Bất đẳng thức trong tam giác

Định lý 1. Trong một tam giác tổng độ dài hai cạnh lớn hơn độ dài cạnh còn lại.

Chứng minh.

Giả thiết : $\triangle \mathrm{ABC}$.
Kết luận : $\mathrm{AC}+\mathrm{BC}>\mathrm{AB} ; \mathrm{AB}+$ $+\mathrm{BC}>\mathrm{AC} ; \mathrm{AB}+\mathrm{AC}>\mathrm{BC}$.

Trên tia đối của tia $\mathrm{CA}$ xác định điểm $\mathrm{D}$ sao cho $\mathrm{CL}=\mathrm{CB}$ (h. 94). Tia $\mathrm{BC}$ nằm giữa hai tia $\mathrm{BA}$ và
$\mathrm{BD}$, do đó : $\widehat{\mathrm{ABD}}>\mathrm{CBD}$. (1)

Theo cách xác định điểm $\mathrm{D}$ thì tam giác $\mathrm{BCD}$ là tam giác cân cạnh đáy $\mathrm{BD}$; do đó : $\widehat{\mathrm{CBD}}=\widehat{\mathrm{D}}$.
(2)

Từ (1) và $(2)$ suy ra: $\widehat{\mathrm{ABD}}>\widehat{\mathrm{D}}$.
Trong tam giác $\mathrm{ABD}$ : vì $\widehat{\mathrm{ABD}}>\widehat{\mathrm{D}}$ nên $\mathrm{AD}>\mathrm{AB}$. Ta biết $\mathrm{AD}=\mathrm{AC}+\mathrm{CD}=\mathrm{AC}+\mathrm{CB}$, do đó $\mathrm{AC}+\mathrm{CB}>\mathrm{AB}$.

Chứng minh tương tự cho các trường hợp còn lại.

Hệ quả. Trong một tam giác hiệu độ dài hai cạnh nhỏ hơn độ dài cạnh còn lại.

Ví dụ 1. Có thể có tam giác nào mà ba cạnh như sau không :
a) $5 \mathrm{~m}, 10 \mathrm{~m}, 12 \mathrm{~m}$;

b) $1 \mathrm{~m}, 2 \mathrm{~m}, 3,3 \mathrm{~m}$; c) $1,2 \mathrm{~m}, 1 \mathrm{~m}, 2,2 \mathrm{~m}$.

Ví dụ 2. Trong một tam giác cân, một cạnh bằng 25m, cạnh kia bằng $10 \mathrm{~m}$. Cạnh nào là cạnh đáy ? Vi sao ?

Ví dụ 3. Cho tam giác $ABC$ có $M$ là trung điểm của đoạn $AC$. Chứng minh

$2BM + AC > AB + BC$.

Bài tập.

  1. Tính chu vi tam giác cân $\mathrm{ABC}$ biết rằng :
    a) $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$.
    b) $\mathrm{AB}=25 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$.
  2. Cho điểm $M$ nằm trong tam giác $\mathrm{ABC}$. Chứng minh rằng tổng $\mathrm{MA}+\mathrm{MB}+\mathrm{MC}$ lớn hơn nửa chu vi nhưng nhỏ hơn chu vi tam giạc.
  3. Cho điểm $\mathrm{D}$ nằm trên cạnh $\mathrm{BC}$ của tam giác $\mathrm{ABC}$. Chứng minh rằng :
    $$
    \frac{A B+A C-B C}{2}<A D<\frac{A B+A C+B C}{2}
    $$

Leave a Reply

Your email address will not be published. Required fields are marked *