Định nghĩa.
Cho hai số tự nhiên a và $\mathrm{b}$, trong đó b khác 0 . Ta luôn tìm được đúng hai số tự nhiên $\mathrm{q}$ và $\mathrm{r}$ sao cho $\mathrm{a}=\mathrm{b} \cdot \mathrm{q}+\mathrm{r}$, trong đó $0 \leq \mathrm{r}<\mathrm{b}$. Ta gọi $\mathrm{q}$ và $\mathrm{r}$ lần lượt là thương và số $\mathrm{du}$ trong phép chia a cho $\mathrm{b}$.
- Nếu $\mathrm{r}=0$ tức $\mathrm{a}=\mathrm{b} \cdot \mathrm{q}$, ta nói a chia hết cho $\mathrm{b}$, kí hiệu a $\vdots \mathrm{b}$ hay $b|a$ và ta có phép chia hết $\mathrm{a}: \mathrm{b}=\mathrm{q}$.
- Nếu $\mathrm{r} \neq 0$, ta nói a không chia hết cho $\mathrm{b}$, kí hiệu $\mathrm{b} \not| \mathrm{a}$ và ta có phép chia có dư.
Tính chất
Cho $a, b, c,n$ là các số tự nhiên $n \neq 0$, khi đó ta có các tính chất sau:
- $a, b$ chia hết cho $n$ thì $a+b$ và $a-b$ (giả sử $a \geq b$) chia hết cho $n$.
- Nếu $a$ chia hết cho $n$ và $b$ không chia hết cho $n$ thì $a+b$ và $a-b$ không chia hết cho $n$.
- Nếu $a, b, c$ cùng chia hết cho $n$ thì $a+b+c$ và $a+b-c$ cũng chia hết cho $n$.
- Nếu $a, b$ chia hết cho $n$ và $c$ không chia hết cho $n$ thì $a+b-c$ không chia hết cho $n$.
Bài tập sách giáo khoa
Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 23) Khẳng định nào sau đây là đúng, khẳng định nào là sai?
a) $1560+390$ chia hết cho 15 ;
b) $456+555$ không chia hết cho 10 ;
c) $77+49$ không chia hết cho 7 ;
d) $6624-1806$ chia hết cho 6 .
a) $144: 3$;
b) $144: 13$;
c) $144: 30$.
Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 23) Tìm các số tự nhiên $q$ và r biết cách viết kết quả phép chia có dạng như sau:
a) $1298=354 q+r(0 \leq r<354)$
b) $40685=985 \mathrm{q}+\mathrm{r}(0 \leq \mathrm{r}<985)$.
Bài 4. (SGK CTST Toán 6 Tập 1 – Trang 23) Trong phong trào xây dựng “nhà sách của chúng ta”, lớp $6 \mathrm{~A}$ thu được 3 loại sách do các bạn trong lớp đóng góp: 36 quyển truyện tranh, 40 quyển truyện ngắn và 15 quyển thơ. Có thể chia số sách đã thu được thành 4 nhóm với số lượng quyển bằng nhau không? Vì sao?
Bài tập rèn luyện