Category Archives: Lớp 7

Phần trăm

Bài tập 1. Có ba bài kiểm tra, bài số 1 có 25 câu, bài số 2 có 40 câu, bài số 3 có 10 câu. Đức là được $80 \%$ câu đúng bài số 1, $90 \%$ câu đúng bài số 2 và $70 \%$ câu đúng bài số 3. Mỗi câu đúng bài số 1 được 3 điểm, bài số 2 được 5 điểm và bài số 3 được 7 điểm.
a) Tính số câu đúng Đức làm được.
b) Tính số điểm của Đức đạt được.

Lời giải.

a) Số câu đúng Đức làm được: $80 \%.25 + 90 \%.40 + 70 \%.10=63$ câu.

b) Số điểm Đức làm được: $80 \%.25.3 + 90 \%.40.5 + 70 \%.10.7=289$ điểm.

Bài tập 2. Một số nam sinh và nữ sinh đang rửa xe để quyên tiền cho chuyến tham quan Hà Nội của lớp. Ban đầu $40 \%$ của nhóm là con gái. Ngay sau đó, hai cô gái rời đi và hai chàng trai đến, sau đó $30 \%$ trong nhóm là các cô gái. Lúc đầu trong nhóm có bao nhiêu bạn nữ?

Lời giải.
Gọi $x$ (bạn) là số bạn nữ lúc đầu trong nhóm có, $(x>0)$
$$
40 \% \cdot x-2=30 \% . x \Rightarrow x=20
$$

Vậy có 20 bạn nữ.

Bài tập 3. Giả sử trường $\mathrm{A}$ có 1000 học sinh và trường $\mathrm{B}$ có 1200 học sinh. Hỏi số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là bao nhiêu phần trăm?

Lời giải.
Số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là $1200-1000=200$ (học sinh).
Phần trăm số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là $\frac{200}{1000} \cdot 100=20 \%$
Vậy có $20 \%$

Bài tập 4. Thuế thu nhập của TPHCM được đánh ở mức $p \%$ của 28.000.000 đầu tiên của thu nhập hàng năm cộng với $(p+2) \%$ của bất kỳ số tiền nào trên 28.000.000. Nam nhận thấy rằng thuế thu nhập ở TPHCM mà ba bạn phải trả lên tới $(p+0,25) \%$ thu nhập hàng năm của ba. Thu nhập hàng năm của ba Nam ấy là bao nhiêu?

Lời giải.
Gọi $x$ (đồng) là thu nhập hàng năm của ba Nam, $(x>0)$
Thuế thu nhập của TPHCM là $p \% .28000000+(p+2) \%(x-28000000)$
Thuế thu nhập của TPHCM mà ba Nam trả là $(p+0,25) \% . x$
Giải phương trình:
$ p \% .28000000+(p+2) \%(x-28000000)=(p+0,25) \% . x $
$\Leftrightarrow p \% .28000000+x p \%-28000000 p \%+x .2 \%-56000000 \%=x p \%+x .0,25 \% $
$\Leftrightarrow x=32000000$

Bài tập 5. Giá cổ phiếu của công ty $T T C$ là $\$ 100$ vào năm 2021 . Nó đã giảm $25 \%$ vào năm 2022 và sau đó tăng $25 \%$ vào năm 2023 . Giá cổ phiếu cuối năm 2023 là bao nhiêu?

Lời giải.
Giá cổ phiếu sẽ giảm vào năm 2023 là $\$ 100.25 \%=\$ 25$.
$\Rightarrow$ Giá cổ phiếu vào năm 2022 là $\$ 100-\$ 25=\$ 75$.
Giá cổ phiếu sẽ giảm vào năm 2023 là $\$ 75.25 \%=\$ 18,75$.
$\Rightarrow$ Giá cổ phiếu vào năm 2023 là $\$ 75+\$ 18,75=\$ 93,75$.

Bài tập 6. Ông An định cải tạo một mảnh vườn hình chữ nhật có chiều dài bằng 2,5 chiều rộng. Ông thấy rằng nếu đào một cái hồ có mặt hồ là hình chữ nhật thì sẽ chiếm mất $3 \%$ diện tích mảnh vườn, còn nếu giảm chiều dài $5 \mathrm{~m}$ và tăng chiều rộng $2 \mathrm{~m}$ thì mặt hồ là hình vuông và diện tích mặt hồ giảm được $20 m^2$. Hãy tính các cạnh của mảnh vườn.

Lời giải.
Gọi $x(\mathrm{~m})$ là chiều rộng của mảnh vườn, $(x>0)$.
Vì chiều dài bằng 2,5 chiều rộng nên chiều dài của mảnh vườn là $2,5 x(\mathrm{~m})$.
Gọi $y(\mathrm{~m})$ là chiều rộng của mặt hồ ban đầu.
Gọi $z(\mathrm{~m})$ là chiều dài của mặt hồ ban đầu.
Vì diện tích của mặt hồ chiếm 3\% diện tích mảnh vườn nên diện tích của mặt hồ là
$$
y . z=3 \% .2,5 x^2 \Rightarrow y z=0,075 x^2\left(\mathrm{~m}^2\right)
$$

Nếu giảm chiều dài $5 m$ và tăng chiều rộng $2 m$ thì mặt hồ là hình vuông nên
$$
y+2=z-5 \Rightarrow z=y+7
$$

Diện tích của mặt hồ giảm $20 \mathrm{~m}^2$ nên
$$
y z-(y+2)(z-5)=20 \Rightarrow y \cdot(y+7)-(y+2)^2=20 \Rightarrow y=8 \Rightarrow z=8+7=15
$$

Thay $y=8$ và $z=15$ vào $y z=0,075 x^2$, ta được $8.15=0,075 x^2 \Rightarrow x^2=1600 \Rightarrow x=40$ hoặc $x=-40$.

Vì $x>0$ nên nhận $x=40$.
Vậy chiều rộng của mảnh vườn là $40(\mathrm{~m})$ và chiều dài của mảnh vườn là $100(\mathrm{~m})$

Bài tập 7. Tổng kết học kì 2 , trường trung học cơ sở $\mathrm{N}$ có 60 học sinh không đạt học sinh giỏi, trong đó có 6 em từng đạt học sinh giỏi học kì 1 , số học sinh giỏi của học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 và có $8 \%$ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2 . Tìm số học sinh giỏi học kì 2 của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Giải thích:
Gọi $x$ (học sinh) là số học sinh giỏi học kì 2 của trường.
Nhóm 1 và nhóm $4=x$ học sinh
60 học sinh không đạt học sinh giỏi học kì 2.
Nhóm 2 và nhóm $3=60$ học sinh

6 học sinh từng đạt học sinh giỏi học kì 1 trong số học sinh không giỏi ở hk2.
Nhóm $3=6$ họ sinh
$8 \%$ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2 .
Nhóm $4=8 \%$ học sinh toàn trường

Số học sinh giỏi học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 .
Nhóm 1 và $4=\frac{40}{37}$ nhóm 1 và 3

Lời giải.
Gọi $x$ (học sinh) là số học sinh giỏi học kì 2 của trường.
Số học sinh toàn trường là $x+60$ (học sinh)
Số học sinh giỏi học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 nên
$$
x=\frac{40}{37} \text { số học sinh giỏi của học kì } 1 \text {. }
$$

Số học sinh giỏi của học kì 1 là
$$
x-\frac{8}{100}(x+60)+6=\frac{23}{25} x+\frac{6}{5}(\text { học sinh })
$$

Khi đó, $x=\frac{40}{37} \cdot\left(\frac{23}{25} x+\frac{6}{5}\right) \Rightarrow x=240$. Vậy số học sinh giỏi học kì 2 của trường là 240 học sinh.

Suy luận phản chứng

Bài viết này dành cho các em lớp 5, 6, 7

Các nhà toán học trong quá khứ đã làm việc chăm chỉ để khám phá bản chất của các chứng minh, và một loạt các kỹ thuật chứng minh đã được phát triển qua nhiều thế kỷ. Hôm nay, chúng tôi sẽ giới thiệu một phương pháp chứng minh quan trọng được gọi là bằng chứng do mâu thuẫn.

Ta thường gặp bài toán kiểu: Có A là đúng và cần suy ra X cũng đúng, trong một số trường hợp ta suy luận trực tiếp như sau: có A đúng thì có C đúng, có C đúng thì có D đúng, …, rồi suy ra X đúng, ở đây ta dùng A làm giả thiết để cho các suy luận sau. Tuy vậy một số tình huống ta không sử dụng được giả thiết A đúng, ta có thể dùng kĩ thuật suy luận phản chứng như sau: Giả sử X sai, tức là ta chấp nhận một giả thiết mới là X sai, từ giả thiết này ta dẫn đến một điều gì đó vô lí, hoặc dẫn đến A sai; khi đó điều giả sử đó là không đúng, tức là ta có điều cần chứng minh. Thế mạnh của suy luận phản chứng là mình có thêm một giả thiết để giúp trong việc suy luận dễ dàng hơn.

Ví dụ 1. Có tồn tại hay không số nguyên lẻ lớn nhất?

Lời giải Giả sử tồn tại số nguyên lẻ lớn nhất là $m$.

khi đó $m+2$ cũng là số lẻ và $m+2 > m$ nên mâu thuẫn vì theo giả sử thì $m$ là lớn nhất.

Vậy không có số nguyên lẻ lớn nhất.

Ví dụ 2. 5 cầu thủ bóng đá đã cùng nhau ghi được 14 bàn thắng, với mỗi cầu thủ ghi ít nhất 1 bàn. Chứng minh rằng ít nhất 2 trong số họ ghi được số bàn thắng như nhau. số bàn thắng.

Lời giải. Giả sử không có ai ghi số bàn thắng bằng nhau.

Khi đó người ghi ít nhất là 1 bàn, người kế tiếp ghi ít nhất là 2 bàn, người thứ 3 ghi ít nhất 3 bàn, cứ như thế người ghi nhiều nhất có số bàn thắng ít nhất là 5 bàn, khi đó tổng số bàn thắng của 5 người ít nhất là $1+2+3+4+5 = 15$ (mâu thuẫn).

Vậy có hai người ghi số bàn thắng bằng nhau.

Ví dụ 3. Quốc hội của một quốc gia được thành lập bởi các nghị sĩ đại diện từ 8 tỉnh. Năm mươi trong số các nghị sĩ này quyết định thành lập một ủy ban. Chứng minh rằng ủy ban này sẽ bao gồm 8 người từ cùng một tỉnh hoặc người từ tất cả 8 tỉnh.

Lời giải. Giả sử ủy bản mỗi tỉnh không có quá 7 người và chỉ đến từ 7 tỉnh trở lại, khi đó số thành viên ủy ban là không qua 49 người, mâu thuẫn.

Vậy trong ủy ban sẽ có một tỉnh có 8 người hoặc thành viên đến từ cả 8 tỉnh.

Ví dụ 4. Viết 10 số từ 0 đến 9 trên một vòng tròn, mỗi số viết đúng một lần.

a) Có tồn tại hay không cách viết sao cho tổng hai số liên tiếp không nhỏ hơn 9?
b) Có tồn tại hay không cách viết sau cho tổng 3 số liên tiếp lớn hơn 12?
Lời giải.

a) Giả sử tồn tại cách viết sao cho tổng hai số liên tiếp không nhỏ hơn 9, xét số 0 và hai số kề với 0 là $a, b$ ta có $0+a \geq 9, 0 + b \geq 9$, suy ra $a=b=9$ mâu thuẫn, vì mỗi số viết đúng 1 lần.

b) Giả sử tồn tại cách viết thỏa đề bài. Tổn các số là 45, bỏ số 9, và xếp 9 số còn lại làm ba nhóm, mỗi nhóm 3 số liên tiếp, khi đó tổng của chúng lớn hơn 36, tuy vậy ta thấy 9 số đó là $0, 1,2, \cdots 8$ tổng là 36, đây là điều mâu thuẫn.

Vậy không cách ghi thỏa đề bài.

Bài tập rèn luyện

Bài 1. Chứng minh rằng khi cho $n+1$ con thỏ vào $n$ cái chuồng thì có chuồng chứa ít nhất 2 con thỏ.

Bài 2. Cho 15 số thỏa mãn tổng của 8 số bất kì lớn nhơn tổng của 7 số còn lại. Chứng minh tất cả các số đã cho đều dương.

Bài 3. Tích của 22 số nguyên bằng 1. Chứng minh rằng tổng của chúng không thể bằng 0.

Bài 4. Có thể chia tập $X = \{1, 2, …, 2022\}$ thành các tập rời nhau sao cho mỗi tập có ít nhất 3 phần tử và phần tử lớn nhất bằng tổng các phần tử còn lại?

Bất đẳng thức trong tam giác

Định lý 1. Trong một tam giác tổng độ dài hai cạnh lớn hơn độ dài cạnh còn lại.

Chứng minh.

Giả thiết : $\triangle \mathrm{ABC}$.
Kết luận : $\mathrm{AC}+\mathrm{BC}>\mathrm{AB} ; \mathrm{AB}+$ $+\mathrm{BC}>\mathrm{AC} ; \mathrm{AB}+\mathrm{AC}>\mathrm{BC}$.

Trên tia đối của tia $\mathrm{CA}$ xác định điểm $\mathrm{D}$ sao cho $\mathrm{CL}=\mathrm{CB}$ (h. 94). Tia $\mathrm{BC}$ nằm giữa hai tia $\mathrm{BA}$ và
$\mathrm{BD}$, do đó : $\widehat{\mathrm{ABD}}>\mathrm{CBD}$. (1)

Theo cách xác định điểm $\mathrm{D}$ thì tam giác $\mathrm{BCD}$ là tam giác cân cạnh đáy $\mathrm{BD}$; do đó : $\widehat{\mathrm{CBD}}=\widehat{\mathrm{D}}$.
(2)

Từ (1) và $(2)$ suy ra: $\widehat{\mathrm{ABD}}>\widehat{\mathrm{D}}$.
Trong tam giác $\mathrm{ABD}$ : vì $\widehat{\mathrm{ABD}}>\widehat{\mathrm{D}}$ nên $\mathrm{AD}>\mathrm{AB}$. Ta biết $\mathrm{AD}=\mathrm{AC}+\mathrm{CD}=\mathrm{AC}+\mathrm{CB}$, do đó $\mathrm{AC}+\mathrm{CB}>\mathrm{AB}$.

Chứng minh tương tự cho các trường hợp còn lại.

Hệ quả. Trong một tam giác hiệu độ dài hai cạnh nhỏ hơn độ dài cạnh còn lại.

Ví dụ 1. Có thể có tam giác nào mà ba cạnh như sau không :
a) $5 \mathrm{~m}, 10 \mathrm{~m}, 12 \mathrm{~m}$;

b) $1 \mathrm{~m}, 2 \mathrm{~m}, 3,3 \mathrm{~m}$; c) $1,2 \mathrm{~m}, 1 \mathrm{~m}, 2,2 \mathrm{~m}$.

Ví dụ 2. Trong một tam giác cân, một cạnh bằng 25m, cạnh kia bằng $10 \mathrm{~m}$. Cạnh nào là cạnh đáy ? Vi sao ?

Ví dụ 3. Cho tam giác $ABC$ có $M$ là trung điểm của đoạn $AC$. Chứng minh

$2BM + AC > AB + BC$.

Bài tập.

  1. Tính chu vi tam giác cân $\mathrm{ABC}$ biết rằng :
    a) $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$.
    b) $\mathrm{AB}=25 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$.
  2. Cho điểm $M$ nằm trong tam giác $\mathrm{ABC}$. Chứng minh rằng tổng $\mathrm{MA}+\mathrm{MB}+\mathrm{MC}$ lớn hơn nửa chu vi nhưng nhỏ hơn chu vi tam giạc.
  3. Cho điểm $\mathrm{D}$ nằm trên cạnh $\mathrm{BC}$ của tam giác $\mathrm{ABC}$. Chứng minh rằng :
    $$
    \frac{A B+A C-B C}{2}<A D<\frac{A B+A C+B C}{2}
    $$

Quan hệ giữa cạnh và góc trong tam giác

Định lý 1. Trong một tam giác góc đối diện với cạnh lớn hơn là góc lớn hơn.

Chứng minh. Trên tia $\mathrm{AC}$ xác định điểm $\mathrm{B}^{\prime}$ sao cho $\mathrm{AB}^{\prime}=$ $\mathrm{AB}$ (h.88) ‘ tam giác $\mathrm{ABB}$ ‘ là tam giác cân cạnh đáy $\mathrm{BB}$ ‘, từ đó suy ra : $\widehat{\mathrm{ABB}^{\prime}}=\widehat{\mathrm{AB}^{\prime} \mathrm{B}}$ (1).

Vì $\mathrm{AB}^{\prime}<\mathrm{AC}$ nên điểm $\mathrm{B}^{\prime}$ nằm giữa hai điểm $\mathrm{A}$ và $\mathrm{C}$, từ đó suy $\mathrm{ra}$ : – tia $\mathrm{BB}^{\prime}$ nằm giữa hai tia $\mathrm{BA}$ và $\mathrm{BC}$, do đó : $\widehat{\mathrm{ABC}}>\widehat{\mathrm{ABB}^{\prime}}$ (2)

  • góc $\widehat{\mathrm{AB}^{\prime} \mathrm{B}}$ là góc ngoài ở đỉnh $\mathrm{B}^{\prime}$ của tam giác $\mathrm{BCB}$, do đó : $\widehat{\mathrm{AB}} \mathrm{B}>\widehat{\mathrm{C}}$. (3)

Từ (1) và (2) ta suy $\mathrm{ra} \widehat{\mathrm{ABC}}>$ $>\widehat{\mathrm{AB}^{\prime} \mathrm{B}}(4)$; từ (3) và (4) ta suy ra : $\widehat{\mathrm{B}}>\widehat{\mathrm{C}}$. Đó là điều phải chứng minh.

Định lý 2. Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.

Chứng minh.

Giả sử tam giác $\triangle \mathrm{ABC}, \widehat{\mathrm{B}}>\widehat{\mathrm{C}}$.
Ta cần chứng minh: $\mathrm{AC}>\mathrm{AB}$.
Chứng minh : Giả sử $A C=A B$, tam giác $A B C$ là tam giác cân cạnh đáy $\mathrm{BC}$, do đó $\widehat{\mathrm{B}}=\widehat{\mathrm{C}}$; đó là điều trái với giả thiết.

Giả sử $\mathrm{AC}<\mathrm{AB}$, theo định lí 1 , thì ta có $\widehat{\mathrm{B}}<\widehat{\mathrm{C}}$, đó cũng là điều trái với giả thiết.
Do đó $\mathrm{AC}>\mathrm{AB}$.

Hệ quả 1. Trong một tam giác vuông, cạnh huyền (cạnh đối diện góc vuông) là cạnh có độ dài lớn nhất.

Ví dụ 1.

a) So sánh các góc của tam giác $\mathrm{ABC}$ có $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$.
b) So sánh các cạnh của tam giác $\mathrm{ABC}$ có $\widehat{\mathrm{A}}=50^{\circ}, \widehat{\mathrm{C}}=50^{\circ}$.

Ví dụ 2.  Cho tam giác $\mathrm{ABC}$ có $\widehat{\mathrm{A}}=100^{\circ}, \widehat{\mathrm{B}}=40^{\circ}$.
a) Tim cạnh lớn nhất của tam giác $\mathrm{ABC}$.
b) Tam giác $\mathrm{ABC}$ là tam giác gi? Vì sao?

Ví dụ 3. Cho tam giác $\mathrm{ABC}$ vuông tại $\mathrm{A}$ có $\widehat{\mathrm{B}}>45^{\circ}$.
a) So sánh các cạnh của tam giác.
b) Lấy điểm $\mathrm{K}$ bất ki thuộc đoạn thẳng $\mathrm{AC}$. So sánh độ dài $\mathrm{BK}$ và $\mathrm{BC}$.

Bài tập 

  1. So sánh các góc của tam giác $\mathrm{ABC}$ biết rằng $\mathrm{AB}=4 \mathrm{~cm}$, $\mathrm{BC}=5 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$.
  2. So sánh các cạnh của tam giác $\mathrm{ABC}$ biết rằng $\widehat{\mathrm{A}}=92^{\circ}$, $\widehat{\mathrm{B}}=48^{\circ}$.
  3. Chứng minh rằng trong tam giác vuông cạnh huyển bao giờ cũng lớn hơn mỗi cạnh góc vuông.
  4. Chứng minh rằng trong một tam giác góc đối diện với cạnh nhỏ nhất là góc nhọn.
  5. Góc ở đáy của tam giác cân nhỏ hơn $60^{\circ}$, cạnh nào của tam giác cân là lớn nhất ?
  6. Chứng minh rằng : Nếu một tam giác có hai đường cao bằng nhau thì nó là tam giác cân.