Category Archives: Phép chia hết – Phép chia có dư

CHUYÊN ĐỀ: TÍNH CHIA HẾT ĐỐI VỚI SỐ NGUYÊN

CHỨNG MINH QUAN HỆ CHIA HẾT

Gọi $\mathrm{A}(\mathrm{n})$ là một biểu thức phụ thuộc vào $\mathrm{n}(\mathrm{n} \in \mathbf{N}$ hoặc $\mathrm{n} \in \mathbf{Z})$.

Chú ý 1 : Để chứng minh biểu thức $\mathrm{A}(\mathrm{n})$ chia hết cho một số $\mathrm{m}$, ta thường phân tích biểu thức $\mathrm{A}(\mathrm{n})$ thành thừa số, trong đó có một thừa số là $\mathrm{m}$. Nếu $\mathrm{m}$ là hợp số, ta phân tích nó thành một tích các thừa số đôi một nguyên tố cùng nhau, rồi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho tất cả các số đó. Nên lưu ý đến nhận xét : Trong $\mathrm{k}$ số nguyên liên tiếp, bao giờ cũng tồn tại một bội số của k.

Ví dụ 1. Chứng minh rằng $A=n^3\left(n^2-7\right)^2-36 n$ chia hết cho 5040 với mọi số tự nhiên $n$.

Giải : Phân tích ra thừa số : $5040=2^4 \cdot 3^2 \cdot 5 \cdot 7$.

Phân tích $A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7 n\right)^2-6^2\right]$

$=n\left(n^3-7 n-6\right)\left(n^3-7 n+6\right) \text {. }$

Ta lại có $\quad \mathrm{n}^3-7 \mathrm{n}-6=(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}-3)$,

$n^3-7 n+6=(n-1)(n-2)(n+3) \text {. }$

Do đó $\mathrm{A}=(\mathrm{n}-3)(\mathrm{n}-2)(\mathrm{n}-1) \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)$.

Đây là tích của bảy số nguyên liên tiếp. Trong bảy số nguyên liên tiếp :

  • Tồn tại một bội số của 5 (nên $\mathrm{A}$ chia hết cho 5) ;

  • Tồn tại một bội số của 7 (nên $\mathrm{A}$ chia hết cho 7) ;

  • Tồn tại hai bội số của 3 (nên A chia hết cho 9) ;

  • Tồn tại ba bội số của 2, trong đó cọ́ một bội số của 4 (nên $\mathrm{A}$ chia hết cho 16).

$\mathrm{A}$ chia hết cho các số $5,7,9,16$ đôi một nguyên tố cùng nhau nên $\mathrm{A}$ chia hết cho $5.7 .9 .16=5040$.

Chú ý : Khi chứng minh $\mathrm{A}(\mathrm{n})$ chia hết cho $\mathrm{m}$, ta có thể xét mọi trường hợp về số dư khi chia n cho m.

Ví dụ 2. Chứng minh rằng với mọi số nguyên a thì

a) $\mathrm{a}^2-\mathrm{a}$ chia hết cho 2 ;

b) $\mathrm{a}^3-\mathrm{a}$ chia hết cho 3 ;

c) $\mathrm{a}^5-$ a chia hết cho 5 ;

d) $\mathrm{a}^7-\mathrm{a}$ chia chết cho 7 .

Giải :

a) $a^2-a=a(a-1)$, chia hết cho 2 .

b) $\mathrm{a}^3-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2-1\right)=(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)$, tích này chia hết cho 3 vì tồn tại một bội của 3 .

c) Cách 1. $\mathrm{A}=\mathrm{a}^5-\mathrm{a}=\mathrm{a}\left(\mathrm{a}^2+1\right)\left(\mathrm{a}^2-1\right)$.

Nếu a $=5 \mathrm{k}(\mathrm{k} \in \mathbb{Z})$ thì a chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{Z})$ thì $\mathrm{a}^2-1$ chia hết cho 5 .

Nếu $\mathrm{a}=5 \mathrm{k} \pm 2(\mathrm{k} \in \mathrm{Z})$ thì $\mathrm{a}^2+1$ chia hết cho 5 .

Trường hợp nào cũng có một thừa số của $\mathrm{A}$ chia hết cho $5 .$

Cách 2. Phân tích a $a^5$ – a thành một tổng của hai số hạng chia hết cho 5 :

Một số hạng là tích của năm số nguyên liên tiếp, một số hạng chứa thừa số 5 .

$a^5-a =a\left(a^2-1\right)\left(a^2+1\right) $

$=a\left(a^2-1\right)\left(a^2-4+5\right) $

$=a\left(a^2-1\right)\left(a^2-4\right)+5 a\left(a^2-1\right) $

$=(a-2)(a-1) a(a+1)(a+2)+5 a\left(a^2-1\right)$

Số hạng thứ nhất là tích của năm số nguyên liên tiếp nên chia hết cho 5 , số hạng thứ hai cũng chia hết cho 5 . Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Cách 3. Giải tương tự như cách 2 : Xét hiệu giữa a ${ }^5-$ a và tích năm số nguyên liên tiếp $(\mathrm{a}-2)(\mathrm{a}-1) \mathrm{a}(\mathrm{a}+1)(\mathrm{a}+2)$, được $5 \mathrm{a}\left(\mathrm{a}^2-1\right)$. Do đó $\mathrm{a}^5-\mathrm{a}$ chia hết cho 5 .

Ví dụ 3.
a) Chứng minh rằng một số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1 .

c) Các số sau có là số chính phương không ?

$\mathrm{M}=1992^2+1993^2+1994^2 $

$\mathrm{~N}=1992^2+1993^2+1994^2+1995^2 $

$\mathrm{P}=1+9^{100}+94^{100}+1994^{100}$

d) Trong dãy sau có tồn tại số nào là số chính phương không ?

$11,111,1111,11111, \ldots$

Giải : Gọi A là số chính phương $\mathrm{A}=\mathrm{n}^2(\mathrm{n} \in \mathrm{N})$.

a) Xét các trường hợp :

$\mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2$, chia hết cho 3 .

$\mathrm{n}=3 \mathrm{k} \pm 1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=9 \mathrm{k}^2 \pm 6 \mathrm{k}+1$, chia cho 3 dư 1 .

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1 .

b) Xét các trường hợp :

$\mathrm{n}=2 \mathrm{k}(\mathrm{k} \in \mathrm{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2$, chia hết cho $4 .$

$\mathrm{n}=2 \mathrm{k}+1(\mathrm{k} \in \mathbf{N}) \Rightarrow \mathrm{A}=4 \mathrm{k}^2+4 \mathrm{k}+1=4 \mathrm{k}(\mathrm{k}+1)+1$, chia cho 4 dư 1

(chia cho 8 cũng dư 1).

Vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc $1 .$

Chú ý : Từ bài toán trên ta thấy :

  • Số chính phương chẵn thì chia hết cho $4 .$

  • Số chính phương lẻ thì chia cho 4 dư 1 (hơn nữa, chia cho 8 cũng dư 1).

c) Các số $1993^2, 1994^2$ là số chính phương không chia hết cho 3 nên chia cho 3 dư 1 , còn $1992^2$ chịa hết cho 3 .Số M là số chia cho 3 dư 2 , không là số chính phương.

Các số $1992^2, 1994^2$ là số chính phương chẵn nên chia hết cho 4. Các số $1993^2, 1995^2$ là số chính phương lẻ nên chia cho 4 dư 1. Số $\mathrm{N}$ là số chia cho 4 . dư 2, không là số chính phương.

Các số $94^{100}, 1994^{100}$ là số chính phương chẵn nên chia hết cho 4 . Còn $9^{100}$ là số chính phưong lẻ nên chia cho 4 đư 1 . Số P là số chia cho 4 dư 2 , không là số chính phương.

d) Mọi số của dãy đều tận cùng bởi 11 nên là số chia cho 4 dư 3. Mặt khác, số chính phương lẻ thì chia cho 4 dư $1 .$

Vậy không có số nào của dãy là số chính phương.

Chú ý : Khi chứng minh về tính chia hết của các luỹ thừa, ta còn sử dụng đến các hằng đẳng thức 8,9 ở $\S 2$ và công thức Niu-tơn sau đây :

$(a+b)^n=a^n+c_1 a^{n-1} b+c_2 a^{n-2} b^2+\ldots+c_{n-1} a b^{n-1}+b^n .$

Trong công thức trên, vế phải là một đa thức có $\mathrm{n}+1$ hạng tử, bậc của mỗi hạng tử đối với tập hợp các biến $\mathrm{a}, \mathrm{b}$ là $\mathrm{n}$ (phần biến số của mỗi hạng tử có dạng $\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{k}}$, trong đó $\mathrm{i}+\mathrm{k}=\mathrm{n}$ với $0 \leq \mathrm{i} \leq \mathrm{n}, 0 \leq \mathrm{k} \leq \mathrm{n}$ ). Các hệ số $c_1$, $c_2$, $\ldots$, $c_n-1$ được xác định bởi bảng tam giác Pa-xcan (h.1) :

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 1\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad Hình 2$

Trong hình 1 , các số dọc theo một cạnh góc vuông bằng 1 , các số dọc theo cạnh huyền bằng 1. Cộng mỗi số với số liền sau bên phải thì được số đứng ở hàng dưới của số liền sau ấy, chẳng hạn ở hình $2 .$

Áp dụng các hằng đẳng thức đó vào tính chia hết, ta có với mọi số nguyên a, b và số tự nhiên $\mathrm{n}$ :

$a^n-b^n$ chia hết cho $a-b(a \neq b)$;

$a^{2 n+1}+b^{2 n+1}$ chia hết cho $a+b(a \neq-b)$;

$(a+b)^n=B S a+b^n(B S$ a là bội của $a)$.

Đặc biệt nên lưu ý đến :

$(a+1)^n=B S a+1 $

$(a-1)^{2 n}=B S a+1 $

$(a-1)^{2 n+1}=B S a-1$

Ví dụ 4. Chứng minh rằng với mọi số tự nhiên $\mathrm{n}$, biểu thức $16^{\mathrm{n}}-1$ chia hết cho 17 khi và chỉ khi $\mathrm{n}$ là số chẵn.

Giải :

Cách 1. Nếu n chã̃n $(\mathrm{n}=2 \mathrm{k}, \mathrm{k} \in \mathrm{N})$ thì $\mathrm{A}=16^{2 \mathrm{k}}-1=\left(16^2\right)^{\mathrm{k}}-1$. chia hết cho $16^2-1$ theo hằng đẳng thức 8 , mà $16^2-1=255$, chia hết cho 17 . Vậy $\mathrm{A}$ chia hết cho 17 .

Nếu $\mathrm{n}$ lẻ thì $\mathrm{A}=16^{\mathrm{n}}+1-2$, mà $16^{\mathrm{n}}+1$ chia hết cho 17 theo hằng đẳng thức 9 , nên $\mathrm{A}$ không chia hết cho $17 .$

Vậy $\mathrm{A}$ chia hết cho $17 \Leftrightarrow \mathrm{n}$ chẵn.

Cách 2. $\mathrm{A}=16^{\mathrm{n}}-1=(17-1)^{\mathrm{n}}-1=\mathrm{BS} 17+(-1)^{\mathrm{n}}-1$ (theo công thức Niu-tơn).

Nếu n chã̃n thì $\mathrm{A}=\mathrm{BS} 17+1-1=\mathrm{BS} 17$.

Nếu n lẻ thì $\mathrm{A}=\mathrm{BS} 17-1-1$, không chia hết cho 17 .

Chú ý : Người ta còn dùng phương pháp phản chứng, nguyên lí Đi-rích-lê để chứng minh quan hệ chia hết.

Ví dụ 5. Chứng minh rằng tồn tại một bội của 2003 có dạng

$\quad\quad\quad\quad\quad\quad\quad\quad2004\quad2004 \ldots 2004 .$

Giải : Xét 2004 số :

$a_1=2004 $

$a_2=2004\quad2004$

$\mathrm{a}_{2004}=2004\quad2004 \ldots 2004$ (nhóm 2004 có mặt 2004 lần).

Theo nguyên lí Đi-rích-lế, tồn tại hai số có cùng số dư khi phép chia cho $2003 .$

Gọi hai số đó là $a_m$ và $a_n(1 \leq \mathrm{n}<\mathrm{m} \leq 2004)$ thì $a_m-a_n\vdots 2003$. Ta có

$a_m-a_n=2004 \ldots 20040000 \ldots 0000=\underbrace{2004 \ldots 2004}_{m-n \text { nhóm 2004 }}\text{.} 10^{4 n} .$

Do $10^{4 \mathrm{n}}$ và 2003 nguyên tố cùng nhau nên $\underbrace{2004 \ldots 2004}_{\mathrm{m}-\mathrm{n} \text { nhóm } 2004}$ chia hết cho $2003 .$

 

TÌM SỐ DƯ

VÍ dụ 6. Tìm số dư khi chia $2^{100}$ :

a) Cho 9 ;

b) Cho 25 ;

c) Cho 125 .

Giải : a) Luỹ thừa của 2 sát với một bội số của 9 là $2^3=8=9-1$.

Ta có $2^{100}=2\left(2^3\right)^{33}=2(9-1)^{33}=2(\mathrm{BS}\quad 9-1)=\mathrm{BS}\quad 9-2=\mathrm{BS}\quad 9+7$.

Số dư khi chia $2^{100}$ cho 9 là 7 .

b) Luỹ thừa của 2 sát với một bội số của 25 là $2^{10}=1024=\mathrm{BS}\quad 25-1$.

Ta có $\quad 2^{100}=\left(2^{10}\right)^{10}=(\mathrm{BS}\quad 25-1)^{10}=\mathrm{BS}\quad 25+1$.

c) Dùng công thức Niu-tơn :

$2^{100}=(5-1)^{50}=5^{50}-50.5^{49}+\ldots+\frac{50.49}{2} \cdot 5^2-50: 5+1 .$

Không kể phần hệ số của khai triển Niu-tơn thì 48 số hạng đầu đã chứa luỹ thừa của 5 với số mũ lớn hơn hoặc bằng 3 nên chia hết cho 125 . Hai số hạng tiếp theo cũng chia hết cho 125 , số hạng cuối cùng là 1 . Vậy $2^{100}=\mathrm{BS}\quad 125+1$.

Chú ý : Tổng quát hơn, ta chứng minh được rằng nếu một số tự nhiên $\mathrm{n}$ không chia hết cho 5 thì chia $\mathrm{n}^{100}$ cho 125 ta được số dư là 1 .

Thật vậy, $n$ có dạng $5 \mathrm{k} \pm 1$ hoặc $5 \mathrm{k} \pm 2$. Ta có

$(5 \mathrm{k} \pm 1)^{100}=(5 \mathrm{k})^{100} \pm \ldots+\frac{100.99}{2}(5 \mathrm{k})^2 \pm 100.5 \mathrm{k}+1=\mathrm{BS}\quad 125+1$

$(5 \mathrm{k} \pm 2)^{100} =(5 \mathrm{k})^{100} \pm \ldots+\frac{100 \cdot 99}{2}(5 \mathrm{k})^2 \cdot 2^{98} \pm 100 \cdot 5 \mathrm{k} \cdot 2^{99}+2^{100} $

$=\mathrm{BS}\quad 125+2^{100}$

Ta lại có $2^{100}=\mathrm{BS}\quad 125+1$ (câu c). Do đó $(5 \mathrm{k} \pm 2)^{100}=\mathrm{BS}\quad 125+1$.

Ví dụ 7. Tìm ba chữ số tận cùng của $2^{100}$ khi viết trong hệ thập phân.

Giải : Tìm ba chữ số tận cùng của $2^{100}$ là tìm số dư khi chia $2^{100}$ cho 1000 . Trước hết tìm số dư khi chia $2^{100}$ cho 125 . Theo ví dụ 43 ta có $2^{100}=\mathrm{BS} 125+1$, mà $2^{100}$ là số chẵn, nên ba chữ số tân cùng của nó chỉ có thể là 126, 376, 626 hoặc 876 .

Hiển nhiên $2^{100}$ chia hết cho 8 nên ba chữ số tận cùng của nó phải chia hết cho 8. Trong bốn số trên chỉ có 376 thoả mãn điều kiện này.

Vậy ba chữ số tận cùng của $2^{100}$ là 376 .

Chú ý : Bạn đọc tự chứng minh rằng nếu n là số chẵn không chia hết cho 5 thì ba chữ số tận cùng của $\mathrm{n}^{100}$ là 376 .

Ví dụ 8. Tìm bốn chữ số tận cùng của $5^{1994}$ khi viết trong hệ thập phân.

Giải :

Cách 1. $5^4=625$. Ta thấy số tận cùng bằng 0625 nâng lên luỹ thừa nguyên dương bất kì vẫn tận cùng bằng 0625 (chỉ cần kiểm tra : … $0625 \times \ldots 0625=\ldots 0625$ ). Do đó :

$5^{1994}=5^{4 \mathrm{k}+2}=25\left(5^4\right)^{\mathrm{k}}=25(0625)^{\mathrm{k}}=25(\ldots 0625)=\ldots 5625 .$

Cách 2. Tìm số dư khi chia $5^{1994}$ cho $10000=2^4 \cdot 5^4$.

Nhận xét $: 5^{4 \mathrm{k}}-1$ chia hết cho $5^4-1=\left(5^2+1\right)\left(5^2-1\right)$ nên chia hết cho 16 . Ta có $: 5^{1994}=5^6\left(5^{1988}-1\right)+5^6$.

Do $5^6$ chia hết cho $5^4$, còn $5^{1988}-1$ chia hết cho 16 (theo nhận xét trên) nên $5^6\left(5^{1988}-1\right)$ chia hết cho 10000 . Tính $5^6$, ta được 15625 . Vậy bốn chữ số tận cùng của $5^{1994}$ là 5625 .

Chú ý: Nếu viết $5^{1994}=5^2\left(5^{1992}-1\right)+5^2$ thì ta có $5^{1992}-1$ chia hết cho 16 , nhưng $5^2$ không chia hết cho $5^4$.

Như thế trong bài toán này, ta cần viết $5^{1994}$ dưới dạng $5^{\mathrm{n}}\left(5^{1994-\mathrm{n}}-1\right)+5^{\mathrm{n}}$ sao cho $n^{\prime} \geq 4$ và $1994-n$ chia hết cho 4 .

TÌM ĐIỀU KIỆN ĐỂ CHIA HẾT

 

Ví dụ 9. Tìm số nguyên $\mathrm{n}$ để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$ :

$A=n^3+2 n^2-3 n+2, \quad B=n^2-n .$

Giải : Đặt tính chia

Muốn chia hết, ta phải có 2 chia hết cho $\mathrm{n}(\mathrm{n}-1)$, do đó 2 chia hết cho $\mathrm{n}$. Ta có :

Đáp số : $\mathrm{n}=-1 ; \mathrm{n}=2$.

Chú ý:

a) Không thể nói đa thức $\mathrm{A}$ chia hết cho đa thức $\mathrm{B}$. Ỏ đây chỉ tồn tại những giá trị nguyên của n để giá trị của biểu thức $\mathrm{A}$ chia hết cho giá trị của biểu thức $\mathrm{B}$.

b) Có thể thay việc đặt phép chia bằng cách biến đổi :

$n^3+2 n^2-3 n+2=n\left(n^2-n\right)+3\left(n^2-n\right)+2 .$

Ví dụ 10. Tìm số nguyên dương $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Biến đổi

$\mathrm{n}^5+1 \vdots \mathrm{n}^3+1 \Leftrightarrow \mathrm{n}^2\left(\mathrm{n}^3+1\right)-\left(\mathrm{n}^2-1\right) \vdots \mathrm{n}^3+1 $

$ \Leftrightarrow(\mathrm{n}+1)(\mathrm{n}-1) \vdots(\mathrm{n}+1)\left(\mathrm{n}^2-\mathrm{n}+1\right) $

$ \Leftrightarrow \mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1(\mathrm{vì} \mathrm{n}+1 \neq 0)$

Nếu $\mathrm{n}=1$ thì ta được 0 chia hết cho 1 .

Nếu $\mathrm{n}>1$ thì $\mathrm{n}-1<\mathrm{n}(\mathrm{n}-1)+1=\mathrm{n}^2-\mathrm{n}+1$, do đó $\mathrm{n}-1$ không thể chia hết cho $\mathrm{n}^2-\mathrm{n}+1$

Vậy giá trị duy nhất của n tìm được là 1 .

Ví dụ 11. Tìm số nguyên $\mathrm{n}$ để $\mathrm{n}^5+1$ chia hết cho $\mathrm{n}^3+1$.

Giải : Cũng biến đổi như ở ví dụ 47 , ta có $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$

$\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1 \Rightarrow \mathrm{n}^2-\mathrm{n} \vdots \mathrm{n}^2-\mathrm{n}+1$

$\Rightarrow\left(n^2-n+1\right)-1 \vdots n^2-n+1 \Rightarrow 1 \vdots n^2-n+1$

Có hai trường hợp :

$\mathrm{n}^2-\mathrm{n}+1=1 \Leftrightarrow \mathrm{n}(\mathrm{n}-1)=0 \Leftrightarrow \mathrm{n}=0 ; \mathrm{n}=1$. Các giá trị này thoả mãn đề bài.

$\mathrm{n}^2-\mathrm{n}+1=-1 \Leftrightarrow \mathrm{n}^2-\mathrm{n}+2=0$, vô nghiệm.

Vậy $n=0, n=1$ là hai số phải tìm.

Chú ý: Từ $\mathrm{n}-1 \vdots \mathrm{n}^2-\mathrm{n}+1$ suy ra $\mathrm{n}(\mathrm{n}-1) \vdots \mathrm{n}^2-\mathrm{n}+1$ là phép kéo theo chứ không là phép biến đổi tương đương. Do đó sau khi tìm được $\mathrm{n}=0, \mathrm{n}=1$, ta phải thử lại.

Ví dụ 12. Tîm số tự nhiên $n$ sao cho $2^n-1$ chia hết cho 7 .

Giải : Nếu $\mathrm{n}=3 \mathrm{k} \cdot(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}}-1=8^{\mathrm{k}}-1$ chia hết cho 7 .

Nếu $\mathrm{n}=3 \mathrm{k}+1(\mathrm{k} \in \mathrm{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+1}-1=2\left(2^{3 \mathrm{k}}-1\right)+1=\mathrm{BS} 7+1$.

Nếu $\mathrm{n}=3 \mathrm{k}+2(\mathrm{k} \in \mathbf{N})$ thì $2^{\mathrm{n}}-1=2^{3 \mathrm{k}+2}-1=4\left(2^{3 \mathrm{k}}-1\right)+3=\mathrm{BS} 7+3$.

Vậy $2^{\mathrm{n}}-1$ chia hết cho $7 \Leftrightarrow \mathrm{n}=3 \mathrm{k}(\mathrm{k} \in \mathrm{N})$.

 

BÀI TẬP

 

$1.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$, ta có :

a) $\mathrm{n}^3+3 \mathrm{n}^2+2 \mathrm{n}$ chia hết cho 6 ;

b) $\left(\mathrm{n}^2+\mathrm{n}-1\right)^2-1$ chia hết cho 24 .

$2.$ Chứng minh rằng :

a) $\mathrm{n}^3+6 \mathrm{n}^2+8 \mathrm{n}$ chia hết cho 48 với mọi số chẵn $\mathrm{n}$;

b) $n^4-10 n^2+9$ chia hết cho 384 với mọi số lẻ $n$.

$3.$ Chứng minh rằng $n^6+n^4-2 n^2$ chia hết cho 72 với mọi số nguyên $n$.

$4.$ Chứngminh rằng $3^{2 \mathrm{n}}-9$ chia hết cho 72 với mọi số nguyên dương $\mathrm{n}$. 190(3). Chứng minh rằng với mọi số tự nhiên a và $\mathrm{n}$ :

a) $7^{\mathrm{n}}$ và $7^{\mathrm{n}+4}$ có hai chữ số tận cùng như nhau ;

b) a và a ${ }^5$ có chữ số tận cùng như nhau ;

c) $\mathrm{a}^{\mathrm{n}}$ và $\mathrm{a}^{\mathrm{n}+4}$ có chữ số tận cùng như nhau $(\mathrm{n} \geq 1)$.

$5.$ Tìm điều kiện của số tự nhiên $\mathrm{a}$ để a $\mathrm{a}^2+3 \mathrm{a}+2$ chia hết cho 6 .

$6.$ a) Cho a là số nguyên tố lớn hơn 3. Chứng minh rằng $\mathrm{a}^2-1$ chia hết cho 24 .

b) Chứng minh rằng nếu $a$ và $\mathrm{b}$ là các số nguyên tố lớn hơn 3 thì $\mathrm{a}^2-\mathrm{b}^2$ chia hết cho 24 .

c) Tìm điều kiện của số tự nhiên a để $a^4-1$ chia hết cho 240 .

$7.$ Tìm ba số nguyên tố liên tiếp $a, b, c$ sao cho $a^2+b^2+c^2$ cũng là số nguyên tố.

$8.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2=\mathrm{c}^2+\mathrm{d}^2$. Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ là hợp số.

$9.$ Cho bốn số nguyên dương $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ thoả mãn $\mathrm{ab}=\mathrm{cd}$. Chứng minh rằng $a^5+b^5+c^5+d^5$ là hợp số.

$10.$ Cho các số nguyên a, b, c. Chứng minh rằng :

a) Nếu $a+b+c$ chia hết cho 6 thì $a^3+b^3+c^3$ chia hết cho 6 .

b) Nếu $\mathrm{a}+\mathrm{b}+\mathrm{c}$ chia hết cho 30 thì $\mathrm{a}^5+\mathrm{b}^5+\mathrm{c}^5$ chia hết cho 30 .

$11.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. Chứng minh rằng :

a) $a^3+b^3+c^3$ chia hết cho $3 a b c$;

b) $a^5+b^5+c^5$ chia hết cho $5 a b c$.

$12.$ a) Viết số 1998 thành tổng của ba số tự nhiên tuỳ ý. Chứng minh rằng tổng các lập phương của ba số tự nhiên đó chia hết cho 6 .

b)* Viết số $1995^{1995}$ thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu?

$13.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}$ và $\mathrm{b}$ :

a) $\mathrm{a}^3 \mathrm{~b}-\mathrm{ab}{ }^3$ chia hết cho 6 ;

b) $\mathrm{a}^5 \mathrm{~b}-\mathrm{ab}{ }^5$ chia hết cho 30 .

$14.$ Chứng minh rằng mọi số tự nhiên đều viết được dưới dạng $b^3+6 c$ trong đó b và c là các số nguyên.

$15*$. Chứng minh rằng nếu các số tự nhiên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ thoả mãn điều kiện $a^2+b^2=c^2$ thì abc chia hết cho 60 .

$16.$ Chứng minh rằng tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho $9 .$

$17.$ Chứng minh rằng nếu tổng các lập phương của ba số nguyên chia hết cho 9 thì tồn tạii một trong ba số đó là bội số của 3 .

$18.$ Cho dãy số $7,13,25, \ldots, 3 \mathrm{n}(\mathrm{n}-1)+7(\mathrm{n} \in \mathrm{N})$. Chứng minh rằng :

a) Trong năm số hạng liên tiếp của dạ̃y, bao giờ cũng tồn tại một bội số của 25 .

b) Không có số hạng nào của dãy là lập phương của một số nguyên.

$19.$ a) Chứng minh rằng nếu số tự nhiên a không chia hết cho 7 thì $\mathrm{a}^6-1$ chia hết cho 7 .

b) Chứng minh rằng nếu n là lập phương của một số tự nhiên thì $(n-1) n(n+1)$ chia hết cho 504 .

$20.$ Chứng minh rằng $\mathrm{A}$ chia hết cho $\mathrm{B}$ với :

a) $A=1^3+2^3+3^3+\ldots+99^3+100^3$,

$\mathrm{B}=1+2+3+\ldots+99+100$

b) $A=1^3+2^3+3^3+\ldots+98^3+99^3$,

$\mathrm{B}=1+2+3+\ldots+98+99$

$21.$ Các số sau có là số chính phương không ?

a) $\mathrm{A}=22 \ldots 24$ (có 50 chữ số 2 ) ;

b) $\mathrm{B}=44 \ldots 4$ (có 100 chữ số 4);

c) $\mathrm{A}=1994^7+7$;

d)* $B=144$… 4 (có 99 chữ số 4).

$22.$ Có thể dùng cả năm chữ số $2,3,4,5,6$ lập thành số chính phương có năm chữ số được không ?

$23.$ Chứng minh rằng tổng của hai số chính phương lẻ không là số chính phương.

$24.$ Chứng minh rằng mọi số lẻ đều viết được dưới dạng hiệu của hai số chính phương.

$25*.$ Chứng minh rằng :

a) $A=1^2+2^2+3^2+4^2+\ldots+100^2$ không là số chính phương ;

b) $\mathrm{B}=1^2+2^2+3^2+4^2+\ldots+56^2$ không là số chính phương ;

c) $\mathrm{C}=1+3+5+7+\ldots+\mathrm{n}$ là số chính phương ( $\mathrm{n}$ lẻ).

$26.$ Chứng minh rằng :

a) Một số chî́nh phương tận cùng bằng 9 thì chữ số hàng chục là chữ số chẵn

b) Một số chính phương lẻ thì chữ số hàng chục là chữ số chẵn.

c) Một số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

d) Một số chính phương tận cùng bằng 5 thì chữ số hàng chục bằng 2 và chữ số hàng trăm là chữ số chẵn.

$27.$ a) Một số chính phương có chữ số hàng chục bằng 5. Tìm chữ số hàng đơn vị.

b) Một số chính phương có chữ số hàng chục là chữ số lẻ. Tìm chữ số hàng đơn vị.

c) Có bao nhiêu số tự nhiên $\mathrm{n}$ từ 1 đến 100 mà chữ số hàng chục của $\mathrm{n}^2$ là chữ số lẻ ?

$28.$ Chứng minh rằng :

a) Tích của hai số nguyên dương liên tiếp không là số chính phương.

b)* Tích của ba số nguyên dương liên tiếp không là số chính phương.

c)* Tích của bốn số nguyên dương liên tiếp không là số chính phương.

$29.$ Cho hai số tự nhiên a và $\mathrm{b}$, trong đó $\mathrm{a}=\mathrm{b}-2$.

Chứng minh rằng $\mathrm{b}^3-\mathrm{a}^3$ viết được dưới dạng tổng của ba số chính phương.

$30.$ Tìm số nguyên dương $\mathrm{n}$ để biểu thức sau là số chính phương :

a) $n^2-n+2$;

b) $n^4-n+2$

c) $n^3-n+2$;

d) ${ }^* n^5-n+2$.

$31.$ Tìm số nguyên tố $\mathrm{p}$ để $4 \mathrm{p}+1$ là số chính phương.

$32*.$ Chứng minh rằng nếu $\mathrm{n}+1$ và $2 \mathrm{n}+1(\mathrm{n} \in \mathrm{N})$ đều là số chính phương thì $\mathrm{n}$ chia hết cho 24 .

$33*.$ Chứng minh rằng nếu $2 n+1$ và $3 n+1(n \in N)$ đều là số chính phương thì n chia hết cho $40 .$

$34.$ Tìm số nguyên tố $\mathrm{p}$ để :

a) $2 \mathrm{p}^2+1$ cũng là số nguyên tố ;

b) $4 \mathrm{p}^2+1$ và $6 \mathrm{p}^2+1$ cũng là những số nguyên tố.

$35.$ Tìm số tự nhiên $\mathrm{n}$ để giá trị của biểu thức là số nguyên tố :

a) $12 n^2-5 n-25$

b) $8 n^2+10 n+3$;

c) $\frac{n^2+3 n}{4}$.

$36.$ Chứng minh rằng với mọi số nguyên $\mathrm{n}$ :

a) $n^2+7 n+22$ không chia hết cho 9 ;

b) $n^2-5 n-49$ không chia hết cho 169 .

$37.$ Các số tự nhiên $\mathrm{n}$ và $\mathrm{n}^2$ có tổng các chữ số bằng nhau. Tìm số dư của $\mathrm{n}$ khi chia cho $9 .$

$38*.$ a) Cho chín số tự nhiên từ 1 đến 9 xếp theo thứ tự tuỳ ý. Lấy số thứ nhất trừ 1, lấy số thứ hai trừ 2 , lấy số thứ ba trừ $3, \ldots$, lấy số thứ chín trừ 9 . Chứng minh rằng tích của chín số mới lập được là một số chẵn.

b) Cho hai dãy số $a_1, a_2, a_3, \ldots, a_9$ và $b_1, b_2, b_3, \ldots, b_9$, trong đó $a_1, a_2, \ldots, a_9$ là các số nguyên và $b_1, b_2, \ldots, b_9$ cũng là chín số nguyên trên nhưng lấy theo thứ tự khác. Chứng minh rằng tích $\left(\mathrm{a}_1-\mathrm{b}_1\right)\left(\mathrm{a}_2-\mathrm{b}_2\right) \ldots\left(\mathrm{a}_9-\mathrm{b}_9\right)$ là số chẵn.

$39.$ Tìm số nguyên $\mathrm{n}$ sao cho :

a) $n^2+2 n-4$ chia hết cho 11 ;

b) $2 n^3+n^2+7 n+1$ chia hết cho $2 n-1$;

c) $\mathrm{n}^3-2$ chia hết cho $\mathrm{n}-2$;

d) $n^3-3 n^2-3 n-1$ chia hết cho $n^2+n+1$;

e) $n^4-2 n^3+2 n^2-2 n+1$ chia hết cho $n^4-1$;

g) ${ }^* n^3-n^2+2 n+7$ chia hết cho $n^2+1$.

$40.$ Đố vui : Năm sinh của hai bạn

Một ngày của thập kỉ cuối cùng của thế kỉ XX, một người khách đến thăm trường gặp hai học sinh. Người khách hỏi :

  • Có lẽ hai em bằng tuổi nhau ?

Bạn Mai trả lời :

  • Không; em hơn bạn em một tuổi. Nhưng tổng các chữ số của năm sinh mỗi chúng em đều là số chẵn.

  • Vậy thì các em sinh năm 1979 và 1980, đúng không ?

Người khách đã suy luận thế nào?

$41.$ Tìm số nguyên dương $\mathrm{n}$ để $2^{\mathrm{n}}$ là số nằm giữa hai số nguyên tố sinh đôi ${ }^{(*)}$ (hai số nguyên tố gọi là sinh đôi nếu chúng hơn kém nhau 2 đơn vị).

$42*.$ Cho các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{g}$ thoả mãn $\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2+\mathrm{d}^2+\mathrm{e}^2=\mathrm{g}^2$.

Chứng minh rằng tích abcdeg là số chẵn.

$43.$ Chứng minh rằng với mọi số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, tích

$(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})(\mathrm{a}-\mathrm{d})(\mathrm{b}-\mathrm{c})(\mathrm{b}-\mathrm{d})(\mathrm{c}-\mathrm{d}) \text { chia hết cho } 12 \text {. }$

$44*$. Chứng minh rằng có thể có đến 33 số nguyên dương khác nhau, không quá 50, trong đó không tồn tại hai số nào mà một số gấp đôi số còn lại.

$45.$ Chứng minh rằng tồn tại vô số bội của 2003 mà trong biểu diễn thập phân của chúng không có các chữ số $0,1,2,3$.

$46.$ Chứng minh rằng tồn tại số tự nhiên $\mathrm{k}$ sao cho $2003^{\mathrm{k}}$ – 1 chia hết cho 51 .

Các bài toán sủ dụng các hằng đẳng thúc 8,9 và công thức Niu-tơn.

$47.$ Chứng minh rằng $2^{51}-1$ chia hết cho 7 .

$48.$ Chứng minh rằng $2^{70}+3^{70}$ chia hết cho $13 .$

$49.$ Chứng minh rằng $17^{19}+19^{17}$ chia hết cho 18 .

$50.$ Chứng minh rằng $36^{63}-1$ chia hết cho 7 , nhưng không chia hết cho 37 .

$51.$ Chứng minh rằng các số sau là hợp số :

a) $4^{20}-1$;

b) 1000001 .

c) $2^{50}+1$.

$52.$ Chứng minh rằng $1 \cdot 4+2 \cdot 4^2+3 \cdot 4^3+4 \cdot 4^4+5 \cdot 4^5+6 \cdot 4^6$ chia hết cho 3 .

$53.$ Chứng minh rằng biểu thức $\mathrm{A}=31^{\mathrm{n}}-15^{\mathrm{n}}-24^{\mathrm{n}}+8^{\mathrm{n}}$ chia hết cho 112 với mọi số tự nhiên $\mathrm{n}$.

$54.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{\mathrm{n}}-1$ chia hết cho 8 .

$55.$ Tìm số tự nhiên $\mathrm{n}$ để $3^{2 \mathrm{n}+3}+2^{4 \mathrm{n}+1}$ chia hết cho 25 .

$56.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 9 .

$57.$ Tìm số tự nhiên $\mathrm{n}$ để $5^{\mathrm{n}}-2^{\mathrm{n}}$ chia hết cho 63 .

$58.$ Tìm số tự nhiên $\mathrm{n}$ để $1^{\mathrm{n}}+2^{\mathrm{n}}+3^{\mathrm{n}}+4^{\mathrm{n}}$ chia hết cho 5

$59.$ Tìm số dư khi chia $22^{22}+55^{55}$ cho 7 .

$60.$ Tìm số dư khi chia $2^{1994}$ cho 7 .

$61.$ Tìm số dư khi chia $3^{1993}$ cho 7 .

$62.$ Tìm số dư khi chia $1992^{1993}+1994^{1995}$ cho 7 .

$63 *.$ Tìm số dư khi chia $9^{10^{11}}-5^{9^{10}}$ cho 13 .

$64*.$ Chứng minh rằng số $\mathrm{A}=2^{2^{2 \mathrm{n}+1}}+3$ là hợp số với mọi số nguyên dương $\mathrm{n}$.

$65.$ Tìm số dư khi chia các số sau cho 7 :

a) $2^{9^{1945}}$;

b) $3^{2^{1930}}$.

$66.$ Tìm số dư khi chia $\left(\mathrm{n}^3-1\right)^{111} \cdot\left(\mathrm{n}^2-1\right)^{333}$ cho $\mathrm{n}(\mathrm{n} \in \mathrm{N})$.

$67.$ Cho $\mathrm{ab}=455^{12}$. Tìm số dư trong phép chia $\mathrm{a}+\mathrm{b}$ cho $4 .$

$68.$ Tìm hai chữ số tận cùng của :

a) $3^{999}$

b) $7^{7^7}$.

$69.$ Tìm ba chữ số tận cùng của $3^{100}$.

$70 *.$ Thay các dấu * bởi các chữ số thích hợp :

$89^6=4969 * * 290961$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bài tập số chính phương – Lớp 9

Bài 1. Chứng minh rằng

a) Một số chính phương chia 3 dư 0 hoặc 1.
b) Một số chính phương chia 4 dư 0 hoặc 1.
c) Một số chính phương chia 5 dư 0, 1 hoặc 4.
Bài 2. Chứng minh rằng một số là số chính phương khi và chỉ khi số ước của số đó là một số lẻ.

Bài 3. Chứng minh rằng nếu tổng hai số chính phương chia hết cho 3 thì tích của nó sẽ chia hết 81.

Bài 4. Chứng minh rằng với $n$ là số tự nhiên thì $3n-1, 5n + 2, 5n – 2, 7n-2, 7n+3$ không phải là số chính phương.

Bài 5. Tìm tất cả các số tự nhiên $n$ sao cho $n.2^{n+1}+1$ là một số chính phương.

Bài 6. Chứng minh rằng nếu $x^2+ 2y$ là một số chính phương với $x, y$ nguyên dương thì $x^2+ y$ là tổng của hai số chính phương.

Bài 7. Chứng minh rằng nếu $3x + 4y,3y + 4x$ là các số chính phương thì $x,y$ đều chia hết cho 7.

Bài 8. Cho các số nguyên dương $a, b$. Giả sử các số $a + 2b,b + 2a$ đều là bình phương của một số nguyên thì $a$ và $b$ đều chia hết cho 3.

Bài 9. Cho các số tự nhiên $a, b, c$ thỏa: $a + 2b,b + 2c,c + 2a$ đều là bình phương của một số tự nhiên.
a)Chỉ ra một bộ số thỏa đề bài.
b) Giả sử trong 3 số $a + 2b,b + 2c,c + 2a$ có một số chia hết cho 3. Chứng minh rằng: $P = \left( {a – b} \right)\left( {b – c} \right)\left( {c – a} \right)$ chia hết cho 27.

Bài 10. Chứng minh rằng nếu $\overline {abc} $ là một số nguyên tố thì ${b^2} – 4ac$ không phải là một số chính phương.

Bài 11. Tìm tất cả các số tự nhiên $n \geq 2$ sao cho tồn tại $n$ số nguyên liên tiếp mà tổng của chúng là một số chính phương.

Bài 12. Tìm $d$ sao cho với mọi $a,b \in {2,5,d}$ thì $ab-1$ là một số chính phương.

Bài 13. Chứng minh rằng với mọi $d$ thì tập ${2,5,13,d}$ luôn tồn tại hai số $a,b \in {2,5,13,d}$ sao cho $ab-1$ không phải là số chính phương.

Bài 14. Chứng minh rằng nếu tích của hai số nguyên tố cùng nhau là một số chính phương thì mỗi số cũng là số chính phương.

Bài 15. Cho các số nguyên dương $a, b$ thỏa $2{a^2} + a = 3{b^2} + b$.

a)Tìm $a, b$ biết $a$ và $b$ là hai số nguyên tố cùng nhau.
b) Chứng minh $a-b$ và $2a + 2b + 1$ là các số chính phương.

Bài 16. Cho các số nguyên $a, b, c$ thỏa $a + b + c$ chia hết cho 6 và ${a^2} + {b^2} + {c^2}$ chia hết cho 36. Đặt $A = {a^3} + {b^3} + {c^3}$

a) Chứng minh rằng A chia hết cho 8.
b) A có chia hết cho 27 không? Tại sao?

Bài 17. Cho $a,b,c$ là ba số nguyên dương thỏa $\dfrac{1}{a} – \dfrac{1}{b} = \dfrac{1}{c}$. Gọi $d$ là ước chung lớn nhất của ba số đó . Chứng minh rằng $d(b – a)$ là số chính phương.

 

Bài 18. Tìm tất cả các số nguyên dương $n$ sao cho $T = {2^n} + {3^n} + {4^n}$ là số chính phương.

 

Bài 19. Tìm tất cả các cặp số nguyên $a, b$ sao cho $3^a+ 7^b$ là một số chính phương.

Bài 20. (Chuyên Thái Bình 2021) Giả sử $n$ là số tự nhiên thỏa mãn điều kiện $n(n+1)+7$ không chia hết cho 7. Chứng minh rằng $4 n^{3}-5 n-1$ không là số chính phương.

Bài  21 (Thanh Hóa – Chuyên Tin 2021) Cho số tự nhiên $n \geqslant 2$ và số nguyên tố $p$ thỏa mãn $p-1$ chia hết cho $n$ và $n^{3}-1$ chia hết cho $p$. Chứng minh rằng $n+p$ là một số chính phương.

Bài 22 (Chuyên Lê Khiết) Cho các số nguyên tố $p, q$ thỏa mãn $p+q^{2}$ là số chính phương. Chứng minh rằng
a) $p=2 q+1$.
b) $p^{2}+q^{2021}$ không phải là số chính phương.

Bài 23 (Kiên Giang 2021) Cho $m, p, r$ là các số nguyên tố thỏa mãn $m p+1=r$. Chứng minh rằng $m^{2}+r$ hoặc $p^{2}+r$ là số chính phương.

Bài 24. (Chuyên Tiền Giang) Cho $m, n$ là các số nguyên dương sao cho $m^{2}+n^{2}+m$ chia hết cho $m n$. Chứng minh rằng $m$ là số chính phương.

Bài 25.(Chuyên Phổ thông Năng khiếu – ĐHQG thành phố Hồ Chí Minh 2021-2022)

a) Tìm tất cả số tự nhiên $n$ sao cho $(2 n+1)^{3}+1$ chia hết cho $2^{2021}$.
b) Cho số tự nhiên $n$ và số nguyên tố $p$ sao cho $a=\frac{2 n+2}{p}$ và $b=\frac{4 n^{2}+2 n+1}{p}$ là các số nguyên. Chứng minh rằng $a$ và $b$ không đồng thời là các số chính phương.

 

 

Chia hết và chia có dư. Tính chất của phép chia.

Định nghĩa. 

Cho hai số tự nhiên a và $\mathrm{b}$, trong đó b khác 0 . Ta luôn tìm được đúng hai số tự nhiên $\mathrm{q}$ và $\mathrm{r}$ sao cho $\mathrm{a}=\mathrm{b} \cdot \mathrm{q}+\mathrm{r}$, trong đó $0 \leq \mathrm{r}<\mathrm{b}$. Ta gọi $\mathrm{q}$ và $\mathrm{r}$ lần lượt là thương và số $\mathrm{du}$ trong phép chia a cho $\mathrm{b}$.

  • Nếu $\mathrm{r}=0$ tức $\mathrm{a}=\mathrm{b} \cdot \mathrm{q}$, ta nói a chia hết cho $\mathrm{b}$, kí hiệu a $\vdots \mathrm{b}$ hay $b|a$ và ta có phép chia hết $\mathrm{a}: \mathrm{b}=\mathrm{q}$.
  • Nếu $\mathrm{r} \neq 0$, ta nói a không chia hết cho $\mathrm{b}$, kí hiệu $\mathrm{b} \not| \mathrm{a}$ và ta có phép chia có dư.

Tính chất 

Cho $a, b, c,n$ là các số tự nhiên $n \neq 0$, khi đó ta có các tính chất sau:

  • $a, b$ chia hết cho $n$ thì $a+b$ và $a-b$ (giả sử $a \geq b$) chia hết cho $n$.
  • Nếu $a$ chia hết cho $n$ và $b$ không chia hết cho $n$ thì $a+b$ và $a-b$ không chia hết cho $n$.
  • Nếu $a, b, c$ cùng chia hết cho $n$ thì $a+b+c$ và $a+b-c$ cũng chia hết cho $n$.
  • Nếu $a, b$ chia hết cho $n$ và $c$ không chia hết cho $n$ thì $a+b-c$ không chia hết cho $n$.

Bài tập sách giáo khoa

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 23) Khẳng định nào sau đây là đúng, khẳng định nào là sai?
a) $1560+390$ chia hết cho 15 ;
b) $456+555$ không chia hết cho 10 ;
c) $77+49$ không chia hết cho 7 ;
d) $6624-1806$ chia hết cho 6 .

Lời giải
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 23) Trong các phép chia sau, phép chia nào là phép chia hết, phép chia nào là phép chia có dư? Viết kết quả phép chia dạng $\mathrm{a}=\mathrm{b} \cdot \mathrm{q}+\mathrm{r}$, với $0 \leq \mathrm{r}<\mathrm{b}$.
a) $144: 3$;
b) $144: 13$;
c) $144: 30$.

Lời giải

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 23) Tìm các số tự nhiên $q$ và r biết cách viết kết quả phép chia có dạng như sau:
a) $1298=354 q+r(0 \leq r<354)$
b) $40685=985 \mathrm{q}+\mathrm{r}(0 \leq \mathrm{r}<985)$.

Lời giải

Bài 4. (SGK CTST Toán 6 Tập 1 – Trang 23) Trong phong trào xây dựng “nhà sách của chúng ta”, lớp $6 \mathrm{~A}$ thu được 3 loại sách do các bạn trong lớp đóng góp: 36 quyển truyện tranh, 40 quyển truyện ngắn và 15 quyển thơ. Có thể chia số sách đã thu được thành 4 nhóm với số lượng quyển bằng nhau không? Vì sao?

Lời giải

Bài tập rèn luyện

Chia hết và chia có dư

1.Phép chia hết

2.Tính chất

3.Tính chất 2.

4.Bài tập rèn luyện

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 24) Khẳng định nào sau đây là đúng, khẳng định nào là sai?
a) $1560+390$ chia hết cho 15 ;
b) $456+555$ không chia hết cho 10 ;
c) $77+49$ không chia hết cho 7 ;
d) $6624-1806$ chia hết cho 6 .
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 24)Trong các phép chia sau, phép chia nào là phép chia hết, phép chia nào là phép chia có dư? Viết kết quả phép chia dạng $\mathrm{a}=\mathrm{b} \cdot \mathrm{q}+\mathrm{r}$, với $0 \leq \mathrm{r}<\mathrm{b}$.
a) $144: 3$;
b) $144: 13$;
c) $144: 30$.
Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 24) Tìm các số tự nhiên $q$ và $r$ biết cách viết kết quả phép chia có dạng như sau:
a) $1298=354 \mathrm{q}+\mathrm{r}(0 \leq \mathrm{r}<354)$
b) $40685=985 \mathrm{q}+\mathrm{r}(0 \leq \mathrm{r}<985)$.
Bài 4. (SGK CTST Toán 6 Tập 1 – Trang 24) Trong phong trào xây dựng “nhà sách của chúng ta”, lớp 6 A thu được 3 loại sách do các bạn trong lớp đóng góp: 36 quyển truyện tranh, 40 quyển truyện ngắn và 15 quyển thơ. Có thể chia số sách đã thu được thành 4 nhóm với số lượng quyển bằng nhau không? Vì sao?

Dấu hiệu chia hết cho 3, 9

Dấu hiệu chia hết cho 9. Các số có tổng các chữ số chia hết thì chia hết cho 9 và chỉ các số đó mới chia hết cho 9.

Ví dụ. Trong các số sau, số nào chia hết cho 9

a) 315, 216, 325, 871, 909

b) 126 + 324, 369 + 127

Dấu hiệu chia hết cho 3. Các số có tổng các chữ số chia hết thì chia hết cho 3 và chỉ các số đó mới chia hết cho 3.

Ví dụ. Trong các số sau, số nào chia hết cho 3.

a) 214, 327, 123, 457

b) 132 + 546, 216 + 829

Bài tập rèn luyện

Bài 1. Cho các số: $117 ; 3447 ; 5085 ; 534 ; 9348 ; 123$.
a) Em hãy viết tập hợp A gồm các số chia hết cho 9 trong các số trên.
b) Có số nào trong các số trên chỉ chia hết cho 3 mà không chia hết cho 9 không? Nếu có, hãy viết các số đó thành tập hợp $\mathrm{B}$.

Bài 2. Không thực hiện phép tính, em hãy giải thích các tổng (hiệu) sau có chia hết cho 3 hay không, có chia hết cho 9 hay không.
a) $1260+5306$;
b) $436-324$
c) $2.3 .4 .6+27$.
Bài 3. Bạn Tuấn là một người rất thích chơi bi nên bạn ấy thường sưu tầm những viên bi rồi bỏ vào 4 hộp khác nhau, biết số bi trong mỗi hộp lần lượt là $203,127,97,173$.
a) Liệu có thể chia số bi trong mỗi hộp thành 3 phần bằng nhau được không? Giải thích.
b) Nếu Tuấn rủ thêm 2 bạn cùng chơi bi thì có thể chia đều tổng số bi cho mỗi người được không?
c) Nếu Tuấn rủ thêm 8 bạn cùng chơi bi thì có thể chia đều tổng số bi cho mỗi người được không?

Dấu hiệu chia hết 2,5

Dấu hiệu chia hết cho 2. Các số có chữ số tận cùng là 0, 2, 4, 6, 8 (các chữ số chẵn) thì chia hết cho 2 và chỉ các số đó mới chia hết cho 2.

Ví dụ 1. Trong các số sau, số nào chia hết cho 2: 2012, 123, 311, 4024, 1998

Dấu hiệu chia hết cho 5. Các số có chữ số tận cùng là 0, 5 thì chia hết cho 5 và chỉ các số đó mới chia hết cho 5.

Ví dụ 2. Trong các số sau, số nào chia hết cho 5: 214, 315, 420, 611.

Bài tập sách giáo khoa

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 25) Trong những số sau: $2023,19445,1010$, số nào:
a) chia hết cho $2 ?$
b) chia hết cho 5 ?
c) chia hết cho $10 ?$

Lời giải
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 25)Không thực hiện phép tính, em hãy cho biết những tổng (hiệu) nào sau đây chia hết cho 2 , chia hết cho 5 .
a) $146+550$;
b) $575-40$
c) $3.4 .5+83$
d) $7.5 .6-35.4$

Lời giải

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 25) Lớp $6 \mathrm{~A}, 6 \mathrm{~B}, 6 \mathrm{C}, 6 \mathrm{D}$ lần lượt có $35,36,39,40$ học sinh.
a) Lớp nào có thể chia thành 5 tổ có cùng số tổ viên?
b) Lớp nào có thể chia tất cả các bạn thành các đôi bạn học tập?

Lời giải

Bài 4. (SGK CTST Toán 6 Tập 1 – Trang 25) Bà Huệ có 19 quả xoài và 40 quà quýt. Bà có thể chia số quả này thành 5 phần bằng nhau (có cùng số xoài, có cùng số quýt) được không?

Lời giải

Bài tập tự luyện

Bài tập chứng minh chia hết – Ôn thi vào lớp 10

Các bài toán chứng minh chia hết trong chương trình ôn thi vào lớp 10, dành cho các em rèn luyện.

Bài 1. (Lâm Đồng 2018 – 2019)

Với $ n $ là số tự nhiên chẵn, chứng minh rằng: $$ (20^n+16^n-3^n-1)\ \vdots \ 323. $$
Bài 2. Chứng minh rằng với mọi số tự nhiên $n$ thì $5^{2n}+7$ chia hết cho 8.
Bài 3. (Bến Tre 2018 – 2019)
Cho $ p $ là số nguyên tố lớn hơn 3. Chứng minh rằng $ p^2-1 $ chia hết cho 24.
Bài 4.  Chứng minh rằng với mọi số tự nhiên $n$ thì $3^{3n+1} + 2^{n+2}$ chia hết cho 7.
Bài 5. Chứng minh rằng nếu $\overline{abc}$ chia hết cho 37 thì $\overline{bca}$ cũng chia hết cho 37.
Bài 6. Chứng minh rằng với mọi số tự nhiên $n$ thì $(22n+7,33n+10)=1$
Bài 7. Chứng minh rằng nếu $a, b$ là các số nguyên thỏa $a^2 + b^2$ chia hết cho 3 thì cả hai số $a, b$ đều chia hết cho 3.

Bài 8. Tìm tất cả các số tự nhiên $n$ để $3^n + 5^n$ chia hết cho $3^{n-1} + 5^{n-1}$.
Bài 9. Cho $n$ là số tự nhiên không chia hết cho 2 và 3. Chứng minh rằng với mọi số tự nhiên $k$ thì ${\left( {k + 1} \right)^n} – {k^n} – 1$ chia hết cho ${k^2} + k + 1$
Bài 10. Tìm tất cả các số nguyên dương $n$ sao cho $(n-1)!$ không chia hết cho $n$.
Bài 11. Chứng minh rằng nếu $n$ không chia hết cho 7 thì $n^3-1$ hoặc $n^3+1$ chia hết cho 7.

Bài 12. (Tuyên Quang 2018 – 2019) Cho $a$, $b$, $c$ là các số nguyên. Chứng minh rằng: nếu $ a^{2016}+b^{2017}+c^{2018} $ chia hết cho 6 thì $ a^{2018}+b^{2019}+c^{2020} $ cũng chia hết cho 6.

Bài 13. Cho các số nguyên $x, y, z$ thỏa $(x-y)(y-z)(z-x) = x+ y + z$. Chứng minh rằng $x + y + z$ chia hết cho 27.
Bài 14. Chứng minh rằng với mọi số nguyên $a, b, c$ thì $abc(a^3-b^3)(b^3-c^3)(c^3-a^3)$ chia hết cho 7.
Bài 15. Cho tập $A= {1,2,3,4,5,6,7}$. Gọi S là tập tất cả các số tự nhiên có 7 chữ số khác nhau lấy từ A. Chứng minh rằng không tồn tại hai số $b, c$ thuộc S sao cho $b$ chia hết cho $c$.
Bài 16.  Cho các số nguyên $x, y, z$ khác 0.\ Đặt $x^2 – yz = a, y^2- xz = b, z^2 – xy = c$. \Chứng minh rằng $ax+by + cz $ chia hết cho $a+b+c$.
Bài 17.  Chứng minh rằng trong một 100 số tự nhiên thì có một số hoặc một vài số có tổng chia hết cho 100.
Bài 18.  Chứng minh rằng trong tập mọi tập con có $n+1$ phần tử của tập ${1, 2, \cdots, 2n}$ thì luôn có hai số $a, b$ sao cho $a$ chia hết cho $b$.
Bài 19.  (PTNK 2019)
a) Tìm tất cả những số tự nhiên $n$ sao cho $2^n+1$ chia hết cho 9.
b) Cho $n$ là số tự nhiên $n>3$. Chứng minh rằng $2^n+1$ không chia hết cho $2^m-1$ với mọi số tự nhiên $m$ sao cho $2 < m \leq n$.
Bài 20. Cho hai số nguyên dương $m$, $n$ thỏa mãn $m+n+1$ là một ước nguyên tố của $2\left( m^2+n^2-1\right) $.
Chứng minh rằng $ m\cdot n $ là số chính phương.
Bài 21. Có bao nhiêu số tự nhiên $n$ không vượt quá $2019$ thỏa mãn $n^3+2019$ chia hết cho $6$.
Bài 22. (Đại học KHTN Hà Nội 2018 – 2019) Cho $x$, $y$ là các số nguyên sao cho $ x^2-2xy-y^2$; $xy-2y^{2}-x$ đều chia hết cho 5. Chứng minh $ 2x^2+y^2+2x+y$ cũng chia hết cho 5.
Bài 23. Cho $n$ số nguyên dương tùy ý, với mỗi số nguyên $k$ ta đặt $S_k=1^k+2^k+….+n^k $. Chứng minh rằng: $S_{2019}\ \vdots \ S_1 $.
Bài 24.  (Vinh 2018 – 2019) Cho số tự nhiên $ n\geq2 $ và số nguyên tố $p$ thỏa mãn $ p-1 $ chia hết cho $n$ đồng thời $ n^3-1 $ chia hết cho $p$. Chứng minh rằng $ n+p $ là một số chính phương.
Bài 25. Cho hai số $m,n$ nguyên dương lẻ nguyên tố cùng nhau và $m^2 + 2 \, \vdots \, n$ và $n^2 + 2 \, \vdots \, m$.  Chứng minh rằng $m^2 + n^2 + 2$ chia hết cho $4mn$.
Bài 26. Cho các số $m,n$ nguyên dương thỏa $5m + n$ chia hết cho $5n+m$. Chứng minh $m$ chia hết cho $n$.
Bài 27. Cho các số $x,y$ nguyên dương thỏa $x^2 + y^2 + 10$ chia hết cho $xy$.
a)  Chứng minh rằng $x,y$ là hai số lẻ và nguyên tố cùng nhau.
b) Chứng minh rằng $k = \dfrac{x^2+y^2+10}{xy}$ chia hết cho 4 và $k \geq 12$.

Hết

 

Phương pháp chứng minh chia hết – P4 – Nguyên lý Dirichlet

Nguyên lý Dirichlet có nhiều ứng dụng trong toán học được phát biểu một cách đơn giản như sau: Nếu có $n+1$ con thỏ cho vào $n$ cái chuồng thì có một chuồng chứa ít nhất hai con thỏ.

Nếu áp dụng vào số học ta sẽ có phát biểu tương tự: Có $n+1$ số nguyên khi chia cho $n$ thì sẽ có hai số nào đó có cùng số dư khi chia cho $n$, hay có hai số mà hiệu của chúng sẽ chia hết cho $n$.

Trong bài này chúng ta sẽ sử dụng tích chất này để giải các bài toán về chia hết.

Ví dụ 1. Chứng minh rằng trong 11 số chính phương có hai số mà hiệu của chúng chia hết cho 20.

Lời giải

Theo nguyên lý Dirichlet thì trong 11 số chính phương có hai số có hiệu chia hết cho 10. Giả sử đó là $a$ và $b$.

Ta có $a = m^2, b = n^2$ và $a-b = m^2-n^2$ chia hết cho 10. Khi đó $m, n$ cùng tính chẵn lẻ, suy ra $m^2-n^2 = (m-n)(m+n)$ chia hết cho 4.

Do đó $a-b = m^2-n^2$ chia hết cho 5, 4 nên chia hết cho 20.

Ví dụ 2. Với 4 số nguyên $a, b, c, d$.

Chứng minh rằng $(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)$ chia hết cho 12

Lời giải

Đặt $A = (a-b)(a-c)(a-d)(b-c)(b-d)(c-d)$, ta chứng minh $A$ chia hết cho 3, 4.

  • Trong bốn số $a, b, c, d$ có hai số có cùng số dư khi chia cho 3, hay có hai số có hiệu chia hết cho 3. Do đó $A$ là tích các hiệu của hai số bất kì, nên $A$ chia hết cho 3.
  • Trong 4 số nếu có 3 số chẵn, hoặc 3 số lẻ, giả sử $a, b, c$ cùng tính chẵn lẻ, khi đó $(a-b)(b-c)$ chia hết cho 4. Do đó $A$ chia hết cho 3.
    • Nếu có hai số chẵn, hoặc hai số lẻ giả sử cặp $(a, b)$ và cặp $(c,d)$ cùng tính chẵn lẻ. Khi đó $(a-b)(c-d)$ chia hết cho 4. Do đó $A$ chia hết cho 4.
  • Vậy $A$ chia hết cho 12.

Ví dụ 3. Chứng minh rằng
a) rong 5 số nguyên thì có 3 số có tổng chia hết cho 3.
b) Trong 17 số nguyên thì có 9 số có tổng chia hết cho 9.

Lời giải

a) Một số khi chia cho 3 có các số dư là 0, 1, 2.

  • Nếu 5 số khi chia cho 3 có 1 hoặc 2 số dư, khi đó sẽ có 3 số có cùng số dư khi chia cho 3, tổng 3 số này sẽ chia hết cho 3.
  • Nếu 5 số khi chia cho 3 có đủ 3 số dư 0, 1, 2 thì tổng ba số có số dư khác nhau sẽ chia hết cho 3.
  • Vậy trong 5 số thì có 3 số có tổng chia hết cho 3.

b)  Gọi 17 số đó là $a_1, a_2, \cdots, a_{16}, a_{17}$.

Theo câu a) trong 5 số $a_1, \cdots, a_5$ có 3 số có tổng chia hết cho $3$, giả sử 3 số đó là $a_1, a_2, a_3$.

Đặt $b_1 = \dfrac{1}{3}(a_1+a_2+a_3)$.

Tương tự trong các số $a_4, a_5, \cdots, a_8$, có 3 số có tổng chia hết cho 3, giả sử là $a_4, a_5, a_6$.

Đặt $b_2 = \dfrac{1}{3}(a_4+a_5+a_6)$.

Tương tự ta sẽ có b_3, b_4.

Cuối cùng, còn 5 số $a_{13}, a_{14}, \cdots a_{17}$ có 3 số có tổng chia hết cho 3, giả sử là $a_{14}, a_{15}, a_{16}$.

Đặt $b_5 = \dfrac{1}{3}(a_{14} +a_{15} + a_{16})$.

Ta thấy các số $b_1, b_2, \cdots, b_5$ là các số nguyên, do đó áp dụng câu a) có 3 số có tổng chia hết cho 3, giả sử là $b_1, b_2, b_3$, tức là $b_1+b_2+b_3$ chia hết cho 3.

Từ đó ta có $a_1 + a_2 +\cdots +a_8+a_9$ chia hết cho 9.

Ví dụ 4. Chứng minh rằng trong 100 số phân biệt, luôn có một số hoặc một tổng vài số chia hết cho 100.

Lời giải

Ta xét các tổng sau

$S_1 = a_1$

$S_2 = a_2$

$S_{100} = a_1 + a_2 + \cdots +a_{100}$

Nếu trong các số $S_1, S_2, \cdots, S_{100}$ có một số chia hết 100 thì ta có điều cần chứng minh.

Nếu không có số nào chia hết cho 100 thì các số dư khi chia cho 100 là từ 1 đến 99, do đó tồn tại $i>j$ sao cho $S_i – S_j$ chia hết cho 100, hay $a_{j+1} + \cdots+a_i$ chia hết cho 100.

Do đó ta có điều cần chứng minh.

Bài tập rèn luyện

Bài 1. Chứng minh rằng tồn tại các số chỉ toàn chữ số 1 và chia hết cho 2019.

Bài 2. Chứng minh rằng mỗi tập con có $n+1$ phần tử của tập ${1, 2, \cdots, 2n}$ có hai số mà số này chia hết cho số kia.

Phương pháp chứng minh chia hết – P2

Phương pháp biến đổi thành tổng. 

Chú ý tính chất sau: $A, B$ chia hết cho $M$ thì $xA + yB$ chia hết cho $M$ với mọi $x, y$ nguyên.

Ví dụ 1. Chứng minh rằng nếu $4x-y$ chia hết cho 3 thì $A=4x^2 – 16xy-2y^2$ chia hết cho 9.

Lời giải
  • $x+2y = 4x-y -3(x-y)$ chia hết cho 3.
  • $4x^2-16xy-2y^2= (4x-y)(x+2y)+9xy$, mà $(4x-y)(x+2y)$ chia hết cho 9 nên $A$ chia hết cho 9.

Ví dụ 2. Cho hai số nguyên $a, b$ thỏa $(17a+5b)(5a+17b)$ chia hết cho 11.

Chứng minh rằng $(17a+5b)(5a+17b)$ chia hết cho 121.

Lời giải
  • $(17a+5b)(5a+17b)$ chia hết cho 11 thì $17a + 5b$ hoặc $5a+17b$ chia hết cho 11.
  • Nếu $17a+5b$ chia hết cho 11, khi đó $5a+17b = 22(a+b)  – (17a+5b)$ chia hết cho 11.
  • Khi đó $(17a+5b)(5a+17b)$ chia hết cho 121.
  • Tương tự cho trường hợp còn lại.

Ví dụ 3. Cho $n$ là số tự nhiên. Chứng minh rằng $3^nn^3+1$ chia hết cho 7 khi và chỉ khi $3^n + n^3$ chia hết cho 7.

Lời giải

Bổ đề. Nếu $n$ không chia hết cho 7 thì $n^6-1$ chia hết cho 7.

Chứng minh bổ đề: Xét số dư.

Chiều thuận. Nếu $3^nn^3+1$ chia hết cho 7 thì $3^n + n^3$ chia hết cho 7.

Ta có $3^nn^3 + 1$ chia hết cho 7, suy ra $n$ không chia hết cho 7.

Khi đó $n^33^n + 1 = n^3(3^n+n^3) + 1 – n^6$, mà $1-n^6$ chia hết cho 7 (Theo bổ đề), suy ra $n^3(3^n+n^3)$ chia hết cho 7.

Mà $(n^3,7)=1$, suy ra $3^n+n^3$ chia hết cho 7.

Chiều đảo. Nếu $3^n+n^3$ chia hết cho 7, chứng minh $3^nn^3+1$ chia hết cho 7.

$3^n+n^3$ chia hết cho 7, suy ra $n$ không chia hết cho 7 và $n^3(3^n+n^3)$ chia hết cho 7.

Mà $n^3(3^n+n^3) = n^33^n + 1 + n^6-1$, trong đó $n^6-1$ chia hết cho 7 ,suy ra $3^nn^3+1$ chia hết cho 7.

Bài tập rèn luyện

Bài 1. Tìm các số $x, y$ để $\overline{2x7y5}$ chia hết cho 25.

Bài 2. Tìm số tự nhiên $n$ để $n^2+3n+1$ chia hết cho $n+1$.

Bài 3. Tìm số tự nhiên $n$ để $\dfrac{3n^2 + n+1}{n+2}$ là số nguyên.

Bài 4. Tìm tất cả các số tự nhiên $n$ để $n^2 + 9n – 2$ chia hết cho 11.

Bài 5. Chứng minh rằng $n^2 + n+2$ không chia hết cho 15 với mọi $n$.

Bài 6. Chứng minh rằng $n^2 + 3n+5$ không chia hết cho 121 với mọi $n$.

Bài 7. Ba số nguyên $a,\,b,\,c$thoả mãn điều kiện $a + b + c$ chia hết cho 3. Chứng minh rằng ${a^2}\left( {b + c} \right) + {b^2}\left( {a + c} \right) + {c^2}\left( {a + b} \right)$ chia hết cho 6.

Bài 8. Chứng minh rằng nếu $4x-y$ chia hết cho 3 thì $4x^2 + 7xy-2y^2$ chia hết cho 9.

Bài 9. Cho các số nguyên $a, b, c$ với $b \neq c$. Chứng minh rằng nếu các phương trình $ax^2 + bx + c = 0$ và $(c-b)x^2 +(c-a)x+a+b = 0$ có nghiệm chung thì $a+b+2c$ chia hết cho 3.

Phương pháp chứng minh chia hết

 

Bài toán chia hết là bài toán quan trọng trong các bài toán số học sơ cấp, trong chương trình trung học cơ sở các bài toán liên quan đến chia hết xuất hiện nhiều trong các kì thi học sinh giỏi cũng như thi vào 10. Trong loạt bài viết này, tôi xin trình bày những phương pháp chứng minh chia hết, giúp các em ôn tập tốt hơn trong kì thi vào 10.

Phương pháp 1. Biến đổi thành tích.

Để chứng minh $A$ chia hết cho $B$, ta có thể làm như sau:

  • Biến đổi $B = C \cdot D$ với $(C, D)=1$ và chứng minh $A$ chia hết cho $C$ và $D$.
  • Biến đổi $A = M \cdot N$ và $B = C \cdot D$, trong đó $M$ chia hết cho $C$ và $N$ chia hết cho $D$.

Ví dụ 1. Chứng minh rằng

a) Tích hai số chẵn liên tiếp chia hết cho 8.

b) Tích bốn số tự nhiên liên tiếp chia hết cho 24.

Lời giải

a) Gọi hai số chẵn liên tiếp là $2n, 2n+2$.

Ta có $2n(2n+2) = 4n(n+1)$. Do $n,n+1$ là hai số liên tiếp nên chắc chắn có một số chẵn, suy ra $n(n+1)$ chia hết cho 2, mà $4$ chia hết cho 4. Suy ra $4n(n+1)$ chia hết cho 8.

Vậy tích hai số chẵn liên tiếp chia hết cho 8.

b) Tích bốn số tự nhiên liên tiếp là $A = n(n+1)(n+2)(n+3)$, ta chứng minh $A$ chia hết cho 24. Ta có $24 = 3 \times 8$ với $(3,8)=1$, nên ta cần chứng minh $A$ chia hết cho 3 và 8.

Nếu $n$ lẻ thì $n+1, n+3$ là hai số chẵn liên tiếp tích chia hết cho 8, suy ra $A$ chia hết cho 8.

Nếu $n$ chẵn thì $n, n+2$ là hai số chẵn liên tiếp, tích chia hết cho 8, suy ra $A$ chia hết cho 8.

Trong ba số  liên tiếp $n, n+1, n+2$ có ít nhất một số chia hết cho 3 nên $A$ chia hết cho 3.

$A$ chia hết cho 3, 8 và $(3,8)=1$, do đó $A$ chia hết cho 24.

Ví dụ 2.  Chứng minh rằng với mọi số tự nhiên $m$ lẻ thì $m^3 + 3m^2 – m – 3$ chia hết cho $48$.

Lời giải

Đặt $A = m^3+3m^2-m-3$, ta có $A = (m+3)(m^2-1)$.

Do $m$ lẻ nên $m = 2n + 1$, $n$ là số tự nhiên. Khi đó $A = (2n+4)((2n+1)^2-1) = 8n(n+1)(n+2)$.

Ta có $n(n+1)(n+2)$ là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3, do đó chia hết cho 6.

Vậy $A$ chia hết cho 48.

Ví dụ 3.  Cho $n$ là số tự nhiên thỏa $n = \dfrac{x^2-1}{2} = \dfrac{y^2-1}{3}$ với $x, y$ là các số nguyên.
a) Chứng minh $n = y^2 – x^2$.
b) Chứng minh $n$ chia hết cho 20.

Lời giải

a) $n = \dfrac{x^2-1}{2} = \dfrac{y^2-1}{3} = \dfrac{y^2-1-(x^2-1)}{3-2} = y^2-x^2$.

b) Ta chứng minh $n$ chia hết cho 4 và 5.

Ta có $n = \dfrac{x^2-1}{2}$, suy ra $x$ lẻ, $x = 2k+1$, khi đó $n = \dfrac{(2k+1)^2-1}{2} = 2k(k+1)$ chia hết cho 4.

Ta có $n = \dfrac{x^2+y^2-2}{5}$, suy ra $x^2+ y^2$ chia 5 dư 2. (1)

Mà $x^2, y^2 \equiv 0, 1, 4 (\mod 5)$.

Do đó (1) chỉ xảy ra khi $x^2 \equiv y^2 equiv 1 (\mod 5)$, suy ra $n=x^2 – y^2$ chia hết cho 5.

Vậy $n$ chia hết cho 20.

Bài tập rèn luyện

Bài 1. Chứng minh rằng hiệu các bình phương của hai số lẻ liên tiếp thì chia hết cho $8$.
Bài 2. Chứng minh rằng nếu $n$ là số chẵn thì $n^2 + 2n$ chia hết cho $8$.
Bài 3. Chứng minh rằng nếu $n$ là số lẻ thì $n^2 – 1$ chia hết cho $8$.
Bài 4. Chứng minh rằng với mọi số tự nhiên $n$ thì $n^4 + 6n^3 + 11n^2 + 6n$ chia hết cho $24$.
Bài 5. Chứng minh rằng nếu $n$ không chia hết cho $3$ thì $n^2 – 1$ chia hết cho $3$.
Bài 6. Chứng minh rằng với mọi số tự nhiên $n$ thì $n^5 – n$ chia hết cho $30$.
Bài 7. Chứng minh rằng nếu $p$ là số nguyên tố lẻ lớn hơn $3$ thì $p^2 – 1$ chia hết cho $24$.
Bài 8. Chứng minhg rằng với mọi số tự nhiên $n$ lẻ thì $n^{12} – n^8-n^4+1$ chia hết cho $512$.
Bài 9. Chứng minh rằng với mọi số $n$ chẵn thì $n^4-4n^3-4n^2+16n$ chia hết cho $384$.
Bài 10. Cho $12$ số tự nhiên có tổng chia hết cho $6$.

Chứng minh rằng tổng lập phương của $12$ số đó cũng chia hết cho $6$.