Suy ra $FE = FD, GE = GB$
$P_{CFG} = CF + FG + CG = CF + EF +EG+CG = CF+DF +GB+CG = CD+ CB = 2a$

b) $AF$ là trung trực $DE$, và $AG$ là trung trực $BE$
Suy ra $IE = ID, HB = HE$
$\triangle IEF = \triangle IDF \Rightarrow \angle IEF =\angle IDF = 45^\circ$
Tương tự cũng có $\angle HEG = 45^\circ$
Suy ra $\angle IEH = 90^\circ$
Áp dụng pitago cho tam giác $EIH$ ta có $IH^2 = IE^2 + HE^2 = ID^2 + HB^2$

c) Ta có $AF$ là phân giác $\angle DAE$, $AG$ là phân giác của $\angle BAE$
Suy ra $\angle FAG = \dfrac{1}{2} \angle BAD = 45^\circ$.
$\triangle AIH \backsim \triangle DIF (gg)$, suy ra $IA \cdot IF = ID \cdot IH$
Suy ra $\triangle IFH \backsim \triangle IDA \Rightarrow \angle IFH = \angle IDA = 45^\circ$
Suy $\angle AHF = 90^\circ$ hay $FH \bot AG$.
Chứng minh tương tự $GI \bot AF$.
Tam giác $FG$ có $AE, FH, GI$ là các đường cao nên đồng quy.

Bài 7. (Cuối khóa 1 – Star Education 2018) Cho đường tròn $(O ; R)$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ các tiếp tuyến $A B, A C$ dến $(O)$ ( $B, C$ là các tiếp điểm). $O A$ cắt $B C$ tại $H$.
a) Chứng minh $O H \cdot O A=R^2$ và 4 điểm $O, A, B, C$ cùng thuộc một đường tròn.
b) Đường tròn tâm $I$ đường kính $A B$ cắt $(O)$ tại điểm $D$ khác $B$. Chứng minh $I D$ là tiếp tuyến của $(O)$.
c) Tiếp tuyến tại $H$ và tại $A$ của $(I)$ cắt nhau tại $P$. Chứng minh $B, D, P$ thẳng hàng.

d) Tiếp tuyến tại $H$ của $(I)$ cắt $O B$ tại $M$; gọi $N$ là trung điểm $P M$, đường thẳng qua $P$ song song $B N$ cắt $A B$ tại $K$. Chứng minh $H K, A M$ và $B D$ đồng quy.

Lời giải.

a)

Xét $\triangle A B O$ vuông tại $B$ có:

$B H$ là đường cao $\Rightarrow O H \cdot O A=O B^2=R^2$ (Hệ thức lượng)

Ta có: $\triangle A B O$ vuông tại $B \Rightarrow A, B, O$ thuộc đường tròn đường kính $A O$. (1)

Lại có $\triangle A C O$ vuông tại $C \Rightarrow A, C, O$ thuộc đường tròn đường kính $A O$. (2)

Từ (1) và (2) suy ra $A, B, O, C$ thuộc đường tròn đường kính $A O$.

b)

Ta có: $\triangle A B D$ nội tiếp đường tròn đường kính $A B \Rightarrow \triangle A B D$ vuông tại $D$

Mà $I$ là trung điểm cạnh huyền $A B \Rightarrow I B=I D$
Ta có: $I B=I D, O B=O D$ nên $I O$ là trung trực của $B D$ $\Rightarrow \angle I B O=\angle I D O=90^{\circ}$ nên $I D$ là tiếp tuyến của $(O)$.

c) Tiếp tuyến tại $H$ và tại $A$ của $(I)$ cắt nhau tại $P$. Chứng minh $B, D, P$ thẳng hàng.

Gọi $E=I P \cap A H$ và $F=I O \cap B D$.
Sử dụng tính chất hai tiếp tuyến cắt nhau và hệ thức lượng, ta chứng minh được
$$
I E \cdot I P=I A^2=I D^2=I F \cdot I O \Rightarrow \frac{I F}{I P}=\frac{I E}{I O}
$$

Từ đó, chứng minh được $\triangle I F P \backsim \triangle I E O$ (c.g.c)
$$
\Rightarrow \angle I E O=\angle I F P=90^{\circ} \text {. }
$$

Ta có: $B D$ đi qua $F$ và vuông góc $I O, F P$ đi qua $F$ và vuông góc $I O$ nên hai đường thẳng này trùng nhau. $\Rightarrow B, D, P$ thẳng hàng.

d)

Chứng minh $I H$ là đường trung bình của $\triangle A B C \Rightarrow I H || A C$. Mà $I H \perp P M$ và $A C \perp O C$.

Suy ra: $H M || O C$. Lại có $H$ là trung điểm $B C$ nên $M$ là trung điểm $O B$.

Gọi $Q$ là giao điểm của $P K$ và $B O$.
Ta có: $B N || P Q$ và $N$ là trung điểm của $P M$ nên suy ra $B$ là trung điểm của $Q M$.

Gọi $J=B P \cap A M$.
Ta có :
$ B Q ||A P \Rightarrow \frac{B K}{K A}=\frac{B Q}{P A}=\frac{B M}{P A} . $
$B M || A P \Rightarrow \frac{B M}{P A}=\frac{B J}{J P}$
Suy ra: $\frac{B K}{K A}=\frac{B J}{J P}$ nên $K J || A P$. Chứng minh tương tự $J H ||A P$. Từ đó ta có $K, J, H$ thẳng hàng.

Vậy $H K, B P, A M$ dồng quy tại $J$.

Bài tập luyện tập.

Bài 6. Cho tam giác $A B C$ nhọn. Các đường cao $A D, B E$ và $C F$ cắt nhau tại $H$. Gọi $M, N$ lần lượt là trung điểm của $B C$ và $A H$.
(a) Chứng minh $N E, N F$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $B C E$.
(b) Chứng minh 5 điểm $D, E, F, M, N$ cùng thuộc một đường tròn.
(c) Gọi $G$ là giao điểm của $A D$ và $E F$. Chứng minh $N G \cdot N D=N A^2$.

Bài 7. Cho nửa đường tròn tâm $O$ đường kính $A B=2 R$. Trên tiếp tuyến tại $A$ của $(O)$ lấy điểm $C$ sao cho $A C=A B$. Từ $C$ vẽ tiếp tuyến $C D$ dến $(O)$ cắt tiếp tuyến tại $B$ ở điểm E.
(a) Tính $B E$.
(b) Đường cao $D F$ của tam giác $A B D$ cắt $B C$ tại $G$. Chứng minh rằng $A, G, E$ thẳng hàng.
(c) Gọi $H$ là giao điểm của $O C$ và $A D$. Tính $\angle D H B$.
(d) Gọi $I$ là giao điểm của $B C$ và $(O)$. Tứ giác $I D B H$ là hình gì? Tại sao?

Bài 8. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O) . M$ là trung điểm $B C$. Từ $A$ dựng các tiếp tuyến đến đường tròn $(O ; O M)$ cắt $B C$ tại $D$ và $E$ sao cho $D$ và $C$ khác phía đối với $M ; E, B$ khác phía đối với $M$. Chứng minh rằng các tam giác $A D C$ và $A B E$ cân.

Bài 9. Cho tam giác $A B C$ vuông tại $A, A B=a, B C=2 a$. Đường cao $A H$. Từ $B, C$ vẽ các tiếp tuyến $B D, C E$ dến đường tròn tâm $A$ bán kính $A H$.
(a) Tính $A H$ và số đo $\angle A B C$.
(b) Chứng minh $D, A, E$ thẳng hàng.
(c) Chứng minh $E D$ là tiếp tuyến của đường tròn đường kính $B C$.
(d) Chứng minh $D C, B E$ và $A H$ dồng quy.

Bài 10. Cho hình vuông $A B C D$ cạnh $2 a$, tâm $O$. Đường tròn tâm $O$ bán kính $a$ tiếp xúc với $A B$ và $B C$ tại $E$ và $F$. Gọi $P$ là một điểm trên cung nhỏ $E F$. Tiếp tuyến tại $P$ cắt $A B, B C$ tại $M$ và $N$. Đặt $M B=c, B N=y$.
(a) Chứng minh rằng $x+y+\sqrt{x^2+y^2}=2 a$.
(b) Chứng minh rằng $A M \cdot C N=2 a^2$.
(c) Gọi $K$ là trung điểm của $A D$. Chứng minh rằng $M K |$ $D N$.

Cực trị hình học (Lớp 8)

Cực trị hình học là bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của các đối tượng hình học như độ dài, chu vi, diện tích, …

Các bước cho một bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất gồm các bước sau:

  • Đánh giá bất đẳng thức
  • Tìm điều kiện, vị trí để đẳng thức xảy ra
  • Kết luận

Một số tính chất cần nhớ trong các bài toán cực trị

Tính chất 1. Bất đẳng thức trong tam giác: Cho 3 điểm $A, B, C$ thì $AB + BC \geq AC$. Đẳng thức xảy ra khi $B$ nằm giữa $A, C$. Tính chất này có thể tổng quát cho trường hợp nhiều hơn 3 điểm.

Từ tính chất này ta có thể thấy rằng, con đường ngắn nhất để đi từ $A$ đến $B$ là con đường thẳng.

Tính chất 2. Đường xiên và hình chiếu: Cho điểm $A$ và đường thẳng $d$, khi đó $M$ thay đổi trên $d$ thì $AM$ nhỏ nhất khi và chỉ khi $M$ là hình chiếu vuông góc của $A$ trên $d$.

Một số bất đẳng thức cần dùng: Cho $a, b \geq 0$.

  • $a^2 + b^2 \geq \dfrac{1}{2} (a+b)^2 \geq 2ab$
  • $\dfrac{1}{a} + \dfrac{1}{b} \geq \dfrac{4}{a+b}$
  • $a^2+b^2+c^2 \geq \dfrac{1}{3}(a+b+c)^2 \geq ab+bc+ac$.

Chú ý trong các bài toán cực trị thì đẳng thức phải xảy ra, do đó việc đánh giá bất đẳng thức cần chặt chẽ để xảy ra dấu bằng, nếu tìm không được vị trí dấu bằng xảy ra thì đánh giá đó chưa hợp lý.

Kinh nghiệm làm bài, nếu bài toán có nhiều giá trị thay đổi ta có thể

  • Tính toán biến đổi để đưa về biểu thức ít yếu tố thay đổi hơn.
  • Tìm mối liên hệ giữa các biến mà không đổi như: tích không đổi, tổng không đổi,… và từ đó áp dụng các bất đẳng thức đại số để đánh giá.

Sau đây là một số ví dụ.

Ví dụ 1. Cho hai điểm $A, B$ và đường thẳng $d$. Tìm vị trí của $M$ thuộc $d$ sao cho $MA + MB$ nhỏ nhất trong hai trường hợp.

a) $A, B$ cùng phía với $d$.

b) $A,B$ khác phía đối với đường thẳng $d$.

Phân tích và Lời giải

a) Với bài toán này ta nhận thấy rằng ta có thể áp dụng ngay tính chất 1, ta có $MA + MB \geq AB$

Đẳng thức xảy ra khi $M$ là điểm nằm giữa $A,B$, mà $M$ thuộc $d$ nên $M$ là giao điểm của đoạn thẳng $AB$ và đường thẳng $d$. Rõ ràng giao điểm này tồn tại vì $A, B$ là khác phía đối với $d$.

b) Đối với ý này, nếu vội vàng áp dụng như câu a thì ta thấy do $A,B$ cùng phía nên giao điểm của đoạn thẳng $AB$ và $d$ không tồn tại. Do đó cách làm như câu a, cũng không đúng.

Vậy ta sẽ làm thế nào? Ta có thể đưa về trường hợp ở câu a hay không? nếu đưa về câu a thì ta sẽ làm gì?

Ở đây có một kĩ thuật, là sử dụng đối xứng trục, để thay đổi vị trí điểm $A$ và vẫn tạo ra một đoạn thẳng bằng với $MA$. Tạo ra điểm phụ sẽ giúp ta giải được bài toán này.

Gọi $A’$ là đối xứng của $A$ qua $d$, khi đó $A’, B$ khác phía đối với $d$ và $MA = MA’$, ta đưa về trường hợp của câu $a$.

Ta có $MA + MB = MA’ + MB \geq A’B$, đẳng thức xảy ra khi $M$ là giao điểm của $A’B$ và $d$.

Vậy $MA + MB$ nhỏ nhất khi $M$ là giao điểm của $A’B$ với $d$.

Ví dụ 2. Cho tam giác $ABC$ đều cạnh $a$. $M$ là một điểm nằm trong tam giác. Gọi $D, E, F$ là hình chiếu của $M$ trên các cạnh $BC, AC, AB$.

a) Chứng minh $MD + ME + MF$ không đổi và tìm giá trị nhỏ nhất của $MD^2 +ME^2 +MF^2$.

b) Tìm giá trị nhỏ nhất của $BD^2+CE^2+AF^2$.

Phân tích và lời giải

a) Với bài này việc chứng minh ý đầu có thể còn khó hơn ý sau, việc chứng minh tổng này không đổi thì nhiều khi ta phải dự đoán được tổng này giá trị không đổi là bao nhiêu, phụ thuộc vào $a$ thế nào. Ta có thể đoán bằng cách cho $M$ trùng với một đỉnh nào đó, hoặc điểm đặc biệt như tâm của tam giác đều, khi cho trùng đỉnh $A$ thì ta có $E, F \equiv A$, $D \equiv H$, chân đường cao từ $A$, do đó ta có $MD + ME +MF = AH$ độ dài đường cao. Việc chứng minh tổng này bằng $AH$ ta có thể sử dụng phương pháp diện tích, rất hữu hiệu trong các bài có độ dài đường vuông góc.

a) $S_{A B C}=S_{M B C}+S_{M A C}+S_{M A B}$
$$
\begin{aligned}
\frac{1}{2} A H \cdot B C= & \frac{1}{2} M D \cdot B C+\frac{1}{2} M E \cdot A C \
& +\frac{1}{2} M F \cdot A C
\end{aligned}
$$
$\frac{1}{2} A H \cdot a=\frac{1}{2} a(M D+M E+M E)$
$$
\Rightarrow M D+M E+M F=A I+\text { (Ehongdon!) }
$$
$$
=\frac{a \sqrt{3}}{2}
$$
Áp dụng bất đẳng thức $x^2+y^2+z^2 \geqslant \frac{1}{3}(x+y+z)^2$
$$
\begin{array}{ll}
\Rightarrow M D^2+M E^2+M F^2 \geqslant \frac{1}{3}(M D+M E+M F)^2 & =\frac{1}{2} \cdot\left(\frac{a \sqrt{3}}{2}\right)^2 \
& =\frac{a^2}{4}
\end{array}
$$
Đẳng thức xảy ra khi và chỉ khi $M D=M E=M F$, tức là $M$ là giao điểm 3 đường phân giác của tam giác $ABC$, do tam giác $ABC$ đều nên $M$ cũng là trọng tâm tam giác.
$$
(M D^2+M E^2+M F^2)_{\min }=\dfrac{a^2}{4}
$$

b) Với câu này mình không có gợi ý như câu b, tìm min của đại lượng $P = BD^2+CE^2+AF^2$ ta có thể suy nghĩ tới việc tính tổng hay tích các số hạng, tuy vậy các giá trị này thay đổi theo $M$. Và quan sát thêm một chút là vị trí của các đoạn thẳng $DB, CE, AF$ trên các cạnh $BC, AC, AB$ có vẻ là cùng một hướng, và ta lại xem các đoạn thẳng còn lại thế nào? tức là $CD, BF, AE$ vai trò như nhau với các đoạn trên không? Liệu $BD^2+CE^2+AF^2 = CD^2+BF^2+AE^2?

Và khi đi vào kiểm tra thì rõ ràng ta chứng minh được $BD^2+CE^2+AF^2 = CD^2 + BF^2+AE^2 (1)$ và từ đó ta có lời giải như sau.

Trước hết ta chứng minh (1), theo định lý Pitago ta có $BD^2 – CD^2 = MB^2-MD^2 – (MC^2-MD^2) = MB^2-MC^2$, tương tự ta cũng có các đẳng thức khác.

Khi đó $BD^2+CE^2+AF^2 – CD^2-AE^2-BF^2 = MB^2 – MC^2 + MC^2-MA^2 +MA^2-MB^2 = 0$

Suy ra $BD^2+CE^2+AF^2 = CD^2+BF^2+AE^2 = \dfrac{1}{2} (BD^2+CD^2+AF^2+BF^2+CE^2+AE^2$.

Mà $CD^2+BD^2 \geq \dfrac{1}{2}(CD+BD)^2 = \dfrac{1}{2}a^2$

Tương tự thì $AF^2+BF^2 \geq \dfrac{1}{2}a^2, AE^2+CE^2 \geq \dfrac{3}{2}a^2$

Từ đó $BD^2+CE^2+AD^2 \geq \dfrac{3}{4}a^2$, đẳng thức xảy ra khi $M$ là giao điểm 3 đường trung trực của tam giác $ABC$.

Vậy $(BD^2+CE^2+AF^2)_{\max} = \dfrac{3}{4}a^2$.

Ví dụ 3. (PTNK 1999) Cho tam giác $A B C$ có diện tích $\mathrm{S}$ và một điểm $P$ nằm trong tam giác.
(a) Gọi $S_1, S_2, S_3$ lần lượt là diện tích của tam giác $P B C, P C A, P A B$. Hãy tìm giá trị nhỏ nhất của $S_1^2+S_2^2+S_3^2$.
(b) Gọi $P_1, P_2, P_3$ lần lượt là các điểm đối xứng của $P$ qua $B C, C A$ và $A B$. Đường thẳng qua $P_1$ song song với $B C$ cắt $A B$ và $A C$ tại $B_1$ và $C_1$. Đường thẳng qua $P_2$ song song với $A C$ cắt $B C, B A$ tại $C_2, A_2$, đường thẳng qua $P_3$ và song song với $A B$ cắt $C A, C B$ tại $A_3, B_3$. Hãy xác định vị trí của điểm $P$ dể tổng diện tích ba hình thang $B C C_1 B_1, C A A_2 C_2$ và $A B B_3 A_3$ đạt giá trị nhỏ nhất và tính giá trị đó.

Phân tích và lời giải

a) Bài này ta làm tương tự câu a ví dụ 2, cũng áp dụng bdt $x^2+y^2+z^2 \geq \dfrac{1}{3} (x+y+z)^2$ để suy ra cực trị.

b) Với bài toán này, để tìm cực trị của tổng diện tích các hình thang, ta phải tính diện tích các hình thang này thông qua một đại lượng trung gian, trong bài này thì đó là diện tích tam giác $ABC$, (S). Việc các đường thẳng song song gợi ta nghĩa tới tam giác đồng dạng và tính chất “tỉ số diện tích bằng bình phương tỉ số đồng dạng”, từ đó ta có cách giải sau:

b) Gọi độ dài các đường cao của tam giác $A B C$ là $h_a, h_b, h_c$ và khoảng cách từ $P$ đến $B C, A C, A B$ là $x, y, z$. Ta có $\frac{S}{S_{A B_1 C_1}}=\frac{h_a^2}{\left(h_a+x\right)^2}$.
Suy ra $S_{A B_1 C_1}=\left(1+\frac{x}{h_a}\right)^2 S$.
Tương tự ta có $S_{B A_2 C_2}=\left(1+\frac{y}{h_b}\right)^2 . S, S_{C A_3 B_3}=\left(1+\frac{z}{h_c}\right)^2 S$.
Đặt $a=\frac{x}{h_a}, b=\frac{y}{h_b}, c=\frac{z}{h_c}$ thì $a+b+c=1$.
Ta có $S_{B C C_1 B_1}+S_{A C C_2 A_2}+S_{A B B_3 A_3}=S\left((1+a)^2+(1+b)^2+(1+c)^2-3\right)=$ $S\left(2+a^2+b^2+c^2\right)$.
Ta có $a^2+b^2+c^2 \geq \frac{1}{3}(a+b+c)^2=\frac{1}{3}$. Do đó $S_{B C C_1 B_1}+S_{A C C_2 A_2}+S_{A B B_3 A_3} \geq \frac{7}{3} S$.
Đẳng thức xảy ra khi $P$ là trọng tâm tam giác $A B C$.

Ví dụ 4. (PTNK 2008) Cho góc $x A y$ vuông và hai điểm $B, C$ lần lượt trên các tia $A y, A y$. Hình vuông $M N P Q$ có các đỉnh $M$ thuộc cạnh $A B$, dỉnh $N$ thuộc cạnh $A C$ và các đỉnh $P, Q$ thuộc cạnh $B C$.
(a) Tính cạnh hình vuông $M N P Q$ theo cạnh $B C=a$ và đường cao $A H=h$ của tam giác $A B C$.
(b) Cho $B, C$ thay đổi lần lượt trên các tia $A x, A y$ sao cho tích $A B \cdot A C=k^2$ ( $k$ không đổi). Tìm giá trị lớn nhất của diện tích hình vuông $M N P Q$.

Phân tích và lời giải

a)

a) Đặt $x$ là độ dài hình vuông. Gọi $K$ là giao điểm của $A H$ và $M N$.
Ta có $M K H Q$ là hình chữ nhật, suy ra $K H=M Q=x, A E=A H-E H=$ $h-x$.
Ta có $M N \parallel B C$, suy ra $\frac{M N}{B C}=\frac{A N}{A C}$.
Và $N K \parallel C H$ nên ta có $\frac{A N}{A C}=\frac{A K}{A H}$.
Do đó ta có $\frac{M N}{B C}=\frac{A K}{A H}$ hay $\frac{x}{a}=\frac{h-x}{h}$, suy ra $x=\frac{a h}{a+h}$.
b) Ta có $b c=a h=k^2$ và $a^2=b^2+c^2 \geq 2 b c=2 a h$. Suy ra $a \geq 2 h$.
Ta có $S_{M N P Q}=M N^2=\frac{(a h)^2}{(a+h)^2}=\frac{k^4}{(a+h)^2}$.
Ta có $(a+h)^2=a^2+h^2+2 a h=h^2+\frac{1}{4} a^2+\frac{3}{4} a^2+2 a h$.
Mà $h^2+\frac{1}{4} a^2 \geq a h=k^2, \frac{3}{4} a^2 \geq \frac{3}{2} a h=\frac{3}{2} k^2, a h=k^2$.
Suy ra $(a+h)^2 \geq \frac{9}{2} k^2$.
Do đó $S \leq \frac{2}{9} k^2$. Đẳng thức xảy ra khi $a=2 h$ hay tam giác $A B C$ cân.
Vậy giá trị lớn nhất của diện tích hình vuông MNPQ là $\frac{2}{9} k^2$ khi $A B=A C=k$.

Chú ý, nếu ta áp dụng Cauchy ngay chỗ $(a+h)^2 \geq 4ah$ thì đẳng thức không xảy ra, do đó đánh giá chưa đủ chặt chẽ.

Bài tập rèn luyện.

Bài 1. Cho tam giác $ABC$ nhọn tìm vị trí điểm $M$ trong tam giác sao cho $MA + MB + MC$ nhỏ nhất.

Bài 2. Cho hình vuông $A B C D . M, N, P, Q$ là các đỉnh của tứ giác $M N P Q$ lần Iượt thuộc các cạnh $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ (MNPQ gọi là tứ giác nội tiếp hình vuông). Tìm điều kiện để tứ giác MNPQ có chu vi nhỏ nhất.

Bài 3. Cho tam giác $ABC$ nhọn. Tìm vị trí của $M$ bên trong tam giác sao cho $MA \cdot BC + MB \cdot AC + MC \cdot AB$ đạt giá trị nhỏ nhất.

Bài 4. Cho tam giác $ABC$ vuông tại $A$ có $BC$ không đổi $BC = 2a$. Vẽ đường cao $AH$. Tìm giá trị lớn nhất của $BH + AH$.

Bài 5. Cho hình bình hành $ABCD$, một đường thẳng $d$ qua $A$ không cắt các cạnh của hình bình hành. Tìm vị trí của $d$ để tổng khoảng cách từ các đỉnh $B, C, D$ đến $d$ là lớn nhất.

Bài 6. Cho đoạn thẳng $A B=a$. $C$ là điểm trên đoạn thẳng $A B$. Vẽ các hình vuông $A C D E$ và $C B F G$. Xác định vị trí điểm $C$ để $S_{A C D E}+S_{C B F G}$ đạt giá trị nhỏ nhất.

Sử dụng phương pháp điểm trùng để chứng minh hình học

Trong việc giải các bài toán hình học, có một kĩ thuật khá là đặc biệt và cũng thường được sử dụng đó là sử dụng điểm trùng, kĩ thuật này dựa trên sự xác định duy nhất của hình để thực hiện.

Tình huống thường gặp nhất, ta cần chứng minh tính chất hay sự tồn tại của một số đối tượng hình học, chẳng hạn như giao điểm của một số đường thẳng. Khi đó, gọi hai hay một số giao điểm (dĩ nhiên tồn tại) của một số cặp hay một số đối tượng. Sau đó, ta sẽ chứng minh các giao điểm (đối tượng) mà ta vừa dựng là trùng nhau. Đôi khi để thực hiện điều này, ta cũng cần gọi thêm một số đối tượng khác cùng đi qua điểm đang xét rồi xét sự đồng quy của chúng với các đối tượng gọi thêm nhằm có thêm tính chất của các điểm mà ta cần chứng minh trùng nhau.

Ta chú ý một số tính chất sau:

Định lý 1. Về giao điêm của các đối tượng hình học:

  1. Hai đường thẳng có nhiều nhất 1 giao điêm.
  2. Hai đường tròn có nhiều nhất 2 giao điểm.
  3. Một đường thẳng và một đường tròn có nhiều nhất 2 giao điểm.
  4. Một tia có gốc nằm trong đường tròn và đường tròn đó có nhiều nhât 1 giao điềm.

Sau đây ta xét một số ví dụ trong chương trình toán hình học lớp 9.

Ví dụ 1. Cho đường tròn tâm $O$ đường kính $AB$, $C$ thuộc đường tròn. Tiếp tuyến tại $C$ cắt tiếp tuyến tại $A, B$ của $(O)$ tại $D, E$. Gọi $H$ là hình chiếu của $C$ trên $AB$.

a. $DB$ cắt $CH$ tại $N$. Chứng minh $A, N, E$ thẳng hàng.

b.Đường thẳng qua $A$ song song $HE$ và đường thẳng qua $B$ song song với $HD$ cắt nhau tại $M$. Chứng minh $D, M, E$ thẳng hàng.


a. $BC$ cắt $AD$ tại $F$, ta chứng minh được $D$ là trung điểm của $AF$.

Khi đó $\dfrac{CN}{DF} = \dfrac{PN}{PD} = \dfrac{HN}{AD}$.

Mà $AD = DF$, suy ra $CN = HN$ hay $N$ là trung điểm của $CH$.

Gọi $N’$ là giao điểm của $AE$ và $CH$, chứng minh tương tự ta cũng có $N’$ là trung điểm của $CH$. Do đó $N \equiv N’$ hay $A, N, E$ thẳng hàng.

b. Phân tích: vẽ hình chính xác và trực giác ta dự đoán được $M$ là trung điểm của $DE$, hơn nữa điểm $M$ là được xác định duy nhất do là giao điểm của 2 đường, do đó ta có thể gọi $M’$ là trung điểm và chứng minh $M’ \equiv M$ bằng cách chứng minh $AM’||HD$ và $BM’||HC$. Thực ra do vai trò như nhau nên chỉ cần chứng minh $AM’||HD$ là đủ.

Ta có $\dfrac{HA}{HB} = \dfrac{CD}{CE} = \dfrac{AD}{BE}$. Suy ra $\triangle AHD \backsim \triangle BHE$. Suy ra $\angle AHD = \angle BHE$

Suy ra $\angle KHA = \angle BHE = \angle AHD$. Từ đó ta có tam giác $HDK$ cân tại $H$ và $A$ là trung điểm $AD$.

Tam giác $DHE$ có $M’A$ là đường trung bình nên $AM’||EK$ hay $AM’||HE$.

Chứng minh tương tự ta có $BM’||HD$.

Vậy $M’ \equiv M$. Hay $D, M, E$ thẳng hàng.

Ví dụ 2. (LHP 2019) Cho tam giác đều $A B C$. Gọi $M, N$ là hai điểm nằm trên cạnh $B C$ sao cho $\angle M A N=30^{\circ}(M$ nằm giữa $B$ và $N)$. Gọi $K$ là giao điểm của hai đường tròn $(A B N)$ và $(A C M)(K$ khác $A)$. Chứng minh rằng hai điểm $K$ và $C$ đối xứng với nhau qua $A N$.

Lời giải

Việc chứng minh trực tiếp $K, C$ đối xứng qu $AN$ nhìn có vẻ dễ nhưng khi tìm cách chứng minh thì liên kết lại hơi khó, cảm giác như bị thiếu thiếu gì đó, ta phải vẽ thêm yếu tố phụ mới có thể làm được. Do đó ta nghĩ tới kĩ thuật điểm trùng, tức là dựng ra một điểm $K’$ đối xứng với $C$ qua $AN$ và chứng minh $K’$ là giao điểm của hai đường tròn.

Gọi $K$ là điểm đối xứng của $C$ qua $A N$. Có
$$
\angle A K^{\prime} N=\angle A C N=\angle A B N
$$
nên tứ giác $A B K^{\prime} N$ nội tiếp. Suy ra $K^{\prime} \in(A B N)$. Có
$$
\angle M A K^{\prime}+\angle N A C=\angle M A K^{\prime}+\angle K^{\prime} A N=30^{\circ}
$$
$$
\angle B A M+\angle N A C=30^{\circ}
$$
suy ra $\angle M A K^{\prime}=\angle B A M$.
Suy ra $\triangle A B M=\triangle A K^{\prime} M(c-g-c)$ nên $\angle A K^{\prime} M=\angle A B C=\angle A C B$ ta thu được $K^{\prime} \in(A M C)$. Vậy $K \equiv K^{\prime}$ ta có điều phải chứng minh.

Ví dụ 3. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$, có $H$ là trực tâm tam giác $ABC$ và $AD$ là đường kính của $(O)$. Trên các cạnh $AB, AC$ lấy $E, F$ sao cho $AE = AF$ và $E, H, F$ thẳng hàng. Đường tròn ngoại tiếp tam giác $AEF$ cắt phân giác góc $\angle BAC$ tại $P$. Chứng minh $H, P, D$ thẳng hàng.

Lời giải

Gọi $P’$ là giao điểm phân giác góc $\angle BAC$ và $HD$. Ta chứng minh $P’ \equiv P$, hay cần chứng minh $AEPF$ nội tiếp.

Ta có tính chất quen thuộc $\angle HAB = \angle DAC$, nên $AP’$ cũng là phân giác $\angle HAD$.

Ta có $\angle AEF = \angle ABH + \angle EHB$, $\angle AFE = \angle ACH + \angle FHC$.

Mà $\angle ABH = \angle ACH$ và $\angle AEF = \angle AFE$ nên $\angle EHB = \angle FHC = \angle EHL$.

Do đó $HE$ là phân giác $\angle LHB$, suy ra $\dfrac{LE}{EB} = \dfrac{HL}{HB}$. (1)

Tam giác $AHL $ và tam giác $ADC$ đồng dạng, suy ra $\dfrac{HL}{CD} = \dfrac{AH}{AD}$.

Mà $CD = BH, \dfrac{AH}{AD} = \dfrac{HP’}{P’D}$, suy ra $\dfrac{HL}{HB} = \dfrac{HP’}{P’D}$. (2)

Từ (1) và (2) ta có $\dfrac{LE}{EB} = \dfrac{HP’}{P’D}$, suy ra $P’E ||HL||BD$, suy ra $P’E \bot AB$.

Chứng minh tương tự ta có $P’F \bot AC$.

Do đó $AEP’F$ nội tiếp, suy ra $P’ \equiv P$. Hay $D, P, H$ thẳng hàng.

Ví dụ 4. (PTNK 2022) Cho tam giác $A B C$ có trực tâm $H, D$ đối xứng với $H$ qua $A$. $I$ là trung điểm của $C D$, đường tròn $(I)$ đường kính $C D$ cắt $A B$ tại $E, F(E$ thuộc tia $A B)$
a) Chứng $\operatorname{minh} \angle E C D=\angle F C H$ và $A E=A F$.
b) Chứng minh $H$ là trực tâm của $\triangle C E F$.
c) $B H$ cắt $A C$ tại $K$. Chứng minh $E F K H$ nội tiếp và $E F$ là tiếp tuyến chung của $(C K E)$ và $(C K F)$.
d) Chứng minh tiếp tuyến tại $C$ của $(I)$ và tiếp tuyến tại $K$ của $(K E F)$ cắt nhau trên đường thẳng $A B$.

Lời giải. Các câu a, b, c dành cho bạn đọc, ở đây mình trình bày lời giải cho câu d.

Lấy $N$ đối xứng với $K$ qua $A B$.
$$
\angle E N F=\angle E K F=\angle E H F=180^{\circ}-\angle E C F \Rightarrow N \in(I) \text {. }
$$
$A P=A K=A N \Rightarrow \angle K N P=90^{\circ} \Rightarrow N P | B C \Rightarrow E N P F$ là hình thang cân.
$\Rightarrow \angle E C N=\angle F C P \Rightarrow \triangle E C N \backsim \triangle A C F$ và $\triangle E C A \backsim \triangle N C F$.
$\Rightarrow \frac{N E}{A F}=\frac{E C}{A C}$ và $\frac{E A}{N F}=\frac{C A}{C F}$
$\Rightarrow \frac{N E}{E C}=\frac{A F}{A C}=\frac{A E}{A C}=\frac{N F}{C F}$
Tiếp tuyến tại $N$ và $C$ của $(I)$ cắt nhau tại $S, S F$ cắt $(I)$ tại $E^{\prime}\left(E^{\prime} \neq F\right)$
$\triangle S E^{\prime} N \backsim \triangle S N F \Rightarrow \frac{N E^{\prime}}{N F}=\frac{S E^{\prime}}{S N}$
$\triangle S E^{\prime} C \backsim \triangle S C F \Rightarrow \frac{E^{\prime} C}{C F}=\frac{S E^{\prime}}{S C}$
$\Rightarrow \frac{N E^{\prime}}{N F}=\frac{E^{\prime} C}{C F}$
Từ (1) và $(2)$ suy ra: $E \equiv E^{\prime}$
Mà tiếp tuyến tại $N$ của $(I)$ đối xứng với tiếp tuyến tại $K$ của $(E H F)$ qua $A B$ nên ta có đpcm.

Bài tập rèn luyện.

Bài 1. Cho đường tròn $(O)$ và điểm $A$ nằm ngoài $(O)$. Từ $A$ vẽ các tiếp tuyến $AB, AC$ đến $(O)$, một cát tuyến qua $A$ cắt $(O)$ tại $D, E$ sao cho $D$ nằm giữa $A$ và $E$ và tia $AE$ nằm giữa hai tia $AB, AO$. Đường thẳng qua $D$ song song $BE$ cắt $BC$ tại $F$. Gọi $K$ là điểm đối xứng của $B$ qua $E$, chứng minh $A, P, K$ thẳng hàng.

Bài 2. Cho tam giác $ABC$ đều, trên cạnh $AB, AC$ lấy $M,N$ thỏa $\dfrac{AM}{BM} + \dfrac{AN}{CN} = 1$. Chứng minh rằng $MN$ tiếp xúc với một đường tròn cố định.

Bài 3. Cho tam giác $A B C$ có các đường cao $A A_1, B B_1, C C_1$ và trực tâm $H$. Chúng minh rằng đường thẳng Euler của các tam giác $A B_1 C_1, B C_1 A_1, C A_1 B_1$ đồng quy.

Bài 4. (Nga 2017) Cho hình thang cân $ABCD$ có $BC < AD$ và $BC \parallel AD$. Đường tròn $w$ qua $B, C$ cắt cạnh $AB$ tại $X$, đường chéo $BD$ tại $Y$. Tiếp tuyến tại $C$ của $w$ cắt $AD$ tại $Z$. Chứng minh $X, Y, Z$ thẳng hàng.