Category Archives: vecto

Sử dụng vectơ chứng minh các điểm thẳng hàng

Chứng minh các điểm thẳng hàng là một trong các dạng toán thường gặp trong các bài toán về vector, trong bài trình trình bày một số ví dụ, thông qua đó các em có thêm kinh nghiệm giải dạng toán này.

Tính chất 1. Cho $A, B, C$ là 3 điểm phân biệt.
a) $A, B, C$ thẳng hàng khi và chỉ khi $\overrightarrow{A B}, \overrightarrow{A C}$ cùng phương khi và chỉ khi tồn tại $k$ sao cho $\overrightarrow{A B}=k \cdot \overrightarrow{A C}$.
b) Giả sử $\overrightarrow{A B}=x \vec{a}+y \vec{b}$ và $\overrightarrow{A C}=x^{\prime} \vec{a}+y^{\prime} \vec{b}$. Khi đó $A, B, C$ thẳng hàng khi và chỉ khi tồn tại $k$ để $x=k x^{\prime}, y=k y^{\prime}$ hay $\frac{x}{x^{\prime}}=\frac{y}{y^{\prime}}$.

Tính chất 2. Cho 2 điểm $A, B$ phân biệt và điểm $O$ nằm ngoài đường thẳng $A B$. Khi đó điểm $M$ thuộc đường thẳng $A B$ khi và chỉ khi tồn tại các số $x, y$ thỏa $x+y=1$ và
$$
\overrightarrow{O M}=x \cdot \vec{a}+y \cdot \vec{b}
$$

Ví dụ 1. Cho tam giác $A B C$. Gọi $M$ là trung điểm $A B, N$ thỏa $\overrightarrow{N A}+2 \overrightarrow{N C}=\overrightarrow{0}$ và P là điểm đối xứng của B qua C.
a) Chứng minh $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$
b) Chứng minh $\overrightarrow{N M}=\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}$.
c) Chứng minh $M, N, P$ thẳng hàng.

Lời giải

a) Ta có $\overrightarrow{0}=\overrightarrow{N A}+2 \overrightarrow{N C}=\overrightarrow{N A}+2 \overrightarrow{N A}+2 \overrightarrow{A C}=3 \overrightarrow{N A}+2 \overrightarrow{A C}$.
Suy ra $2 \overrightarrow{A C}=-3 \overrightarrow{N A}=3 \overrightarrow{A N}$.
Do đó $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$.
b) Ta có $\overrightarrow{N M}=\overrightarrow{A M}-\overrightarrow{A N}=\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}$.
c) Ta có $\overrightarrow{P M}=\overrightarrow{B M}-\overrightarrow{B P}$
$=-\frac{1}{2} \overrightarrow{A B}-2 \overrightarrow{B C}$
$=-\frac{1}{2} \overrightarrow{A B}-2 \overrightarrow{B A}-2 \overrightarrow{A C}$
$=\frac{3}{2} \overrightarrow{A B}-2 \overrightarrow{A C}$
$=3\left(\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}\right)$
$=3 \overrightarrow{N M}$. Suy ra $P, M, N$ thẳng hàng.

Ví dụ 2. Cho tứ giác $A B C D$. Gọi $M, N$ thuộc cạnh $A D, B C$ sao cho $A M=2 M D, B N=2 N C$. Chứng minh rằng trung điểm các đoạn thẳng $A B, M N$ và $C D$ thẳng hàng.

Lời giải

Gọi $P, Q, R$ lần lượt là trung điểm của $A B, M N$ và $C D$.

  • Ta có $\overrightarrow{P Q}=\frac{1}{2} \overrightarrow{A M}+\frac{1}{2} \overrightarrow{B N}=\frac{1}{3} \overrightarrow{A D}+\frac{1}{3} \overrightarrow{B C}$.
  • Ta cũng có $\overrightarrow{P R}=\frac{1}{2} \overrightarrow{A D}+\frac{1}{2} \overrightarrow{B C}$.
  • Từ đó suy ra $\overrightarrow{P Q}=\frac{2}{3} \overrightarrow{P R}$, suy ra $P, Q, R$ thẳng hàng.

Ví dụ 3. Cho tam giác $A B C$ và điểm $D$ thỏa mãn $\overrightarrow{A D}=\frac{3}{4} \overrightarrow{A C}$, I là trung điểm của $B D$. M là điể thỏa $\overrightarrow{B M}=x \overrightarrow{B C}, x \in \mathbb{R}$.
a) Tinh $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Tinh $\overrightarrow{A M}$ theo $x$ và $\overrightarrow{A B}, \overrightarrow{A C}$
c) Tìm $x$ để $A, I, M$ thẳng hàng.

Lời giải

a) Ta có $2 \overrightarrow{A I}=\overrightarrow{A B}+\overrightarrow{A D}=\overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C}$ $\Rightarrow \overrightarrow{A I}=\frac{1}{2} \overrightarrow{A B}+\frac{3}{8} \overrightarrow{A C}$.
b) Ta có $\overrightarrow{A M}=\overrightarrow{A B}+\overrightarrow{B M}=\overrightarrow{A B}+x \overrightarrow{B C}=\overrightarrow{A B}+x(\overrightarrow{A C}-\overrightarrow{A B})=(1-x) \overrightarrow{A B}+x \overrightarrow{A C}$.
c) Ta có:
$$
\left\{\begin{array}{l}
\overrightarrow{A I}=\overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C} \\\\
\overrightarrow{A M}=(1-x) \overrightarrow{A B}+x \overrightarrow{A C}
\end{array}\right.
$$

Khi đó, $A, M, I$ thẳng hàng $\Leftrightarrow \overrightarrow{A I}$ và $\overrightarrow{A M}$ cùng phương $\Leftrightarrow \frac{1-x}{1}=\frac{x}{\frac{3}{4}} \Leftrightarrow x=\frac{3}{7}$.

Bài tập rèn luyện

Bài 1. Cho tam giác $\mathrm{ABC}$. Hai điểm $\mathrm{M}, \mathrm{N}$ được xác định bởi hệ thức: $\overrightarrow{B C}+\overrightarrow{M A}=\overrightarrow{0}, \overrightarrow{A B}-$ $\overrightarrow{N A}-3 \overrightarrow{A C}=\overrightarrow{0}$. Chứng minh $M N \parallel A C$.

Bài 2. Cho $3 \overrightarrow{O A}+2 \overrightarrow{O B}-5 \overrightarrow{O C}=\overrightarrow{0}$. Chứng minh $A, B, C$ thẳng hàng.
Bài 3. Cho tam giác $A B C$ có trung tuyến $A M$. Gọi $I$ là trung điểm $A M$ và $K$ là trung điểm AC sao $A K=\frac{1}{3} A C$.
a) Biểu diễn các vectơ $\overrightarrow{B I}, \overrightarrow{B K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Chứng minh các điểm $B, I, K$ thẳng hàng.

Bài 4. Cho tam giác $A B C$ có trọng tâm $G$. Gọi $I, J$ là hai điểm xác định bởi $\overrightarrow{I A}=2 \overrightarrow{I B}, 3 \overrightarrow{J A}+$ $2 \overrightarrow{J C}=\overrightarrow{0}$.
a) Tính $\overrightarrow{I f}, \overrightarrow{I G}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Chứng minh $I, J, G$ thẳng hàng.

Bài 5. Cho tam giác $A B C$. Lấy các điểm $M, N, P$ thỏa mãn
$$
\overrightarrow{M A}+\overrightarrow{M B}=\overrightarrow{0}, 3 \overrightarrow{A N}-2 \overrightarrow{A C}=\overrightarrow{0}, \overrightarrow{P B}=2 \overrightarrow{P C}
$$

Chứng minh $M, N, P$ thẳng hàng.

Biểu diễn vectơ theo hai vectơ không cùng phương

Tính chất 1. Cho hai vectơ $\overrightarrow{a}, \overrightarrow{b}$ khác $\overrightarrow{0}$

a) Nếu $\overrightarrow{a}, \overrightarrow{b}$ cùng phương thì tồn tại số thực $k$ sao cho $\overrightarrow{a} = k \cdot \overrightarrow{b}$.

b) Nếu $\overrightarrow{a}, \overrightarrow{b}$ không cùng phương và $ x \cdot \overrightarrow{a}+y \cdot \overrightarrow{b} = \overrightarrow{0}$, suy ra $x = y = 0$.

Chứng minh.

a) Nếu $\vec{a}, \vec{b}$ cùng phương.

  • Trường hợp 1. Nếu $\vec{a}, \vec{b}$ cùng hướng. Đặt $k=\frac{|\vec{a}|}{|\vec{b}|}$, ta chứng minh $\vec{a}=k \cdot \vec{b}$.
    Thực vậy:
    Do $k>0$ nên $k \cdot \vec{b}$ cùng hướng $\vec{b}$ mà $\vec{b}$ cùng hướng $\vec{a}$ nên $k \cdot \vec{b}$ cùng hướng $a$; Và $|k \cdot \vec{b}|=|k| \cdot|\vec{b}|=|\vec{a}|$.
  • Trường hợp 2. Nếu $\vec{a}, \vec{b}$ ngược hướng. Đặt $k=-\frac{|\vec{a}|}{|\vec{b}|}$, chứng minh tương tự như trên ta cũng có $\vec{a}=k \cdot \vec{b}$.

b) Giả sử $x \neq 0$, suy ra $\overrightarrow{a} = \dfrac{-y}{x} \cdot \overrightarrow{b}$ cùng phương $\overrightarrow{b}$, mâu thuẫn, do đó $x = 0$, dẫn đến $y = 0$.

Tính chất 2. Cho $\overrightarrow{a}, \overrightarrow{b}$ không cùng phương, khi đó với mọi vectơ $\overrightarrow{c}$ tồn tại duy nhất cặp số $(x;y)$ thỏa mãn $$\overrightarrow{c} = x \cdot \overrightarrow{a} + y \cdot \overrightarrow{b}$$

Chứng minh

  • Lấy điểm $O$ ta dựng các vectơ $\overrightarrow{A O}=\vec{a} ; \overrightarrow{O B}=\vec{b} ; \overrightarrow{O C}=\vec{c}$.
  • Từ $C$ dựng các đường thẳng song song với $O B, O A$ cắt $O A, O B$ tại $D$ và $E$. Khi đó $\overrightarrow{O C}=\overrightarrow{O D}+\overrightarrow{O E}$.
  • Mà $\overrightarrow{O D}$ và $\overrightarrow{O A}$ cùng phương nên tồn tại $x$ thỏa $\overrightarrow{O D}=x \cdot \overrightarrow{O A}=x \cdot \vec{a}$; tương tự tồn tại $y$ sao cho $\overrightarrow{O E}=y \cdot \overrightarrow{O B}=y \cdot \vec{b}$.
  • Do đó $\vec{c}=x \cdot \vec{a}+y \cdot \vec{b}$.
  • Giả sử tồn tại $x^{\prime}, y^{\prime}$ thỏa $\vec{c}=x^{\prime} \cdot \vec{a}+y^{\prime} \cdot \vec{b}$. Khi đó $x \cdot \vec{a}+y \cdot \vec{b}=x^{\prime} \cdot \vec{a}+y^{\prime} \cdot b \Leftrightarrow$ $\left(x-x^{\prime}\right) \vec{a}+\left(y-y^{\prime}\right) \vec{b}=\overrightarrow{0}$.
  • Từ tính chất 1, ta có $x = x’, y = y’$. Ta có điều cần chứng minh.

Việc biểu diễn một vec tơ theo hai vec tơ không cùng phương có nhiều ứng dụng trong việc chứng minh vec tơ bằng nhau, cùng phương, dẫn đến các bài toán chứng minh thẳng hàng, tính toán độ dài, góc, …

Ví dụ 1. Cho tam giác $A B C$ và điểm $D$ thỏa mãn $\overrightarrow{A D}=\frac{3}{4} \overrightarrow{A C}$, I là trung điểm của $B D$.
a) Tính $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Cho $\overrightarrow{BM} = x \cdot \overrightarrow{BC}$. Tính $\overrightarrow{A M}$ theo $x$ và $\overrightarrow{A B}, \overrightarrow{A C}$

Lời giải.

a) Ta có $2 \overrightarrow{A I}=\overrightarrow{A B}+\overrightarrow{A D}=\overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C} \Rightarrow \overrightarrow{A I}=\frac{1}{2} \overrightarrow{A B}+\frac{3}{8} \overrightarrow{A C}$.
b) Ta có $\overrightarrow{A M}=\overrightarrow{A B}+\overrightarrow{B M}=\overrightarrow{A B}+x \overrightarrow{B C}=\overrightarrow{A B}+x(\overrightarrow{A C}-\overrightarrow{A B})=(1-x) \overrightarrow{A B}+x \overrightarrow{A C}$.

Ví dụ 2. Cho tam giác $A B C$ gọi $M$ là điểm thỏa $\overrightarrow{M A}+3 \overrightarrow{M B}=\overrightarrow{0}$.
Giả sử $\overrightarrow{C M}=x \cdot \overrightarrow{C A}+y \cdot \overrightarrow{C B}$. Tính $x, y$.

Lời giải.

Ta có $\overrightarrow{0}=\overrightarrow{M A}+3 \overrightarrow{M B}=\overrightarrow{C A}-\overrightarrow{C M}+3 \overrightarrow{C B}-3 \overrightarrow{C M}$

$ \Leftrightarrow 4 \overrightarrow{C M}=\overrightarrow{C A}+3 \overrightarrow{C B} \Leftrightarrow \overrightarrow{C M}=$

$\frac{1}{4} \overrightarrow{C A}+\frac{3}{4} \overrightarrow{C B}$.

Từ đó ta có $x=\frac{1}{4}, y=\frac{3}{4}$, do sự biểu diễn $\overrightarrow{C M}$ theo $\overrightarrow{A C}, \overrightarrow{C B}$ là duy nhất.

Ví dụ 3. Cho tam giác $A B C$ và các điểm $I$, J thỏa mãn $2 \overrightarrow{C I}+3 \overrightarrow{B I}=\overrightarrow{0}, 5 \overrightarrow{J B}-2 \overrightarrow{J C}=\overrightarrow{0}$.
a) Tinh $\overrightarrow{A I}, \overrightarrow{A J}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Gọi G là trọng tâm tam giác $A B C$. Tính $\overrightarrow{A G}$ theo $\overrightarrow{A I}, \overrightarrow{A J}$.

Lời giải
Ta có:
$2 \overrightarrow{C I}+3 \overrightarrow{B I}=\overrightarrow{0} \Leftrightarrow 2 \overrightarrow{C I}+3(\overrightarrow{B C}+\overrightarrow{C I})=\overrightarrow{0} $

$\Leftrightarrow 5 \overrightarrow{C I}+3 \overrightarrow{B C}=\overrightarrow{0} \Leftrightarrow \overrightarrow{C I}=\frac{3}{5} \overrightarrow{C B} $
$ 5 \overrightarrow{J B}-2 \overrightarrow{J C}=\overrightarrow{0} \Leftrightarrow 5 \overrightarrow{J B}-2(\overrightarrow{J B}+\overrightarrow{B C})=\overrightarrow{0} $

$\Leftrightarrow 3 \overrightarrow{J B}=2 \overrightarrow{B C} \Leftrightarrow \overrightarrow{B J}=-\frac{2}{3} \overrightarrow{B C}$
a) – Tính $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
Ta có:
$$
\overrightarrow{A I}=\overrightarrow{A C}+\overrightarrow{C I}=\overrightarrow{A C}+\frac{3}{5} \overrightarrow{C B}=\overrightarrow{A C}+\frac{3}{5}(\overrightarrow{A B}-\overrightarrow{A C})=\frac{3}{5} \overrightarrow{A B}+\frac{2}{5} \overrightarrow{A C}
$$

  • Tính $\overrightarrow{A J}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
    Ta có:
    $$
    \overrightarrow{A J}=\overrightarrow{A B}+\overrightarrow{B J}=\overrightarrow{A B}-\frac{2}{3} \overrightarrow{B C} \Leftrightarrow \overrightarrow{A B}-\frac{2}{3}(\overrightarrow{A C}-\overrightarrow{A B})=\frac{5}{3} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}
    $$

b) Tính $\overrightarrow{A G}$ theo $\overrightarrow{A I}, \overrightarrow{A J}$.
Đặt $\overrightarrow{A G}=x \overrightarrow{A I}+y \overrightarrow{A J}$.

$\overrightarrow{A G} =x\left(\frac{3}{5} \overrightarrow{A B}+\frac{2}{5} \overrightarrow{A C}\right)+y\left(\frac{5}{3} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}\right) $
$=\left(\frac{3 x}{5}+\frac{5 y}{3}\right) \overrightarrow{A B}+\left(\frac{2 x}{5}-\frac{2 y}{3}\right) \overrightarrow{A C}$

Mặt khác, $\overrightarrow{A G}=\frac{1}{3} \overrightarrow{A B}+\frac{1}{3} \overrightarrow{A C}$
$\Rightarrow \left\{\begin{array} { l }
{ \frac { 3 } { 5 } x + \frac { 5 } { 3 } y = \frac { 1 } { 3 } } \\\\
{ \frac { 2 } { 5 } x – \frac { 2 } { 3 } y = \frac { 1 } { 3 } }
\end{array} \right.$

$ \left \{\begin{array}{l}
x=\frac{35}{48} \\\\
y=-\frac{1}{16}
\end{array}\right. $

Vậy $\overrightarrow{A G}=\frac{35}{48} \overrightarrow{A I}-\frac{1}{16} \overrightarrow{A J}$

Bài tập rèn luyện

Bài 1. Cho tam giác $A B C$ và $M$ là trung điểm cạnh $B C ; N$ là điểm thuộc đoạn $A C$ sao cho $A N=2 N C$. Chứng minh rằng:
a) $\overrightarrow{A M}=\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})$.
b) $\overrightarrow{B N}=\frac{2}{3} \overrightarrow{A C}-\overrightarrow{A B}$
c) $\overrightarrow{M N}=\frac{1}{3} \overrightarrow{C A}-\frac{1}{2} \overrightarrow{C B}$.

Bài 2. Cho tam giác $A B C$ có $I$ là điểm đối xứng với $B$ qua $C, J$ là trung điểm $A C, K$ thuộc $A B$ thoả $A B=3 A K$.
a) Tính $\overrightarrow{B I}, \overrightarrow{B J}, \overrightarrow{B K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Tính $\overrightarrow{I f}, \overrightarrow{I K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.

Bài 3. Cho tam giác $A B C$. Lấy $M, N$ lần lượt là trung điểm $A B, A C$. $L$ là điểm thoả mãn $2 \overrightarrow{L A}+5 \overrightarrow{L B}+3 \overrightarrow{L C}=\overrightarrow{0}$
a) Tính $\overrightarrow{B M}, \overrightarrow{B M}, \overrightarrow{B L}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Tính $\overrightarrow{M N}, \overrightarrow{M L}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.