Tag Archives: Lop10

Sử dụng vectơ chứng minh các điểm thẳng hàng

Chứng minh các điểm thẳng hàng là một trong các dạng toán thường gặp trong các bài toán về vector, trong bài trình trình bày một số ví dụ, thông qua đó các em có thêm kinh nghiệm giải dạng toán này.

Tính chất 1. Cho $A, B, C$ là 3 điểm phân biệt.
a) $A, B, C$ thẳng hàng khi và chỉ khi $\overrightarrow{A B}, \overrightarrow{A C}$ cùng phương khi và chỉ khi tồn tại $k$ sao cho $\overrightarrow{A B}=k \cdot \overrightarrow{A C}$.
b) Giả sử $\overrightarrow{A B}=x \vec{a}+y \vec{b}$ và $\overrightarrow{A C}=x^{\prime} \vec{a}+y^{\prime} \vec{b}$. Khi đó $A, B, C$ thẳng hàng khi và chỉ khi tồn tại $k$ để $x=k x^{\prime}, y=k y^{\prime}$ hay $\frac{x}{x^{\prime}}=\frac{y}{y^{\prime}}$.

Tính chất 2. Cho 2 điểm $A, B$ phân biệt và điểm $O$ nằm ngoài đường thẳng $A B$. Khi đó điểm $M$ thuộc đường thẳng $A B$ khi và chỉ khi tồn tại các số $x, y$ thỏa $x+y=1$ và
$$
\overrightarrow{O M}=x \cdot \vec{a}+y \cdot \vec{b}
$$

Ví dụ 1. Cho tam giác $A B C$. Gọi $M$ là trung điểm $A B, N$ thỏa $\overrightarrow{N A}+2 \overrightarrow{N C}=\overrightarrow{0}$ và P là điểm đối xứng của B qua C.
a) Chứng minh $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$
b) Chứng minh $\overrightarrow{N M}=\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}$.
c) Chứng minh $M, N, P$ thẳng hàng.

Lời giải

a) Ta có $\overrightarrow{0}=\overrightarrow{N A}+2 \overrightarrow{N C}=\overrightarrow{N A}+2 \overrightarrow{N A}+2 \overrightarrow{A C}=3 \overrightarrow{N A}+2 \overrightarrow{A C}$.
Suy ra $2 \overrightarrow{A C}=-3 \overrightarrow{N A}=3 \overrightarrow{A N}$.
Do đó $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$.
b) Ta có $\overrightarrow{N M}=\overrightarrow{A M}-\overrightarrow{A N}=\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}$.
c) Ta có $\overrightarrow{P M}=\overrightarrow{B M}-\overrightarrow{B P}$
$=-\frac{1}{2} \overrightarrow{A B}-2 \overrightarrow{B C}$
$=-\frac{1}{2} \overrightarrow{A B}-2 \overrightarrow{B A}-2 \overrightarrow{A C}$
$=\frac{3}{2} \overrightarrow{A B}-2 \overrightarrow{A C}$
$=3\left(\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}\right)$
$=3 \overrightarrow{N M}$. Suy ra $P, M, N$ thẳng hàng.

Ví dụ 2. Cho tứ giác $A B C D$. Gọi $M, N$ thuộc cạnh $A D, B C$ sao cho $A M=2 M D, B N=2 N C$. Chứng minh rằng trung điểm các đoạn thẳng $A B, M N$ và $C D$ thẳng hàng.

Lời giải

Gọi $P, Q, R$ lần lượt là trung điểm của $A B, M N$ và $C D$.

  • Ta có $\overrightarrow{P Q}=\frac{1}{2} \overrightarrow{A M}+\frac{1}{2} \overrightarrow{B N}=\frac{1}{3} \overrightarrow{A D}+\frac{1}{3} \overrightarrow{B C}$.
  • Ta cũng có $\overrightarrow{P R}=\frac{1}{2} \overrightarrow{A D}+\frac{1}{2} \overrightarrow{B C}$.
  • Từ đó suy ra $\overrightarrow{P Q}=\frac{2}{3} \overrightarrow{P R}$, suy ra $P, Q, R$ thẳng hàng.

Ví dụ 3. Cho tam giác $A B C$ và điểm $D$ thỏa mãn $\overrightarrow{A D}=\frac{3}{4} \overrightarrow{A C}$, I là trung điểm của $B D$. M là điể thỏa $\overrightarrow{B M}=x \overrightarrow{B C}, x \in \mathbb{R}$.
a) Tinh $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Tinh $\overrightarrow{A M}$ theo $x$ và $\overrightarrow{A B}, \overrightarrow{A C}$
c) Tìm $x$ để $A, I, M$ thẳng hàng.

Lời giải

a) Ta có $2 \overrightarrow{A I}=\overrightarrow{A B}+\overrightarrow{A D}=\overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C}$ $\Rightarrow \overrightarrow{A I}=\frac{1}{2} \overrightarrow{A B}+\frac{3}{8} \overrightarrow{A C}$.
b) Ta có $\overrightarrow{A M}=\overrightarrow{A B}+\overrightarrow{B M}=\overrightarrow{A B}+x \overrightarrow{B C}=\overrightarrow{A B}+x(\overrightarrow{A C}-\overrightarrow{A B})=(1-x) \overrightarrow{A B}+x \overrightarrow{A C}$.
c) Ta có:
$$
\left\{\begin{array}{l}
\overrightarrow{A I}=\overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C} \\\\
\overrightarrow{A M}=(1-x) \overrightarrow{A B}+x \overrightarrow{A C}
\end{array}\right.
$$

Khi đó, $A, M, I$ thẳng hàng $\Leftrightarrow \overrightarrow{A I}$ và $\overrightarrow{A M}$ cùng phương $\Leftrightarrow \frac{1-x}{1}=\frac{x}{\frac{3}{4}} \Leftrightarrow x=\frac{3}{7}$.

Bài tập rèn luyện

Bài 1. Cho tam giác $\mathrm{ABC}$. Hai điểm $\mathrm{M}, \mathrm{N}$ được xác định bởi hệ thức: $\overrightarrow{B C}+\overrightarrow{M A}=\overrightarrow{0}, \overrightarrow{A B}-$ $\overrightarrow{N A}-3 \overrightarrow{A C}=\overrightarrow{0}$. Chứng minh $M N \parallel A C$.

Bài 2. Cho $3 \overrightarrow{O A}+2 \overrightarrow{O B}-5 \overrightarrow{O C}=\overrightarrow{0}$. Chứng minh $A, B, C$ thẳng hàng.
Bài 3. Cho tam giác $A B C$ có trung tuyến $A M$. Gọi $I$ là trung điểm $A M$ và $K$ là trung điểm AC sao $A K=\frac{1}{3} A C$.
a) Biểu diễn các vectơ $\overrightarrow{B I}, \overrightarrow{B K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Chứng minh các điểm $B, I, K$ thẳng hàng.

Bài 4. Cho tam giác $A B C$ có trọng tâm $G$. Gọi $I, J$ là hai điểm xác định bởi $\overrightarrow{I A}=2 \overrightarrow{I B}, 3 \overrightarrow{J A}+$ $2 \overrightarrow{J C}=\overrightarrow{0}$.
a) Tính $\overrightarrow{I f}, \overrightarrow{I G}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Chứng minh $I, J, G$ thẳng hàng.

Bài 5. Cho tam giác $A B C$. Lấy các điểm $M, N, P$ thỏa mãn
$$
\overrightarrow{M A}+\overrightarrow{M B}=\overrightarrow{0}, 3 \overrightarrow{A N}-2 \overrightarrow{A C}=\overrightarrow{0}, \overrightarrow{P B}=2 \overrightarrow{P C}
$$

Chứng minh $M, N, P$ thẳng hàng.

Biểu diễn vectơ theo hai vectơ không cùng phương

Tính chất 1. Cho hai vectơ $\overrightarrow{a}, \overrightarrow{b}$ khác $\overrightarrow{0}$

a) Nếu $\overrightarrow{a}, \overrightarrow{b}$ cùng phương thì tồn tại số thực $k$ sao cho $\overrightarrow{a} = k \cdot \overrightarrow{b}$.

b) Nếu $\overrightarrow{a}, \overrightarrow{b}$ không cùng phương và $ x \cdot \overrightarrow{a}+y \cdot \overrightarrow{b} = \overrightarrow{0}$, suy ra $x = y = 0$.

Chứng minh.

a) Nếu $\vec{a}, \vec{b}$ cùng phương.

  • Trường hợp 1. Nếu $\vec{a}, \vec{b}$ cùng hướng. Đặt $k=\frac{|\vec{a}|}{|\vec{b}|}$, ta chứng minh $\vec{a}=k \cdot \vec{b}$.
    Thực vậy:
    Do $k>0$ nên $k \cdot \vec{b}$ cùng hướng $\vec{b}$ mà $\vec{b}$ cùng hướng $\vec{a}$ nên $k \cdot \vec{b}$ cùng hướng $a$; Và $|k \cdot \vec{b}|=|k| \cdot|\vec{b}|=|\vec{a}|$.
  • Trường hợp 2. Nếu $\vec{a}, \vec{b}$ ngược hướng. Đặt $k=-\frac{|\vec{a}|}{|\vec{b}|}$, chứng minh tương tự như trên ta cũng có $\vec{a}=k \cdot \vec{b}$.

b) Giả sử $x \neq 0$, suy ra $\overrightarrow{a} = \dfrac{-y}{x} \cdot \overrightarrow{b}$ cùng phương $\overrightarrow{b}$, mâu thuẫn, do đó $x = 0$, dẫn đến $y = 0$.

Tính chất 2. Cho $\overrightarrow{a}, \overrightarrow{b}$ không cùng phương, khi đó với mọi vectơ $\overrightarrow{c}$ tồn tại duy nhất cặp số $(x;y)$ thỏa mãn $$\overrightarrow{c} = x \cdot \overrightarrow{a} + y \cdot \overrightarrow{b}$$

Chứng minh

  • Lấy điểm $O$ ta dựng các vectơ $\overrightarrow{A O}=\vec{a} ; \overrightarrow{O B}=\vec{b} ; \overrightarrow{O C}=\vec{c}$.
  • Từ $C$ dựng các đường thẳng song song với $O B, O A$ cắt $O A, O B$ tại $D$ và $E$. Khi đó $\overrightarrow{O C}=\overrightarrow{O D}+\overrightarrow{O E}$.
  • Mà $\overrightarrow{O D}$ và $\overrightarrow{O A}$ cùng phương nên tồn tại $x$ thỏa $\overrightarrow{O D}=x \cdot \overrightarrow{O A}=x \cdot \vec{a}$; tương tự tồn tại $y$ sao cho $\overrightarrow{O E}=y \cdot \overrightarrow{O B}=y \cdot \vec{b}$.
  • Do đó $\vec{c}=x \cdot \vec{a}+y \cdot \vec{b}$.
  • Giả sử tồn tại $x^{\prime}, y^{\prime}$ thỏa $\vec{c}=x^{\prime} \cdot \vec{a}+y^{\prime} \cdot \vec{b}$. Khi đó $x \cdot \vec{a}+y \cdot \vec{b}=x^{\prime} \cdot \vec{a}+y^{\prime} \cdot b \Leftrightarrow$ $\left(x-x^{\prime}\right) \vec{a}+\left(y-y^{\prime}\right) \vec{b}=\overrightarrow{0}$.
  • Từ tính chất 1, ta có $x = x’, y = y’$. Ta có điều cần chứng minh.

Việc biểu diễn một vec tơ theo hai vec tơ không cùng phương có nhiều ứng dụng trong việc chứng minh vec tơ bằng nhau, cùng phương, dẫn đến các bài toán chứng minh thẳng hàng, tính toán độ dài, góc, …

Ví dụ 1. Cho tam giác $A B C$ và điểm $D$ thỏa mãn $\overrightarrow{A D}=\frac{3}{4} \overrightarrow{A C}$, I là trung điểm của $B D$.
a) Tính $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Cho $\overrightarrow{BM} = x \cdot \overrightarrow{BC}$. Tính $\overrightarrow{A M}$ theo $x$ và $\overrightarrow{A B}, \overrightarrow{A C}$

Lời giải.

a) Ta có $2 \overrightarrow{A I}=\overrightarrow{A B}+\overrightarrow{A D}=\overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C} \Rightarrow \overrightarrow{A I}=\frac{1}{2} \overrightarrow{A B}+\frac{3}{8} \overrightarrow{A C}$.
b) Ta có $\overrightarrow{A M}=\overrightarrow{A B}+\overrightarrow{B M}=\overrightarrow{A B}+x \overrightarrow{B C}=\overrightarrow{A B}+x(\overrightarrow{A C}-\overrightarrow{A B})=(1-x) \overrightarrow{A B}+x \overrightarrow{A C}$.

Ví dụ 2. Cho tam giác $A B C$ gọi $M$ là điểm thỏa $\overrightarrow{M A}+3 \overrightarrow{M B}=\overrightarrow{0}$.
Giả sử $\overrightarrow{C M}=x \cdot \overrightarrow{C A}+y \cdot \overrightarrow{C B}$. Tính $x, y$.

Lời giải.

Ta có $\overrightarrow{0}=\overrightarrow{M A}+3 \overrightarrow{M B}=\overrightarrow{C A}-\overrightarrow{C M}+3 \overrightarrow{C B}-3 \overrightarrow{C M}$

$ \Leftrightarrow 4 \overrightarrow{C M}=\overrightarrow{C A}+3 \overrightarrow{C B} \Leftrightarrow \overrightarrow{C M}=$

$\frac{1}{4} \overrightarrow{C A}+\frac{3}{4} \overrightarrow{C B}$.

Từ đó ta có $x=\frac{1}{4}, y=\frac{3}{4}$, do sự biểu diễn $\overrightarrow{C M}$ theo $\overrightarrow{A C}, \overrightarrow{C B}$ là duy nhất.

Ví dụ 3. Cho tam giác $A B C$ và các điểm $I$, J thỏa mãn $2 \overrightarrow{C I}+3 \overrightarrow{B I}=\overrightarrow{0}, 5 \overrightarrow{J B}-2 \overrightarrow{J C}=\overrightarrow{0}$.
a) Tinh $\overrightarrow{A I}, \overrightarrow{A J}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Gọi G là trọng tâm tam giác $A B C$. Tính $\overrightarrow{A G}$ theo $\overrightarrow{A I}, \overrightarrow{A J}$.

Lời giải
Ta có:
$2 \overrightarrow{C I}+3 \overrightarrow{B I}=\overrightarrow{0} \Leftrightarrow 2 \overrightarrow{C I}+3(\overrightarrow{B C}+\overrightarrow{C I})=\overrightarrow{0} $

$\Leftrightarrow 5 \overrightarrow{C I}+3 \overrightarrow{B C}=\overrightarrow{0} \Leftrightarrow \overrightarrow{C I}=\frac{3}{5} \overrightarrow{C B} $
$ 5 \overrightarrow{J B}-2 \overrightarrow{J C}=\overrightarrow{0} \Leftrightarrow 5 \overrightarrow{J B}-2(\overrightarrow{J B}+\overrightarrow{B C})=\overrightarrow{0} $

$\Leftrightarrow 3 \overrightarrow{J B}=2 \overrightarrow{B C} \Leftrightarrow \overrightarrow{B J}=-\frac{2}{3} \overrightarrow{B C}$
a) – Tính $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
Ta có:
$$
\overrightarrow{A I}=\overrightarrow{A C}+\overrightarrow{C I}=\overrightarrow{A C}+\frac{3}{5} \overrightarrow{C B}=\overrightarrow{A C}+\frac{3}{5}(\overrightarrow{A B}-\overrightarrow{A C})=\frac{3}{5} \overrightarrow{A B}+\frac{2}{5} \overrightarrow{A C}
$$

  • Tính $\overrightarrow{A J}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
    Ta có:
    $$
    \overrightarrow{A J}=\overrightarrow{A B}+\overrightarrow{B J}=\overrightarrow{A B}-\frac{2}{3} \overrightarrow{B C} \Leftrightarrow \overrightarrow{A B}-\frac{2}{3}(\overrightarrow{A C}-\overrightarrow{A B})=\frac{5}{3} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}
    $$

b) Tính $\overrightarrow{A G}$ theo $\overrightarrow{A I}, \overrightarrow{A J}$.
Đặt $\overrightarrow{A G}=x \overrightarrow{A I}+y \overrightarrow{A J}$.

$\overrightarrow{A G} =x\left(\frac{3}{5} \overrightarrow{A B}+\frac{2}{5} \overrightarrow{A C}\right)+y\left(\frac{5}{3} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}\right) $
$=\left(\frac{3 x}{5}+\frac{5 y}{3}\right) \overrightarrow{A B}+\left(\frac{2 x}{5}-\frac{2 y}{3}\right) \overrightarrow{A C}$

Mặt khác, $\overrightarrow{A G}=\frac{1}{3} \overrightarrow{A B}+\frac{1}{3} \overrightarrow{A C}$
$\Rightarrow \left\{\begin{array} { l }
{ \frac { 3 } { 5 } x + \frac { 5 } { 3 } y = \frac { 1 } { 3 } } \\\\
{ \frac { 2 } { 5 } x – \frac { 2 } { 3 } y = \frac { 1 } { 3 } }
\end{array} \right.$

$ \left \{\begin{array}{l}
x=\frac{35}{48} \\\\
y=-\frac{1}{16}
\end{array}\right. $

Vậy $\overrightarrow{A G}=\frac{35}{48} \overrightarrow{A I}-\frac{1}{16} \overrightarrow{A J}$

Bài tập rèn luyện

Bài 1. Cho tam giác $A B C$ và $M$ là trung điểm cạnh $B C ; N$ là điểm thuộc đoạn $A C$ sao cho $A N=2 N C$. Chứng minh rằng:
a) $\overrightarrow{A M}=\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})$.
b) $\overrightarrow{B N}=\frac{2}{3} \overrightarrow{A C}-\overrightarrow{A B}$
c) $\overrightarrow{M N}=\frac{1}{3} \overrightarrow{C A}-\frac{1}{2} \overrightarrow{C B}$.

Bài 2. Cho tam giác $A B C$ có $I$ là điểm đối xứng với $B$ qua $C, J$ là trung điểm $A C, K$ thuộc $A B$ thoả $A B=3 A K$.
a) Tính $\overrightarrow{B I}, \overrightarrow{B J}, \overrightarrow{B K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Tính $\overrightarrow{I f}, \overrightarrow{I K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.

Bài 3. Cho tam giác $A B C$. Lấy $M, N$ lần lượt là trung điểm $A B, A C$. $L$ là điểm thoả mãn $2 \overrightarrow{L A}+5 \overrightarrow{L B}+3 \overrightarrow{L C}=\overrightarrow{0}$
a) Tính $\overrightarrow{B M}, \overrightarrow{B M}, \overrightarrow{B L}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Tính $\overrightarrow{M N}, \overrightarrow{M L}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.

Phép chiếu vectơ

  1. Định nghĩa. Cho đường thẳng $d$ và đường thẳng $l$ không song song $d$, và vectơ $\overrightarrow{AB}$. Đường thẳng qua $A, B$ song song với $l$ cắt $d$ tại$A’, B’$, Khi đó $\overrightarrow{A’B’}$ được gọi là hình chiếu của $\overrightarrow{AB}$ trên $d$ theo phương $l$. Trường hợp $l \perp d$ ta có phép chiếu vuông góc.

2. Tính chất

1) Hình chiếu của $\overrightarrow{a}$ trên $d$ là $\overrightarrow{0}$ khi và chỉ khi $\overrightarrow{a}$ cùng phương với $l$.

2) Nếu $\overrightarrow{a’}, \overrightarrow{b’}$ là hình chiếu của $\overrightarrow{a}, \overrightarrow{b}$ trên $d$ thì $\overrightarrow{a’} \pm \overrightarrow{b’}$ là hình chiếu của $\overrightarrow{a} \pm \overrightarrow{b}$ trên $d$.

3) Nếu $\overrightarrow{a’}$ là hình chiếu của $\overrightarrow{a}$ thì $k \cdot \overrightarrow{a’}$ là hình chiếu của $k \cdot \overrightarrow{a}$.

Phép chiếu bảo toán các phép toán cộng, trừ hai vectơ, tích một vectơ với một số, nhưng không bảo toàn tích vô hướng hai vectơ

3. Một số ví dụ áp dụng của phép chiếu vectơ

Ví dụ 1. Cho tam giác $ABC$, $M$ là trung điểm $BC$ và $G$ là trọng tâm tam giác $ABC$. Chứng minh

a) $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AM}$

b) $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

Lời giải.

a) Đặt $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{AC} -2\overrightarrow{AM}$

Xét phép chiếu vectơ theo phương $AB$ trên đường thẳng $BC$ ta có

$\overrightarrow{AB} \mapsto \overrightarrow{0}, \overrightarrow{AC} \mapsto \overrightarrow{BC}, \overrightarrow{AM} \mapsto \overrightarrow{BM}$

Do đó $\overrightarrow{u}\mapsto \overrightarrow{BC} – 2\overrightarrow{BM} = \overrightarrow{0}$, suy ra $\overrightarrow{u} || AB$.

Chứng minh tương tự thì $\overrightarrow{u} ||AC$

Do đó $\overrightarrow{u} = \overrightarrow{0}$

b) Đặt $\overrightarrow{u} = \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$. Thực phép chiếu theo phương $GA$ trên đường thẳng $BC$, ta có:

$\overrightarrow{GA} \mapsto \overrightarrow{0}, \overrightarrow{GB} \mapsto \overrightarrow{MB}, \overrightarrow{GC} \mapsto \overrightarrow{MC}$. Khi đó $\overrightarrow{u} \mapsto \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$

Do đó $\overrightarrow{u}$ cùng phương $GA$.

Chứng minh tương tự $\overrightarrow{u}$ cùng phương $GB, GC$

Do đó $\overrightarrow{u} = \overrightarrow{0}$

Ví dụ 2. (Định lý Jacobi) Cho tam giác $ABC$, $M$ là điểm nằm trong tam giác, đặt $S_a = S_{MBC}, S_b = S_{MAC}, S_c = S_{MAC}$. Chứng minh rằng

$$S_a \cdot \overrightarrow{MA} + S_b \cdot \overrightarrow{MB} + S_c \cdot \overrightarrow{MC} = \overrightarrow{0}$$

Lời giải. $AM$ cắt $BC$ tại $D$. Đặt $S_a \cdot \overrightarrow{MA} + S_b \cdot \overrightarrow{MB} + S_c \cdot \overrightarrow{MC} = \overrightarrow{u}$

Thực hiện phép chiếu xuống $BC$ theo phương $MA$, ta có $\overrightarrow{MA} \mapsto \overrightarrow{0}, \overrightarrow{MB} \mapsto \overrightarrow{DB}, \overrightarrow{MC} \mapsto \overrightarrow{DC}$

Do đó $\overrightarrow{u} \mapsto S_b \cdot \overrightarrow{DC} + S_b \cdot \overrightarrow{DB}$. (1)

Ta có $\overrightarrow{DB} = \dfrac{-DB}{DC} \overrightarrow{DB}$ và $\dfrac{DB}{DC} = \dfrac{S_b}{S_c}$, suy ra $\overrightarrow{DB} = \dfrac{-S_b}{S_c} \overrightarrow{DB}$, từ đó $S_c \cdot \overrightarrow{DB} + S_b \cdot \overrightarrow{DC} = \overrightarrow{0}$.

Vậy $\overrightarrow{u} \mapsto \overrightarrow{0}$, và $\overrightarrow{u}$ cùng phương với $MA$, tương tự ta cũng có $\overrightarrow{u}$ cùng phương $MB, MC$. Do đó $\overrightarrow{u} = \overrightarrow{0}$.

Bài tập rèn luyện.

Bài 1. Cho đa giác đều $A_1A_2\cdot A_n$ có tâm $O$. Chứng minh rằng $$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \overrightarrow{0}$$

Bài 2. Cho tam giác $ABC$, dự các vec tơ $\overrightarrow{a}$ hướng là ngoài tam giác và có độ dài $BC$, các vec tơ $\overrightarrow{b}, \overrightarrow{c}$ được dựng tương tự. Chứng minh rằng $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$

Bài 3. Cho tam giác $ABC$ có $O$ là tâm ngoại tiếp, $H$ là trực tâm. Chứng minh rằng $$ \overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

Đề thi học sinh giỏi khối 10

Kì thi chọn đội dự tuyển trường Phổ thông Năng khiếu

Đề thi và đáp án chọn đội dự tuyển 10 trường PTNK năm 2023

Đề thi và đáp án chọn đội dự tuyển trường PTNK năm 2022

Đề thi và đáp án chọn đội dự tuyển PTNK năm 2021 – Toán Việt (toanviet.net)

Đề thi và đáp án chọn đội dự tuyển trường PTNK năm 2020 – Toán Việt (toanviet.net)

Đề thi và đáp án chọn đội dự tuyển PTNK năm học 2019 – 2020 – Toán Việt (toanviet.net)

Đề và đáp thi chọn đội dự tuyển PTNK năm học 2017 – 2018 – Toán Việt (toanviet.net)

Đáp án đề thi chọn đội dự tuyển lớp 10 năm 2016 – 2017 – Toán Việt (toanviet.net)

Đề và đáp án thi chọn đội dự tuyển lớp 10 năm 2012 – 2013 – Toán Việt (toanviet.net)

Kì thi Olympic truyền thống 30/4 (SGD TPHCM)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2011 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2010 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2009 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2008 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2007 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2005 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2004 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2003 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2002 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2000 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1999 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1998 – Toán Việt (toanviet.net)

Kì thi duyên hải Bắc bộ

Kì thi HSG lớp 10 của các tỉnh, thành phố

Đáp án đề thi chọn đội dự tuyển trường PTNK năm 2020

Thời gian làm bài 120 phút

Đề bài.

Bài 1. Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a^{4}+b^{4}+2}{\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)}$, với $a, b \in \mathbb{R}$.
Bài 2. Tìm tất cả các hàm $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$thỏa mãn
$$
f\left(x^{2} f(y)^{2}\right)=f(x)^{2} f(y), \text { với mọi } x, y \in \mathbb{Q}^{+} .
$$
Bài 3. Cho $x_{1}, x_{2}, x_{3}, \ldots$ là dãy số nguyên thỏa mãn đồng thời hai điều kiện $1=$ $x_{1}<x_{2}<x_{3} \ldots$ và $x_{n+1} \leq 2 n$ với $n=1,2,3 \ldots$ Chứng minh rằng với mọi số nguyên dương $k$, tồn tại các số nguyên $i>j$ sao cho $x_{i}-x_{j}=k$.

Bài 4. Cho tam giác $A B C$ cân tại $A$, nội tiếp đường tròn tâm $O$ bán kính $R$. Gọi $M$ là điểm trên cạnh $A B$ sao cho $\overrightarrow{A M}=\frac{1}{3} \overrightarrow{A B}$. Đường tròn tâm $M$ bán kính $M B$ cắt đường tròn tâm $O$ tại điểm thứ hai là $D$. Một đường thẳng qua $M$ song song với $A D$ cắt $A C$ tại $N$. Chứng minh rằng $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$.

Đáp án

Bài 1. Với mọi $x \in \mathbb{R}$, ta có
$$
x^{4}+1-\frac{2}{9}\left(x^{2}-x+1\right)^{2}=\frac{1}{9}(x+1)^{2}\left(7 x^{2}-10 x+7\right) \geq 0 .
$$
Vì thế nên ta có
$$
P \geq \frac{2}{9} \frac{\left(a^{2}-a+1\right)^{2}+\left(b^{2}-b+1\right)^{2}}{\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)}=\frac{2}{9}\left(\frac{a^{2}-a+1}{b^{2}-b+1}+\frac{b^{2}-b+1}{a^{2}-a+1}\right) \geq \frac{4}{9} .
$$
Suy ra giá trị nhỏ nhất của $P$ là $\frac{4}{9}$, đạt được khi $a=b=-1$.

Bài 2. Giả sử $f$ là một hàm thỏa mãn các yêu cầu của bài toán. Đặt $f(1)=a>$ 0 , trong phương trình đề cho, thay $x=y=1$ ta có $f\left(a^{2}\right)=a^{3}$.
Từ đó, tiếp tục lần lượt thay $x$ bởi $a^{2}, y$ bởi 1 và $x$ bởi $1, y$ bởi $c^{2}$ vào phương trình ấy, ta thu được
$$
a^{7}=f\left(a^{6}\right)=a^{5} .
$$
Chú $\hat{y} a>0$ nên ta có $a=1$, tức $f(1)=1$. Thay $x$ bởi 1 vào phương trình đề cho, ta có
$$
f\left(f(y)^{2}\right)=f(y) \text {, với mọi } y \in \mathbb{Q}^{+} \text {. }
$$
Lại thay $y$ bởi 1 vào phương trình đề cho, ta có
$$
f(x)^{2}=f\left(x^{2}\right), \text { với mọi } x \in \mathbb{Q}^{+} .
$$
Suy ra
$$
f(x)=f\left(f(x)^{2}\right)=f(f(x))^{2}=\ldots=f^{n+1}(x)^{2^{n}}, \text { với mọi } x \in \mathbb{Q}^{+},
$$
trong đó $f^{n+1}(x)$ là $n+1$ lần tác động $f$ vào $x$. Từ đó, nếu tồn tại $q \in \mathbb{Q}^{+}$sao cho tồn tại $p \in \mathbb{P}$ thỏa mãn $v_{p}(f(q)) \neq 0$ thì ta có
$$
v_{p}(f(q))=v_{p}\left(f^{n+1}(q)^{2^{n}}\right)=2^{n} v_{p}\left(f^{n+1}(q)\right) \neq 0 .
$$
Trong đẳng thức trên, cho $n \rightarrow+\infty$ ta thấy điều vô lý. Suy ra $v_{p}(f(q))=0$ với mọi $q \in \mathbb{Q}^{+}, p \in \mathbb{P}$, hay $f(x) \equiv 1$.
Thử lại, ta kết luận $f(x) \equiv 1$ là hàm duy nhất thỏa mãn yêu cầu bài toán.

Bài 3. Với $k$ nguyên dương, ta xét $k+1$ số hạng của dãy là $x_{1}, x_{2}, \ldots, x_{k+1}$. Ta có $x_{1}=1 \leq k$, gọi $q$ là số lớn nhất thỏa mãn $x_{q} \leq k$ thì ta có $q<k+1$ và
$$
1 \leq x_{1}<x_{1}<\cdots<x_{q} \leq k<x_{q+1}<\cdots<x_{k+1}<2 k \text {. }
$$
Nếu tồn tại $1 \leq j<i \leq k+1$ sao cho $x_{i}-x_{j}=k$ thì ta có ngay điều cần chứng minh. Ngược lại, ta có các số
$$
x_{1}+k, x_{2}+k, \ldots, x_{q}+k, x_{q+1}, \ldots, x_{k+1}
$$
là $k+1$ số nguyên đôi một phân biệt, tất cả đều lớn hơn $k$ nhưng lại không vượt quá $2 k$, vô lí!

Từ đó suy ra với mọi $k$ nguyên dương, luôn tồn tại các số nguyên $i>j$ sao cho $x_{i}-x_{j}=k$.

Bài 4. Ta có $O B=O D, M B=M D$ nên dễ thấy $O M$ là phân giác ngoài của góc $A M D$, mà $O A=O D$ nên suy ra $O \in(A M D)$.

Gọi $N^{\prime}$ là giao điểm khác $A$ của $(A M D)$ và $A C$. Ta chứng minh $N$ trùng $N^{\prime}$. Thật vậy, ta có $\overrightarrow{A M}=\frac{1}{3} \overrightarrow{A B}$ nên $\angle A M O$ tù, do đó nếu $N^{\prime}$ nằm ngoài tia $A C$ thì $N^{\prime}$ nằm khác phía $O$ so với $A M$ nên
$$
\angle A M O=\angle A N^{\prime} O=\angle C A O-\angle A O N^{\prime}<\angle C A O<90^{\circ},
$$
vô lý. Suy ra $N^{\prime}$ nằm trên tia $A C$, kéo theo $A O$ là phân giác trong góc $M A N^{\prime}$ nên $O M=O N^{\prime}$, mà $O A=O D$ nên $M N^{\prime}$ song song $A D$, suy ra $N$ trùng $N^{\prime}$.

Từ đó, dễ thấy $A M N D$ là hình thang cân nên $A N=M D=M B$, hơn nữa $N$ nằm trên tia $A C$ nên ta thu được
$$
\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}
$$
Ta có điều cần chứng minh.

Tài liệu tham khảo

[1] Nguyễn Tăng Vũ, Lê Phúc Lữ, Nguyễn Tiến Hoàng, Đề thi và đáp án kì thi dự tuyển và đội tuyển PTNK 2008-2021

Mệnh đề chứa biến

Mệnh đề chứa biến

Xét các phát biểu
P(n): “$n+1$ là số chính phương”. \ \ \ (1)
Q(x,y): “$x+y$ chia hết cho 2”. \ \ \ (2)

Mỗi phát biểu trên là câu khẳng định chứa một hay nhiều biến (n,x,y..). Tính đúng sai của chúng phụ thuộc vào giá trị của biến.

Định nghĩa. Các phát biểu dạng (1), (2)… được gọi là \textbf{mệnh đề chứa biến}.

Lượng từ $\forall, \exists$

Cho mệnh đề chứa biến P(x) với $x \in X$ là một tập hợp nào đó. Khi đó khẳng định có dạng “Với mọi x thuộc X thì P(x) đúng” (hay “P(x) đúng với mọi x thuộc X”) là một mệnh đề và được kí hiệu là

$\forall x \in X, P(x)$ hoặc $\forall x \in X: P(x).$

Cho mệnh đề chứa biến P(x) với $x \in X$ là một tập hợp nào đó. Khi đó khẳng định có dạng “Tồn tại x thuộc X để cho P(x) đúng” là một mệnh đề và được kí hiệu là

$\exists x \in X, P(x)$ hoặc $\exists x \in X: P(x).$

Mệnh đề phủ định của mệnh đề chứa lượng từ $\forall$ và $\exists$:

a) $\overline{\forall x \in X: P(x)}= \exists x \in X: \overline{P(x)}$.
b) $\overline{\exists x \in X: P(x)}=\forall x \in X: \overline{P(x)}$.

Ví dụ 1. Trong các mệnh đề sau, mệnh đề nào đúng. Viết mệnh đề phủ định.

a) $\forall x \in \mathbb{R}: x^2 \ge -1$

b) $\exists n \in \mathbb{N} : n+1\le 2n$.
c) $\forall x \in \mathbb{R}: \dfrac{2}{3} \le |x| \le \dfrac{5}{4}$
d) $\exists n \in \mathbb{N}: n^4+n^2+1$ là số nguyên tố.
e) $\forall n \in \mathbb{N}: (n^5-n) \vdots 15.$

Lời giải

a) $\exists x \in \mathbb{R}: x^2 < -1$

b) $\forall n \in \mathbb{N} : n+1 > 2n$.
c) $\exists x \in \mathbb{R}: |x| < \dfrac{2}{3}$ hoặc $|x| > \dfrac{5}{4}$
d) $\forall n \in \mathbb{N}: n^4+n^2+1$ không là số nguyên tố.
e) $\exists n \in \mathbb{N}: (n^5-n)$ không chia hết cho 15.

Ví dụ 2. 
Xét tính đúng sai của các mệnh đề sau và lập mệnh đề phủ định

a) $\exists n \in \mathbb{Q}: n^2=2$
b) $\exists x \in \mathbb{R}: x \ge x^2$
c) $\forall n \in \mathbb{N}: n^2 +1$ không chia hết cho 3.
d) $\exists n \in \mathbb{N}: 10^n-9n-1$ là số nguyên tố.

Lời giải

a) $\forall n \in \mathbb{Q}: n^2 \neq 2$
b) $\forall x \in \mathbb{R}: x < x^2$
c) $\exists n \in \mathbb{N}: n^2 +1$ chia hết cho 3.
d) $\forall n \in \mathbb{N}: 10^n-9n-1$ không là số nguyên tố.

Bài tập rèn luyện

Mệnh đề – Ứng dụng vào chứng minh

Định nghĩa
Trong toán học định lí là một mệnh đề đúng. Nhiều định lí được phát biểu dưới dạng:

$$”\forall x \in X, P(x) \Rightarrow Q(x),” (1)$$
trong đó P(x), Q(x) là các mệnh đề chứa biến còn X là một tập hợp nào đó. \
Chứng minh định lí  dạng (1) là dùng suy luận và các kiến thức đã biết để khẳng định mệnh đề (1) là đúng.

Phương pháp chứng minh
Có thể chứng minh định lí dạng (1) một cách trực tiếp hoặc gián tiếp.\

Phép chứng minh trực tiếp gồm các bước sau:

  • Lấy $x \in X$ tuỳ ý mà P(x) đúng.
  • Dùng suy luận và các kiến thức đã biết để chỉ ra rằng Q(x) đúng.

Phép chứng minh gián tiếp thường hay được dùng là chứng minh phản chứng. Phép chứng minh phản chứng gồm các bước sau:

  • Giả sử tồn tại $x_0 \in X $ sao cho $P(x_0)$ đúng còn $Q(x_0)$ sai.
  • Dùng kiến thức toán học để chỉ ra mâu thuẫn.

Cho định lí dưới dạng $$”\forall x \in X, P(x) \Rightarrow Q(x).” \ \ \ \ (1)$$
P(x) được gọi là giả thiết, Q(x) được gọi là kết luận của định lí. Định lí trên còn được phát biểu lại dưới dạng

a)P(x) là điều kiện đủ để có Q(x).
b)Q(x) là điều kiện cần  để có P(x).

Xét mệnh đề đảo của định lí dạng (1):
$$\forall x \in X, Q(x) \Rightarrow P(x). \ (2)$$

Định nghĩa Nếu mệnh đề (2) đúng thì nó được gọi là định lí đảo  của định lí dạng (1). Lúc đó định lí dạng (1) được gọi là định lí thuận. Định lí thuận và định lí đảo có thể viết gộp thành một định lí.

$$\forall x \in X, P(x) \Leftrightarrow Q(x).$$
Khi đó ta nói P(x) là điều kiện cần và đủ  để có Q(x).

Các ví dụ

Ví dụ 1. Phát biểu các định lí sau dưới dạng điều kiện cần và điều kiện đủ:

a)Nếu một tứ giác là hình thoi thì nó có hai đường chéo vuông góc.
b)Với mọi số tự nhiên $n$ nếu $n \vdots 4$ thì $n \vdots 2.$

Ví dụ 2.
Trong các định lí sau định lí nào có định lí đảo. Với định lí có định lí đảo hãy phát biểu lại dưới dạng “Điều kiện cần và đủ”

a)Nếu một tứ giác là hình thoi thì nó có 2 đường chéo vuông góc nhau.
b)Nếu một tứ giác là hình bình hành thì hai đường chéo cắt nhau tại trung điểm của mỗi đường.
c)Nếu số nguyên dương $a$ chia hết cho 24 thì nó chia hết cho 6 và 4.
d)Nếu tứ giác ABCD là hình bình bình hành thì $\overrightarrow{AB}=\overrightarrow{DC}.$

Ví dụ 3. Chứng minh rằng:

a)Tổng của một số vô tỷ và một số hữu tỷ là số vô tỷ.
a)Chứng minh nếu $a$ là số vô tỷ, $b$ là hữu tỷ khác 0 thì $ab$ là số vô tỷ.

Lời giải

a) Cho $a$ vô tỉ và $b$ hữu tỉ. Giả sử $a+b = c$ là số hữu tỉ.

Khi đó ta có $a = c -b$, mà do $c, b \in Q$ nên $c-b \in Q $, vô lí vì $a$ vô tỉ.

Vậy tổng của một số hữu tỉ và một số vô tỉ là một số vô tỉ.

b) Cho $a$ vô tỉ và $b$ hữu tỉ khác 0. Ta chứng minh $ab$ cũng là vô tỉ.

Giả sử $ab =c$ là hữu tỉ, khi đó $a = \dfrac{c}{b}$ hữu tỉ (vô lí).

Vậy $ab$ là số vô tỉ.

Ví dụ 4. (Tuyển sinh PTNK 2009)
Người ta xếp các số từ 1 đến 9 thành một vòng tròn, mỗi số ghi một lần, có tồn tại hay không cách sắp xếp sao cho tổng hai số liền nhau bất kì thì lớn hơn hoặc bằng 10.

Lời giải

Giả sử tồn tại các sắp xếp thỏa đề bài, tức là hai số kề nhau có tổng lớn hơn hoặc bằng 10.

Khi đó ta xét số 1 và 2 số kề 1 là $a, b$. Ta có $1+a \geq 10, 1+b \geq 10$, suy ra $a=b=9$ (vô lí vì mỗi số chỉ viết được 1 lần).

Vậy không tồn tại cách viết thỏa đề bài.

Ví dụ 5. Chứng minh $\sqrt{2}$ là một số vô tỷ.

Lời giải

Giả sử $\sqrt{2}$ là số hữu tỉ, đặt $\sqrt{2} = \dfrac{p}{q}$ trong đó $(p,q)=1$.

Khi đó $p^2 = 2q^2$, suy ra $p^2$ chia hết cho 2, mà 2 nguyên tố nên $p$ chia hết cho 2.

Đặt $p = 2m$ ta có $q^2 = 2m^2$, suy ra $q$ chia hết cho 2, suy ra $q = 2n$.

Mâu thuẫn vì $(p,q)=1$.

Vậy $\sqrt{2}$ là số vô tỉ.

Bài tập rèn luyện

Bài 1. Cho định lí “Nếu $n$ là số tự nhiên thì $(n^3-n) \vdots 6.$”

a)Hãy xác định mệnh đề P(n), Q(n).
a)Phát biểu định lí trên sử dụng thuật ngữ “Điều kiện cần” và “Điều kiện đủ”.
a)Chứng minh định lí trên.

Bài 2.  Có tồn tại hay không cách chia tập các số tự nhiên từ 1 đến 9 thành hai tập sao cho tổng các phần tử của hai tập đó là bằng nhau? Tại sao?

Bài 3. Tích của 22 số nguyên bằng 1. Chứng minh rằng tổng của chúng không thể bằng 0.

Bài 4. Một con mã đang ở ô $a1$, hỏi con mã có đi qua mỗi ô đúng một lần và kết thúc ở ô $h8$ được không?Tại sao?

Bài 5. Sử dụng phương pháp chứng minh phản chứng để chứng minh các bài toán sau:

a)Nếu $x \ne 1, y \ne 1$ thì $xy-x-y \ne -1$.
b)Cho hai số tự nhiên $a,b$. Chứng minh rằng nếu $a^2+b^2 \vdots 8$ thì $a,b$ không thể đồng thời là các số lẻ.
c)Chứng minh có ít nhất một trong 3 bất đẳng thức sau là đúng: $a^2+b^2 \ge 2bc, c^2+a^2 \ge 2ab, b^2+c^2 \ge 2ca$.
d)Cho $n \in \mathbb{N}$, chứng minh rằng nếu $n^2 \vdots 3$ thì $n \vdots 3$.

Bài 6. Sử dụng phương pháp chứng minh phản chứng để chứng minh các bài toán sau:

a)Chứng minh rằng có ít nhất một trong 3 phương trình :$ax^2+bx+c=0, bx^2+cx+a=0, cx^2+ax+b=0$ vô nghiệm.
b)Cho $0<a,b,c<1$. Chứng minh có ít nhất 1 trong các bất đẳng thức sau sai: $a(1-b)>\dfrac{1}{4}, b(1-c)> \dfrac{1}{4}, c(1-a) > \dfrac{1}{4}$.
c)Cho các số thực $x,y,z$ thỏa $x.y.z>0, x+y+z>0, xy+xz+yz>0$. Chứng minh $x,y,z$ là các số dương.

Bài 7. Sử dụng phương pháp chứng minh phản chứng để chứng minh các bài toán sau:

a)Cho $x, y \in \mathbb{N}$. Chứng minh rằng nếu $x^2+y^2 \vdots 3$ thì $x, y$ cùng chia hết cho 3.
b)Chứng minh có vô hạn số nguyên tố.
c)Cho $2^n-1$ là số nguyên tố, chứng minh $n$ là số nguyên tố.

Bài 9. Sử dụng phương pháp chứng minh phản chứng để chứng minh các bài toán sau:

a)Chứng minh $\sqrt{3}$ là số vô tỷ.
a)Chứng minh $\sqrt{2}+\sqrt{3}$ là số vô tỷ.
a)Với hai số hữu tỷ $a,b$. Chứng minh rằng nếu $a \sqrt{2}+b \sqrt{3}$ là số hữu tỷ thì $a=b=0$.

Bài 10. Chứng minh rằng trong một tam giác nếu độ dài hai đường phân giác bằng nhau thì tam giác đó là tam giác cân.

Đề thi chọn đội Dự Tuyển PTNK năm học 2020-2021

Kì thi chọn Dự tuyển trường Phổ thông Năng khiếu tham dự kì thi 30/04 được tổ chức vào tháng 01 năm 2021, đề gồm 4 bài, làm trong 120 phút.

Đề bài

Bài 1. Cho các số thực không âm $a, b, c$ thỏa mãn $a^{2}+b^{2}+c^{2}=1$. Tìm giá trị lớn nhất của biểu thức $$P=\frac{7}{2} a+(1-a)(\sqrt{a}+\sqrt{b}+\sqrt{c})+a^{2} b^{2} c^{2}$$

Bài 2. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $f(x-f(y))=4 f(x)+3 x+f(y)$ với mọi $x, y \in \mathbb{R}$.

Bài 3. Cho $n$ là số nguyên dương và $A=\left\{m \in \mathbb{N}^{*} \mid \operatorname{gcd}(m, 6)=1, m<30 n\right\}$ với $|A|=8 n+1$. Chứng minh rằng tồn tại 2 số phân biệt $a, b \in A$ sao cho $a \mid b$.
Bài 4. Cho điểm $M$ di động trên đường thẳng $d$ cố định và $O$ là điểm cố định nằm ngoài đường thẳng $d$. Gọi $A$ là hình chiếu của $O$ lên $d$, và $H$ là hình chiếu của $A$ trên $O M$. Gọi $D$ là trung điểm $H M$.
(a) Chứng minh rằng đường thẳng qua $H$, vuông góc với $A D$ luôn đi qua một điểm cố định. Gọi điểm đó là $N$.
(b) Chứng minh rằng tâm đường tròn $(H M N)$ luôn thuộc một đường thẳng cố định. Từ đó tính tỷ số $\frac{A M}{A O}$ để $(H M N)$ và $(O A H)$ tiếp xúc với nhau.

Ánh xạ – Bài tập

Bài giảng ánh xạ

Bài 1 Trong các quy tắc sau, quy tắc nào là ánh xạ?

a) Xét quy tắc $f$ từ tập các số nguyên $\mathbb{Z}$ vào $X = \{-1, 0 , 1\}$ sao cho với mỗi $x\in \mathbb{Z}$ thì:
$f\left( x \right) = \left\{ \begin{gathered}
– 1 \,\, khi\,\,\,x < 0 \hfill \\
0 \,\, khi\,\,\,x = 0 \hfill \\
1 \,\, khi\,\,\,x > 0 \hfill \\
\end{gathered} \right.$

a)Xét quy tắc cho tương ứng mỗi số thực dương $x$ với số thực $y$ sao cho $y^2 = x$.
b)Cho tương ứng các điểm $M$ thuộc mặt phẳng với các điểm $M’$ thuộc mặt phẳng sao cho $\overrightarrow{MM’} = \overrightarrow{u}$ cho trước.
c)Trong mặt phẳng cho tương ứng điểm $M$ với điểm $M’$ sao cho $MM’ = r > 0$ cho trước.
d)Trong mặt phẳng cho đường thẳng $d$. Quy tắc cho tương ứng $M$ thuộc $d$ ứng với $M$, $M$ không thuộc $d$ ứng với $M’$ sao cho $MM’ \bot d$.
e)Quy tắc cho tương ứng mỗi số hữu tỷ ứng với 1, mỗi số vô tỷ ứng với 0.

Bài 2 Trong các ánh xạ ở bài trên, ánh xạ nào là đơn ánh, song ánh, toàn ánh?

Bài 3 Trong các ánh xạ sau, ánh xạ nào là đơn ánh, toàn ánh, song ánh?

a)Ánh xạ $f: \mathbb{R} \to \mathbb{R}$ thỏa $f(x) = x^3$.
b)Ánh xạ $f: \mathbb{Z} \to \mathbb{N}$ thỏa $f(x) = |x|$.
c)Cho tương ứng mỗi số thực với phần nguyên của nó.

Bài 4 Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}: f(x) = x^2+3x+1$.

a)$f$ có là đơn ánh?
b)$f$ có là toàn ánh không?

Bài 5 Cho $f: (0;1) \to (0;+\infty) $ thỏa $f(x) = \dfrac{x}{1-x}$.

a)Tìm $f(f(x))$.
b)Chứng minh $f$ là song ánh.
c)Tìm ánh xạ ngược của $f$.

Bài 6 Cho $A, B, C, D$ là các tập con của $X$. Đặt ${\chi _D}\left( x \right) = \left\{ \begin{gathered}
1\,\,\,\,\,khi\,\,\,x \in D \hfill \\
0\,\,\,\,khi\,\,\,x \notin D \hfill \\
\end{gathered} \right.$.
Chứng minh rằng:

a)Quy tắc trên là ánh xạ từ $X$ vào ${0, 1}$.
b)$\chi A\cdot \chi _A = \chi_A,\chi{X\backslash A} = 1 – \chi_A$
c)$\chi {A \cap B} = \chi_A.\chi _B,\chi{A \cup B} = \chi_A+ \chi_B – \chi_A\cdot \chi_B$
d)$\chi_A \geqslant \chi _B \Leftrightarrow B \subset A,\chi_A \equiv 0 \Leftrightarrow A = \emptyset $

Bài 7 Cho $f: X \to Y$. $A, B$ là các tập con của $X$; $C, D$ là các tập con của $Y$. Đặt $f(A) = {f(x)|x \in A}$ là tập ảnh của $A$; $f^{-1}(C) = {x \in X|f(x) \in X}$ là tạo ảnh của $C$.

a)Chứng minh nếu $A \subset B$ thì $f(A) \subset f(B)$.
b)Nếu $C \subset D$ thì $f^{-1}(C) \subset f^{-1}(D)$.
c)$f(A\cup B) = f(A) \cup f(B)$.
c)$f(A \cap B) \subset f(A) \cap f(B)$. Và $f(A \cap B) = f(A) \cap f(b)$ khi $f$ là đơn ánh.
d)$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ và $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
e)$A \subset f^{-1}(f(A))$.

Bài 8 Cho $h: A \to B$, $g:B \to C$ và $f: C \to D$.

a)Chứng minh rằng nếu $f\circ g$ là đơn ánh và $f$ toàn ánh thì $g$ đơn ánh.
b)Nếu $f \circ g$ là toàn ánh thì $f$ cũng là toàn ánh.
c)Nếu $f, g$ là đơn ánh(toàn ánh, song ánh) thì $f \circ g$ cũng là đơn ánh (toàn ánh, song ánh).
d)Nếu $h$ là song ánh thì $h^{-1}$ cũng là song ánh.
e)Nếu $f \circ g$ và $g \circ h$ là song ánh thì $f, h, g$ cũng là song ánh.

Bài 9 Cho ánh xạ$f:\mathbb{R} \mapsto \left\{ {0,1} \right\}$

$f\left( x \right) = \left\{ \begin{gathered}
1\,\,\,khi\,\,x \in \mathbb{Q} \hfill \\
0\,\,khi\,\,x \notin \mathbb{Q} \hfill \\
\end{gathered} \right.$

a) Tìm tập ảnh của $f$.
b)Tìm ${f^{ – 1}}\left( 1 \right),{f^{ – 1}}\left( 0 \right)$
c)$f$ có là song ánh không? Vì sao?

Bài 10 Cho $A$ và $B$ là hai tập hợp sao cho có một đơn ánh từ $A$ vào $B$. Chứng minh rằng có một toàn ánh từ $B$ vào $A$.

Bài 11 Cho $A$ và $B$ là hai tập hợp sao cho có một toàn ánh từ $A$ vào $B$. Chứng minh rằng có một đơn ánh từ $B$ vào $A$.

Bài 12 Tìm một song ánh từ tập tập các số tự nhiên chẵn đến tập các số tự nhiên lẻ.

Bài 13 Tìm một đơn ánh từ tập các số tự nhiên đến tập các số nguyên.

Bài 14 Tìm một song ánh từ tập các số tự nhiên đến tập các số nguyên.

Bài 15 Tìm một song ánh từ tập $\mathbb{N} \times \mathbb{N}$ đến $\mathbb{N}^*$.

Bài 16 Gọi tập X là tập gồm các khoảng có dạng $\left( {a,b} \right)$ thỏa $0 \leqslant a < b \leqslant 1$.
Xét ánh xạ $X \to \left( {0,1} \right),f\left( {\left( {a,b} \right)} \right) = \frac{{a + b}}{2}$

a)$f$ có phải đơn ánh không? Vì sao?
b)$f$ có phải toàn ánh không? Vì sao?

Bài 17 Cho $X$ là tập khác rỗng, $P(X)$ là tập tất cả các tập con của $X$. Có tồn tại hay không một song ánh đi từ $X$ đến $P(X)$?

Bài 18 Tìm một song ánh từ tập $(0;1)$ đến tập các số thực.

Bài 19 Cho $m$ là số nguyên dương và tập $X = \{-m, -m+1, …, -1, 0, 1, …,m\}$. \Ánh xạ $f: X \to X$ thỏa $f(f(n)) = -n$ với mọi $n \in X$.\
Chứng minh $m$ là số chẵn.