Category Archives: Lớp 6

Suy luận phản chứng

Bài viết này dành cho các em lớp 5, 6, 7

Các nhà toán học trong quá khứ đã làm việc chăm chỉ để khám phá bản chất của các chứng minh, và một loạt các kỹ thuật chứng minh đã được phát triển qua nhiều thế kỷ. Hôm nay, chúng tôi sẽ giới thiệu một phương pháp chứng minh quan trọng được gọi là bằng chứng do mâu thuẫn.

Ta thường gặp bài toán kiểu: Có A là đúng và cần suy ra X cũng đúng, trong một số trường hợp ta suy luận trực tiếp như sau: có A đúng thì có C đúng, có C đúng thì có D đúng, …, rồi suy ra X đúng, ở đây ta dùng A làm giả thiết để cho các suy luận sau. Tuy vậy một số tình huống ta không sử dụng được giả thiết A đúng, ta có thể dùng kĩ thuật suy luận phản chứng như sau: Giả sử X sai, tức là ta chấp nhận một giả thiết mới là X sai, từ giả thiết này ta dẫn đến một điều gì đó vô lí, hoặc dẫn đến A sai; khi đó điều giả sử đó là không đúng, tức là ta có điều cần chứng minh. Thế mạnh của suy luận phản chứng là mình có thêm một giả thiết để giúp trong việc suy luận dễ dàng hơn.

Ví dụ 1. Có tồn tại hay không số nguyên lẻ lớn nhất?

Lời giải

Ví dụ 2. 5 cầu thủ bóng đá đã cùng nhau ghi được 14 bàn thắng, với mỗi cầu thủ ghi ít nhất 1 bàn. Chứng minh rằng ít nhất 2 trong số họ ghi được số bàn thắng như nhau. số bàn thắng.

Lời giải.

Ví dụ 3. Quốc hội của một quốc gia được thành lập bởi các nghị sĩ đại diện từ 8 tỉnh. Năm mươi trong số các nghị sĩ này quyết định thành lập một ủy ban. Chứng minh rằng ủy ban này sẽ bao gồm 8 người từ cùng một tỉnh hoặc người từ tất cả 8 tỉnh.

Lời giải.

Ví dụ 4. Viết 10 số từ 0 đến 9 trên một vòng tròn, mỗi số viết đúng một lần.

a) Có tồn tại hay không cách viết sao cho tổng hai số liên tiếp không nhỏ hơn 9?
b) Có tồn tại hay không cách viết sau cho tổng 3 số liên tiếp lớn hơn 12?
Lời giải.

Bài tập rèn luyện

Bài 1. Chứng minh rằng khi cho $n+1$ con thỏ vào $n$ cái chuồng thì có chuồng chứa ít nhất 2 con thỏ.

Bài 2. Cho 15 số thỏa mãn tổng của 8 số bất kì lớn nhơn tổng của 7 số còn lại. Chứng minh tất cả các số đã cho đều dương.

Bài 3. Tích của 22 số nguyên bằng 1. Chứng minh rằng tổng của chúng không thể bằng 0.

Bài 4. Có thể chia tập $X = \{1, 2, …, 2022\}$ thành các tập rời nhau sao cho mỗi tập có ít nhất 3 phần tử và phần tử lớn nhất bằng tổng các phần tử còn lại?

Chia hết và chia có dư. Tính chất của phép chia.

Định nghĩa. 

Cho hai số tự nhiên a và $\mathrm{b}$, trong đó b khác 0 . Ta luôn tìm được đúng hai số tự nhiên $\mathrm{q}$ và $\mathrm{r}$ sao cho $\mathrm{a}=\mathrm{b} \cdot \mathrm{q}+\mathrm{r}$, trong đó $0 \leq \mathrm{r}<\mathrm{b}$. Ta gọi $\mathrm{q}$ và $\mathrm{r}$ lần lượt là thương và số $\mathrm{du}$ trong phép chia a cho $\mathrm{b}$.

  • Nếu $\mathrm{r}=0$ tức $\mathrm{a}=\mathrm{b} \cdot \mathrm{q}$, ta nói a chia hết cho $\mathrm{b}$, kí hiệu a $\vdots \mathrm{b}$ hay $b|a$ và ta có phép chia hết $\mathrm{a}: \mathrm{b}=\mathrm{q}$.
  • Nếu $\mathrm{r} \neq 0$, ta nói a không chia hết cho $\mathrm{b}$, kí hiệu $\mathrm{b} \not| \mathrm{a}$ và ta có phép chia có dư.

Tính chất 

Cho $a, b, c,n$ là các số tự nhiên $n \neq 0$, khi đó ta có các tính chất sau:

  • $a, b$ chia hết cho $n$ thì $a+b$ và $a-b$ (giả sử $a \geq b$) chia hết cho $n$.
  • Nếu $a$ chia hết cho $n$ và $b$ không chia hết cho $n$ thì $a+b$ và $a-b$ không chia hết cho $n$.
  • Nếu $a, b, c$ cùng chia hết cho $n$ thì $a+b+c$ và $a+b-c$ cũng chia hết cho $n$.
  • Nếu $a, b$ chia hết cho $n$ và $c$ không chia hết cho $n$ thì $a+b-c$ không chia hết cho $n$.

Bài tập sách giáo khoa

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 23) Khẳng định nào sau đây là đúng, khẳng định nào là sai?
a) $1560+390$ chia hết cho 15 ;
b) $456+555$ không chia hết cho 10 ;
c) $77+49$ không chia hết cho 7 ;
d) $6624-1806$ chia hết cho 6 .

Lời giải


Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 23) Trong các phép chia sau, phép chia nào là phép chia hết, phép chia nào là phép chia có dư? Viết kết quả phép chia dạng $\mathrm{a}=\mathrm{b} \cdot \mathrm{q}+\mathrm{r}$, với $0 \leq \mathrm{r}<\mathrm{b}$.
a) $144: 3$;
b) $144: 13$;
c) $144: 30$.

Lời giải

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 23) Tìm các số tự nhiên $q$ và r biết cách viết kết quả phép chia có dạng như sau:
a) $1298=354 q+r(0 \leq r<354)$
b) $40685=985 \mathrm{q}+\mathrm{r}(0 \leq \mathrm{r}<985)$.

Lời giải

Bài 4. (SGK CTST Toán 6 Tập 1 – Trang 23) Trong phong trào xây dựng “nhà sách của chúng ta”, lớp $6 \mathrm{~A}$ thu được 3 loại sách do các bạn trong lớp đóng góp: 36 quyển truyện tranh, 40 quyển truyện ngắn và 15 quyển thơ. Có thể chia số sách đã thu được thành 4 nhóm với số lượng quyển bằng nhau không? Vì sao?

Lời giải

Bài tập rèn luyện

Chia hết và chia có dư

1.Phép chia hết

2.Tính chất

3.Tính chất 2.

4.Bài tập rèn luyện

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 24) Khẳng định nào sau đây là đúng, khẳng định nào là sai?
a) $1560+390$ chia hết cho 15 ;
b) $456+555$ không chia hết cho 10 ;
c) $77+49$ không chia hết cho 7 ;
d) $6624-1806$ chia hết cho 6 .
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 24)Trong các phép chia sau, phép chia nào là phép chia hết, phép chia nào là phép chia có dư? Viết kết quả phép chia dạng $\mathrm{a}=\mathrm{b} \cdot \mathrm{q}+\mathrm{r}$, với $0 \leq \mathrm{r}<\mathrm{b}$.
a) $144: 3$;
b) $144: 13$;
c) $144: 30$.
Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 24) Tìm các số tự nhiên $q$ và $r$ biết cách viết kết quả phép chia có dạng như sau:
a) $1298=354 \mathrm{q}+\mathrm{r}(0 \leq \mathrm{r}<354)$
b) $40685=985 \mathrm{q}+\mathrm{r}(0 \leq \mathrm{r}<985)$.
Bài 4. (SGK CTST Toán 6 Tập 1 – Trang 24) Trong phong trào xây dựng “nhà sách của chúng ta”, lớp 6 A thu được 3 loại sách do các bạn trong lớp đóng góp: 36 quyển truyện tranh, 40 quyển truyện ngắn và 15 quyển thơ. Có thể chia số sách đã thu được thành 4 nhóm với số lượng quyển bằng nhau không? Vì sao?

So sánh hai phân số

1.So sánh hai phân số cùng mẫu.

Trong hai phân số có cùng mẫu dương, phân số nào có tử lớn hơn thì lớn hơn, phân số nào có tử nhỏ hơn thì nhỏ hơn.

Ví dụ 1. So sánh $\frac{-3}{5}$ và $\frac{-7}{5}$.
Giải
Ta có $-7<-3$ và $5>0$ nên $\frac{-7}{5}<\frac{-3}{5}$.

Chú ý: Với hai phân số có cùng một mẫu nguyên âm, ta đưa chúng về hai phân số có cùng mẫu nguyên dương rồi so sánh.

2. So sánh hai phân số khác mẫu.

Để so sánh hai phân số khác mẫu, ta đưa hai phân số đó về hai phân số có cùng mẫu dương rồi so sánh hai phân số mới nhận được.

Ví dụ 2: So sánh $\dfrac{-4}{-15}$ và $\dfrac{-2}{-9}$.
Giải
Ta có: $\dfrac{-4}{-15}=\dfrac{4}{15}=\dfrac{4.9}{15.9}=\dfrac{36}{135} ; \dfrac{-2}{-9}=\dfrac{2}{9}=\dfrac{2.15}{9.15}=\dfrac{30}{135}$.
Vì $\dfrac{36}{135}>\dfrac{30}{135}$ nên $\dfrac{-4}{-15}>\dfrac{-2}{-9}$.

3. Các ví dụ.

Ví dụ 3. So sánh:
a) $\dfrac{-21}{10}$ và 0 ;
b) 0 và $\dfrac{-5}{-2}$;
c) $\dfrac{-21}{10}$ và $\dfrac{-5}{-2}$.
Ví dụ 4. Bạn Nam rất thích ăn sô cô la. Mẹ Nam có một thanh sô cô la, mẹ cho Nam
chọn $\ddfrac{1}{2}$ hoặc $\dfrac{2}{3}$ thanh sô cô la đó. Theo em bạn Nam sẽ chọn phần nào?

4. Bài tập sách giáo khoa

Bài 1. (SGK Toán 6 tập 2 – Trang 15) So sánh hai phân số.
a) $\frac{-3}{8}$ và $\frac{-5}{24}$;
b) $\frac{-2}{-5}$ và $\frac{3}{-5}$;
c) $\frac{-3}{-10}$ và $\frac{-7}{-20}$;
d) $\frac{-5}{4}$ và $\frac{23}{-20}$.
Bài 2. (SGK Toán 6 tập 2 – Trang 15) Căn cứ vào chiều cao trung bình của học sinh, người ta đưa ra chuẩn chiều cao bàn, ghế học sinh như sau :
Chiều cao ghế bằng chiều cao cơ thể nhân với 0,27 . Chiều cao bàn bằng chiều cao cơ thể nhân với 0,46 . Em hãy tính xem, với một học sinh cao $1,5 \mathrm{~m}$ như trong hình thì chiều cao ghế và chiều cao bàn là bao nhiêu thì thích hợp. Ghi kết quả dưới dạng phân số.

Bài 3. (SGK Toán 6 tập 2 – Trang 15)

a) So sánh $\frac{-11}{5}$ và $\frac{-7}{4}$ với $-2$ bằng cách viết $-2$ ở dạng phân số có mẫu số thích hợp. Từ đó suy ra kết quả so sánh $\frac{-11}{5}$ với $\frac{-7}{4}$.
b) So sánh $\frac{2020}{-2021}$ với $\frac{-2022}{2021}$.

Bài 4. (SGK Toán 6 tập 2 – Trang 15)

Sắp xếp các số $2 ; \frac{5}{-6} ; \frac{3}{5} ;-1 ; \frac{-2}{5} ; 0$ theo thứ tự tăng dần.

Tính chất cơ bản của phân số

1. Tính chất 1.

Nếu nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số mới bằng phân số đã cho.

Ví dụ 1.

a) $\dfrac{-5}{6}=\frac{(-5) \cdot 6}{6.6}=\dfrac{-30}{36}$;

b) $\dfrac{-5}{6}=\frac{(-5) \cdot(-9)}{6 \cdot(-9)}=\dfrac{45}{-54}$.

  • Có thể biểu diễn số 12 ở dạng phân số có mẫu số là $-5$ như sau: $12=\dfrac{12}{1}=\dfrac{12 \cdot(-5)}{1 .(-5)}=\dfrac{-60}{-5}$.

Nhận xét: Có thể biểu diễn số nguyên ở dạng phân số với mẫu số (khác 0 ) tuỳ ý.

  • Áp dụng tính chất 1 , ta có thể quy đồng mẫu số hai phân số bằng cách nhân tử và mẫu của mổi phân số với số nguyên thích hợp.

Giải:

Ta thực hiện $\dfrac{7}{-6}=\dfrac{7.10}{-6.10}=\dfrac{70}{-60} ; \quad \dfrac{-15}{10}=\dfrac{-15 \cdot(-6)}{10 \cdot(-6)}=\dfrac{90}{-60}$.

Nhận xét: Mẫu số giống nhau ở hai phân số là $-60$ còn gọi là $m \tilde{a}$ áu số chung của hai phân số. Khi quy đồng mẫu số hai phân số, có thể có nhiều cách chọn mẫu số chung. Chúý: Có thể quy đồng mẫu số của nhiều phân số bằng cách tìm mẫu số chung của nhiều phân số.

Ví dụ 3. Quy đồng mẫu số của ba phân số $\dfrac{3}{4} ; \dfrac{2}{5}$ và $\dfrac{-7}{3}$.

Ta thực hiện $\dfrac{3}{4}=\dfrac{3.15}{4.15}=\dfrac{45}{60} ; \dfrac{2}{5}=\dfrac{2 \cdot 12}{5.12}=\dfrac{24}{60} ; \dfrac{-7}{3}=\dfrac{-7 \cdot 20}{3.20}=\dfrac{-140}{60}$.
Mẫu số chung của ba phân số trên là 60 .

 

2. Tính chất 2

Nếu chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số mới bằng phân số đã cho.

Ví dụ 4.
a) $\dfrac{-35}{60}=\dfrac{(-35): 5}{60: 5}=\dfrac{-7}{12}$;
b) $\dfrac{12}{-27}=\dfrac{12:(-3)}{-27:(-3)}=\dfrac{-4}{9}$.

Áp dụng tính chất 2 , ta có thể rút gọn phân số bằng cách chia cả tử và mẫu cho cùng ước
chung khác 1 và $-1$.

Ví dụ 5. Rút gọn phân số $\dfrac{12}{-52}$.

Giải.

Ta có: $\dfrac{12}{-52}=\dfrac{12: 4}{(-52): 4}=\dfrac{3}{-13}$.

3. Bài tập sách giáo khoa

Bài 1. Áp dụng tính chất 1 và tính chất 2 để tìm một phân số bằng mỗi phân số sau:
a) $\dfrac{21}{13}$;
b) $\dfrac{12}{-25}$;
c) $\dfrac{18}{-48}$;
d) $\dfrac{-42}{-24}$.

Bài 2. Rút gọn các phân số sau: $\dfrac{12}{-24} ; \dfrac{-39}{75} ; \dfrac{132}{-264}$.

Bài 3. Viết mỗi phân số dưới đây thành phân số bằng nó có mẫu số dương:
$$
\dfrac{1}{-2} ; \dfrac{-3}{-5} ; \dfrac{2}{-7}
$$
Bài 4. Dùng phân số có mẫu số dương nhỏ nhất để biểu thị xem số phút sau đây chiếm bao nhiêu phần của mộ\operatorname{tg} i ờ ? ~
a) 15 phút;
b) 20 phút;
c) 45 phút;
d) 50 phút.

Bài 5. Dùng phân số để viết mỗi khối lượng sau theo tạ, theo tấn.
a) $20 \mathrm{~kg}$;
b) $55 \mathrm{~kg}$
c) $87 \mathrm{~kg}$
d) $91 \mathrm{~kg}$.

Bài 6. Dùng phân số có mẫu số dương nhỏ nhất biểu thị phần tô màu trong mỗi hình sau.

Phân số

1.Phân số là gì?

Ta gọi $\dfrac{\mathrm{a}}{\mathrm{b}}$, trong đó $\mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{b} \neq 0$ là phân số, a là tử số (tử) và b là mẫu số (mẫu) của phân số. Phân số $\dfrac{\mathrm{a}}{\mathrm{b}}$ đọc là a phần b.

Ví du 1: Phân số $\dfrac{7}{-8}$ có tử số là 7 , mẫu số là $-8$ và được đọc là “bảy phần âm tám”.

Chú ý: Ta có thể dùng phân số để ghi (viết, biểu diễn) kết quả phép chia một số nguyên cho một số nguyên khác $0 .$
Vi du 2: Phân số $\frac{2}{-5}$ là ghi kết quả phép chia 2 cho $-5$.

2.Hai phân số bằng nhau.

Hai phân số $\dfrac{\mathrm{a}}{\mathrm{b}}$ và $\dfrac{\mathrm{c}}{\mathrm{d}}$ được gọi là bằng nhau, viết là $\dfrac{\mathrm{a}}{\mathrm{b}}=\dfrac{\mathrm{c}}{\mathrm{d}}$, nếu $\mathrm{a} \cdot \mathrm{d}=\mathrm{b} \cdot \mathrm{c}$.
Ví dụ 3

a) $\dfrac{-12}{-15}=\dfrac{8}{10}$ vì $(-12) \cdot 10=(-15) .8$ (cùng bằng $-120$ ).

b) $\dfrac{9}{8}$ không bằng $\dfrac{5}{4}$, vì $9.4$ không bằng $8.5$. Viết: $\frac{9}{8} \neq \frac{5}{4}$.

Chú ý: Điều kiện $\mathrm{a} \cdot \mathrm{d}=\mathrm{b}$. $\mathrm{c}$ gọi là điều kiện bằng nhau của hai phân số $\dfrac{\mathrm{a}}{\mathrm{h}}$ và $\dfrac{\mathrm{c}}{\mathrm{d}}$.

3. Biểu diễn số nguyên.

Mỗi số nguyên $\mathrm{n}$ có thể coi là phân số $\dfrac{\mathrm{n}}{1}$ (viết $\dfrac{\mathrm{n}}{1}=\mathrm{n}$ ). Khi đó số nguyên $\mathrm{n}$ được biểu diễn ở dang phân số $\dfrac{\mathrm{n}}{1}$.
Ví dụ 4: $\dfrac{-7}{1}=-7 ; 125=\dfrac{125}{1} .$

Bài tập sách giáo khoa

Bài 1. Vẽ lại hình vẽ bên và tô màu để phân số biểu thị phần tô màu bằng $\dfrac{5}{12}$.

Bài 2. Đọc các phân số sau.
a) $\dfrac{13}{-3}$;
b) $\dfrac{-25}{6}$;
c) $\dfrac{0}{5}$;
d) $\dfrac{-52}{5}$.

Bài 3. Một bể nước có 2 máy bơm để cấp và thoát nước. Nếu bể chưa có nước, máy bơm thứ nhất sẽ bơm đầy bể trong 3 giờ. Nếu bể đầy nước, máy bơm thứ hai sẽ hút hết nước trong bể sau 5 giờ. Dùng phân số có tử số là số âm hay số dương thích hợp để biểu thị lượng nước mỗi máy bơm bơm được sau 1 giờ so với lượng nước mà bể chứa được.

Bài 4. Tìm cặp phân số bằng nhau trong các cặp phân số sau:
a) $\dfrac{-12}{16}$ và $\dfrac{6}{-8}$;
b) $\dfrac{-17}{76}$ và $\dfrac{33}{88}$.

Bài 5. Viết các số nguyên sau ở dạng phân số.
a) 2 ;
b) $-5$;
c) $0 .$

Số nguyên: Phép nhân và phép chia

Phép nhân hai số nguyên khác dấu.

  • Tích của hai số nguyên khác dấu luôn luôn là một số nguyên âm.
  • Khi nhân hai số nguyên khác dấu, ta nhân số dương với số đối của số âm rồi thêm dấu trừ $(-)$ trước kết quả nhận được.
    Chú ý: Cho hai số nguyên dương a và $\mathrm{b}$, ta có:
    $$
    \begin{aligned}
    &(+a) \cdot(-b)=-a \cdot b \
    &(-a) \cdot(+b)=-a \cdot b
    \end{aligned}
    $$

Ví dụ 1.

$2 \cdot(-3)=-(2 \cdot 3)=-6 ; $
$(-5) \cdot(4)=-(5 \cdot 4)=-20 ; $
$(-3) \cdot(+50)=-(3 \cdot 50)=-150 ; $
$(+3) \cdot(-50)=-(3.50)=-150$

Phép nhân hai số nguyên cùng dấu

  • Khi nhân hai số nguyên cùng dương, ta nhân chúng như nhân hai số tự nhiên.
  • Khi nhân hai số nguyên cùng âm, ta nhân hai số đối của chúng.

Chú ý:

  • Cho hai số nguyên dương a và b, ta có: $(-a) \cdot(-b)=(+a) \cdot(+b)=a \cdot b$.
  • Tích của hai số nguyên cùng dấu luôn luôn là một số nguyên dương.

Ví dụ 2:

$3.50=150$; $(-3) \cdot(-50)=3 \cdot 50=150 ;$
$(-3) \cdot(-6)=3 \cdot 6=18$

Tính chất phép nhân

Tính chất giao hoán

$$a\cdot b = b \cdot a$$

Chú ý:
$1=1 . \mathrm{a}=\mathrm{a} ;$
$0=0 . \mathrm{a}=0 .$

Cho hai số nguyên $\mathrm{x}, \mathrm{y}$ :
Nếu $\mathrm{x} \cdot \mathrm{y}=0$ thì $\mathrm{x}=0$ hoặc $\mathrm{y}=0$.
Ví dụ 3. Nếu $(\mathrm{a}+1) \cdot(\mathrm{a}-6)=0$ thì
$\mathrm{a}+1=0$ hoặc $\mathrm{a}-6=0 .$
Suy ra $\mathrm{a}=-1$ hoặc $\mathrm{a}=6$.

Tính chất kết hợp 

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

Ví dụ 4.

$(4 \cdot(-3)) \cdot(-2)=4 \cdot ((-3) \cdot(-2))=4 \cdot(3 \cdot 2)=24$

Chú ý: Áp dụng tính chất kết hợp của phép nhân, ta có thể viết tích của nhiều số nguyên:
$$
\text { a } \cdot b \cdot c=a \cdot(b \cdot c)=(a \cdot b) \cdot c
$$

Tính chất phân phối phép nhân đối với phép cộng, phép trừ

$$ a \cdot (b+c) = a \cdot b + a \cdot c$$

$$ a \cdot (b-c) = a \cdot b – a \cdot c$$

Ví dụ 5. 

$(-5) \cdot 18+(-5) \cdot 83+(-5) \cdot(-1)=(-5) \cdot(18+83-1)=(-5) \cdot(100)=-500$

Quan hệ giữa phép chia và phép chia hết trong tập các số nguyên.

Cho $\mathrm{a}, \mathrm{b} \in \mathbb{Z}$ và $\mathrm{b} \neq 0$. Nếu có số nguyên q sao cho $\mathrm{a}=\mathrm{bq}$ thì
– Ta nói a chia hết cho b, kí hiệu là a $\vdots$ b.
– Trong phép chia hết, dấu của thương hai số nguyên cũng giống như dấu của tích.

Ta gọi q là thương của phép chia a cho $\mathrm{b}$, kí hiệu
là $\mathrm{a}: \mathrm{b}=\mathrm{q}$.

Ví dụ 6. Ta có $-12=3 \cdot(-4)$ nên ta nói:
– $-12$ chia hết cho $-4$.
– $-12:(-4)=3$.
– 3 là thương của phép chia $-12$ cho $-4$.

Bội và ước của một số nguyên.

Cho $\mathrm{a}, \mathrm{b} \in \mathbb{Z}$. Nếu a $\vdots \mathrm{b}$ thì ta nói a là bội của $\mathrm{b}$ và $\mathrm{b}$ là ước của $\mathrm{a}$.
Vi du 7: Ta có $(-12) \vdots(-4)$ nên ta nói $-12$ là bội của $-4$ và $-4$ là ước của $-12$.

Bài tập rèn luyện

Bài 1. Tính:
a) $(-3) .7$
b) $(-8) \cdot(-6)$
c) $(+12) \cdot(-20)$
d) $24 .(+50)$.
Bài 2. Tìm tích $213.3$. Từ đó suy ra nhanh kết quả của các tích sau:
a) $(-213) \cdot 3$;
b) $(-3) \cdot 213 ;$
c) $(-3) \cdot(-213)$
Bài 3. Không thực hiện phép tính, hãy so sánh:
a) $(+4) \cdot(-8)$ với 0 ;
b) $(-3) .4$ với 4;
c) $(-5) \cdot(-8)$ với $(+5) \cdot(+8)$
Bài 4. Thực hiện phép tính:
a) $(-3) \cdot(-2) \cdot(-5) \cdot 4$
b) $3 \cdot 2 \cdot(-8) \cdot(-5)$
Bài 5. Một kho lạnh đang ở nhiệt độ $8^{\circ} \mathrm{C}$, một công nhân cần đặt chế độ làm cho nhiệt độ của kho trung bình cứ mỗi phú\operatorname{tg} i ả m ~ đ i ~ $2{ }^{\circ} \mathrm{C}$. Hỏi sau 5 phút nữa nhiệt độ trong kho là bao nhiêu?
Bài 6. Bạn Hồng đang ngồi trên máy bay, bạn ấy thấy màn hình thông báo nhiệt độ bên ngoài máy bay là $-28^{\circ} \mathrm{C}$. Máy bay đang hạ cánh, nhiệt độ bên ngoài trung bình mỗi phút tăng lên $4{ }^{\circ} \mathrm{C}$. Hỏi sau 10 phút nữa nhiệt độ bên ngoài máy bay là bao nhiêu độ $\mathrm{C} ?$
Bài 7. Tìm số nguyên $\mathrm{x}$, biết:
a) $(-24) \cdot \mathrm{x}=-120$;
b) $6 . \mathrm{x}=24$
Bài 8. Tìm hai số nguyên khác nhau a và b thoả mãn a $\vdots$ b và $b \vdots$ a.
Bài 9. Tìm tất cả các ước của các số nguyên sau: $6 ;-1 ; 13 ;-25$.
Bài 10. Tìm ba bội của: $5 ;-5$.
Bài 11. Nhiệt độ đầu tuần tại một trạm nghiên cứu ở Nam Cực là $-25^{\circ} \mathrm{C}$. Sau 7 ngày nhiệt độ tại đây là $-39^{\circ} \mathrm{C}$. Hỏi trung bình mỗi ngày nhiệt độ thay đồi bao nhiêu độ C?
Bài 12. Sau một quý kinh doanh, bác Ba lãi được 60 triệu đồng, còn chú Tư lại lỗ 12 triệu đồng. Em hãy tính xem bình quân trong một tháng mỗi người lãi hay lỗ bao nhiêu tiền.

Cộng trừ hai số nguyên

1.Cộng hai số nguyên cùng dấu

  • – Muốn cộng hai số nguyên dương, ta cộng chúng như cộng hai số tự nhiên.
    – Muốn cộng hai số nguyên âm, ta cộng hai số đối của chúng rồi thêm dấu trừ đằng trước kết quả.
    – Tổng của hai số nguyên cùng dấu luôn cùng dấu với hai số nguyên đó.

Chú ý. Nếu $a, b$ là các số nguyên dương.

  • $(+a) +(+b) = a+b$
  • $(-a) + (-b) = -(a+b)$.

Ví dụ 1. 

a)  $ (+2) +(+5) = 2+5 = 7$

b) $ (-4) + (-6) = -(4+6) = -10$.

2. Cộng hai số nguyên khác dấu

  • Cộng hai số nguyên đối nhau: $a+(-a) = 0$.

  • Công hai số nguyên khác dấu không đối nhau ta làm như sau:

  • Nếu số dương lớn hơn số đối của số âm thì ta lấy số dương trừ đi số đối của số âm.
  • Nếu số dương bé hơn số đối của số âm thì ta lấy số đối của số âm trừ đi số dương rồi thêm dấu trừ trước kết quả.

Chú ý. Khi cộng hai số nguyên trái dấu:
– Nếu số dương lớn hơn số đối của số âm thì ta có tổng dương.
– Nếu số dương bằng số đối của số âm thì ta có tổng bằng $0 .$
– Nếu số dương bé hơn số đối của số âm thì ta có tổng âm.

Ví dụ 2.

a) $97+(-83)=97-83=14($ vì $97>83)$;
b) $45+(-45)=0$;
c) $22+(-64)=-(64-22)=-42($ vì $64>22$ ).

3. Tính chất của phép cộng các số nguyên

a) Tính chất giao hoán

$$a + b = b+ a$$

b) Tính chất kết hợp

$$ a + (b+c) = (a+b) + c$$

Ví dụ 3. Tính một cách hợp lí:
a) $\mathrm{S}=12+(-91)+188+(-9)+400$
b) $\mathrm{~T}=(-2019)+100+(-81)+2000$

Lời giải

a) $\mathrm{S}=12+(-91)+188+(-9)+400$
$=12+188+400+(-91)+(-9)$ (tính chấ\operatorname{tg} i a o ~ h o á n ~ v à ~ k ế t ~ h ợ p ) ~
$=200+400+(-100)$
$=600-100$
$=500 .$
b) $\mathrm{T}=(-2019)+100+(-81)+2000$
(bỏ dấu ngoặc)
$=(-2019)+(-81)+100+2000 \quad$ (tính chấ\operatorname{tg} i a o ~ h o á n ~ v à ~ k ế t ~ h ợ p ) ~
$=-2100+2100=0$
(tổng hai số đối nhau)

4. Phép trừ hai số nguyên

Muốn trừ số nguyên a cho số nguyên $\mathrm{b}$, ta cộng a với số đối của $\mathrm{b}$.
$$
a-b=a+(-b)
$$

 

Ví dụ 4.

\begin{aligned}
&5:(+5)-(+2)=5+(-2)=5-2=3 \
&1-2=1+(-2)=-(2-1)=-1 ; \
&1-(-2)=1+2=3 ; \
&(-10)-(-12)=(-10)+(12)=12-10=2 .
\end{aligned}

Chú ý
– Cho hai số nguyên a và b. Ta gọi $\mathrm{a}-\mathrm{b}$ là hiệu của a và $\mathrm{b}$ (a được gọi là số bị trừ, $\mathrm{b}$ là số trừ).
– Phép trừ luôn thực hiện được trong tập hợp số nguyên. Như vậy, hiệu của hai số nguyên a và $\mathrm{b}$ là tổng của a và số đối của $\mathrm{b}$.

5. Quy tắc dấu ngoặc

Khi bỏ dấu ngoặc, nếu đằng trước dấu ngoặc:
– có dấu “+”, thì vẫn giữ nguyên dấu của các số hạng trong ngoặc
$$
+(a+b-c)=a+b-c
$$
– có dấu “-“, thì phải đổi dấu tất cả các số hạng trong ngoặc
$$
-(a+b-c)=-a-b+c
$$

Bài tập rèn luyện

Bài 1. Thực hiện các phép tính sau:
a) $23+45$;
b) $(-42)+(-54)$;
c) $2025+(-2025)$;
d) $15+(-14)$;
e) $35+(-135)$.
Bài 2. Em hãy dùng số nguyên âm để giải bài toán sau:
Một chiếc tàu ngầm đang ở độ sâu $20 \mathrm{~m}$, tàu tiếp tục lặn xuống thêm $15 \mathrm{~m}$ nữa. Hỏi khi đó, tàu ngầm ở độ sâu là bao nhiêu mét?

Bài 3. Thực hiện các phép tính sau:
a) $6-8$
b) $3-(-9)$
c) $(-5)-10$;
d) $0-7$;
e) $4-0$;
g) $(-2)-(-10)$
Bài 4. Tính nhanh các tổng sau:
a) $\mathrm{S}=(45-3756)+3756$;
b) $\mathrm{S}=(-2021)-(199-2021)$.
Bài 5. Bỏ dấu ngoặc rồi tính:
a) $(4+32+6)+(10-36-6)$;
b) $(77+22-65)-(67+12-75)$;
c) $-(-21+43+7)-(11-53-17)$

Thứ tự của số nguyên

So sánh hai số nguyên

Khi biểu diễn hai số nguyên a, b trên trục số nằm ngang, nếu điểm a nằm bên trái điểm b thì ta nói a nhỏ hơn b hoặc b lớn hơn a và ghi là: $\mathrm{a}<\mathrm{b}$ hoặc $\mathrm{b}>\mathrm{a}$.

Nhận xét:
– Mọi số nguyên dương đều lớn hơn số 0 .
– Mọi số nguyên âm đều nhỏ hơn số 0 .
– Mọi số nguyên âm đều nhỏ hơn bất kì số nguyên dương nào.
– Với hai số nguyên âm, số nào có số đối lớn hơn thì số đó nhỏ hơn.

Ví dụ 1. So sánh các cặp số nguyên sau:

a) – 10 và -8

b) 3 và -14

c) 0 và – 2

Lời giải

Ví dụ 2. Cho ba số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ và biết:
$$
\mathrm{a}>2 ; \quad \mathrm{b}<-7 ;-1<\mathrm{c}<1
$$
Hỏi trong các số nói trên, số nào là số nguyên dương, số nào là số nguyên âm và số nào bẳng 0 ?

Lời giải

Thứ tự trong tập hợp số nguyên

Ví dụ 3. Sắp xếp các số nguyên theo thứ tự tăng dần: 4, – 3, -5, 2, – 17.

Lời giải

Bài tập rèn luyện.

Bài 1. So sánh các cặp số sau:
a) 6 và 5 ;
b) $-5$ và 0
c) $-6$ và 5 ;
d) $-8$ và $-6$;
e) 3 và $-10$;
$\mathrm{g}$ ) $-2$ và $-5$.

Lời giải

Bài 2. Tìm số đối của các số nguyên: $5 ;-4 ;-1 ; 0 ; 10 ;-2021$.
Sắp xếp các số nguyên sau theo thứ tự tăng dần và biểu diễn chúng trên trục số:
$2 ;-4 ; 6 ; 4 ; 8 ; 0 ;-2 ;-8 ;-6$

Lời giải

Bài 3. Hãy liệt kê các phần tử của mỗi tập hợp sau:
a) $\mathrm{A}={\mathrm{a} \in \mathbb{Z} \mid-4<\mathrm{a}<-1}$
b) $\mathrm{B}={\mathrm{b} \in \mathrm{Z} \mid-2<\mathrm{b}<3}$
c) $\mathrm{C}={\mathrm{c} \in \mathbb{Z} \mid-3<\mathrm{c}<0}$
d) $\mathrm{D}={\mathrm{d} \in \mathbb{Z} \mid-1<\mathrm{d}<6}$.

Lời giải

Bài 4. Sắp xếp theo thứ tự từ thấp đến cao nhiệt độ $\left({ }^{\circ} \mathrm{C}\right)$ mùa đông tại các địa điểm sau đây của nước Mĩ: Hawaii (Ha-oai) $12{ }^{\circ} \mathrm{C}$; Montana (Môn-ta-na) $-2^{\circ} \mathrm{C}$; Alaska (A-la-xca) $-51{ }^{\circ} \mathrm{C}$; New York (Niu Oóc) $-15^{\circ} \mathrm{C}$; Florida (Phlo-ri-đa) $8{ }^{\circ} \mathrm{C}$.

Lời giải

Tài liệu tham khảo. 

Chân trời sáng tạo, Toán 6, NXB GD, Trần Nam Dũng (Chủ biên)

Tập hợp số nguyên

Tập hợp số nguyên
Ta đã biết $\mathrm{N}={0 ; 1 ; 2 ; 3 ; \ldots}$ là tập hợp số tự nhiên.
0 $\quad$

Các số tự nhiên khác 0 còn được gọi là các số nguyên dương. Số nguyên dương có thể được viết là: $+1 ;+2 ;+3 ; \ldots$ hoặc thông thường bỏ đi dấu “+” và chỉ ghi là: $1 ; 2 ; 3 ; \ldots$
Các số $-1 ;-2 ;-3 ; \ldots$ là các số nguyên âm.Số 0 không phải là số nguyên âm và cũng không phải là số nguyên dương.
Tập hợp gồm các số nguyên âm, số 0 và các số nguyên dương được gọi là tập hợp
số nguyên.

Kí hiệu là $\mathbb{Z}$.

Ta có $\mathbb{Z} = \{\cdots;-3;-2;-1;0;1;2;3;\cdots \}$.

Biểu diễn số nguyên trên trục số.

Số đối của một số nguyên

Hai số nguyên trên trục số nằm ở hai phía của điểm 0 và cách đều điểm 0 thì được gọi là hai số đối nhau.

Ví dụ 1. Số đối của 6 là – 6; số đối của – 2021 là 2021.

Chú ý. 

  • Số đối của một số nguyên âm là số nguyên dương;
  • Số đối của một số nguyên dương là số nguyên âm.
  • Số đối của 0 là 0.

Bài tập rèn luyện.

Bài 1. Dùng số nguyên thích hợp để diễn tả các tình huống sau:
a) Thưởng 5 điểm trong một cuộc thi đấu.
b) Bớt 2 điểm vì phạm luật.
c) Tăng 1 bậc lương do làm việc hiệu quả.
d) Hạ 2 bậc xếp loại do thi đấu kém.
Bài 2. Các phát biểu sau đúng hay sai?
a) $9 \in \mathbb{N}$
b) $-6 \in \mathbb{N}$
c) $-3 \in \mathbb{Z}$
d) $0 \in \mathbb{Z}$
e) $5 \in \mathbb{Z}$
g) $20 \in \mathbb{N}$.

Bài 3. Vẽ một đoạn của trục số từ $-10$ đến $10 .$ Biểu diễn trên đó các số nguyên sau đây:
$\begin{array}{llllll}+5 ; & -4 ; & 0 ; & -7 ; & -8 ; & 2 ;\end{array}$
3; $\quad 9$;
$-9 .$

Bài 4. Hãy vẽ một trục số rồi vẽ trên đó những điểm nằm cách điểm 0 hai đơn vị. Những điểm này biểu diễn các số nguyên nào?

Bài 5. Tìm số đối của các số nguyên sau: $-5 ;-10 ; 4 ;-4 ; 0 ;-100 ; 2021 .$

Tài liệu tham khảo

Chân trời Sáng tạo, Sách giáo khoa toán 6, NBX GD, Trần Nam Dũng (Chủ biên)