Đề và đáp thi chọn đội dự tuyển PTNK năm học 2017 – 2018

Bài 1. Tìm tất cả các hàm số $f:\mathbb R \rightarrow \mathbb R $ thỏa mãn:
$$f(3f(x)+2y)=10x+f(f(y)+x),\ \forall x,y \in \mathbb R.$$

Bài 2.  Cho tam giác $ABC$ nhọn. Các điểm $D,E$ thay đổi trên cạnh $BC$ sao cho $\angle BAD = \angle CAE$ và $D$ nằm giữa $B,E$. Đường tròn ngoại tiếp các tam giác $ABD,ACE$ cắt nhau tại điểm $M$ khác $A$.
a)  Chứng minh rằng phân giác góc $\angle DME$ luôn đi qua một điểm cố định.
b) Gọi $I$ và $K$ lần lượt là tâm đường tròn nội tiếp của các tam giác $ABM,ACM$. Chứng minh rằng đường thẳng $IK$ luôn đi qua một điểm cố định.

Bài 3.  Cho $n\ge 3$ là số nguyên dương và $2n$ số thực dương $x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n$ thỏa mãn đồng thời các điều kiện sau:
i) $0< x_1y_1<x_2y_2<\ldots< x_ny_n$.
ii) $x_1+x_2+\cdots+x_k \ge y_1+y_2+\cdots+y_k\ \forall k \in {1,2,\ldots,n }$.

Chứng minh rằng $\dfrac{1}{x_1}+\dfrac{1}{x_2}+\ldots+\dfrac{1}{x_n} \le \dfrac{1}{y_1}+\dfrac{1}{y_2}+\ldots+\dfrac{1}{y_n}$.

Bài 4. Cho $S$ là tập hợp khác rỗng có hữu hạn phần tử. Kí hiệu $P(S)$ là tập hợp tất cả các tập con của $S$. Giả sử $f: P(S) \rightarrow P(S)$ là ánh xạ có tính chất sau: với mọi $X,Y \in P(S)$, nếu $X \subset Y$ thì $f(X) \subset f(Y)$.

Chứng minh rằng có tập hợp $T \in P(S)$ để $f(T) = T$.

Giải

Bài 1. 

Thay $y=-\frac{2f(x)}{3}$, ta có
$$f(0)=10x+f\left( f\left( -\frac{2f(x)}{3} \right)+x \right)$$
nên dễ thấy rằng $f$ toàn ánh vì $f(0)-10x$ nhận giá trị trên $\mathbb{R}.$
Giả sử tồn tại $a,b\in \mathbb{R}$ sao cho $f(a)=f(b).$ Thay $y$ lần lượt bởi $a,b,$ ta có
$$f(3f(x)+2a)=f(3f(y)+2b).$$
Vì tính toàn ánh nên có thể thay $3f(x)\to x$, tức là $f(x+2a)=f(x+2b)$ nên $f$ tuần hoàn chu kỳ $T=2(a-b).$ Khi đó, ta có $f(x)=f(x+T),\forall x\in \mathbb{R}.$

Trong đề bài, thay $x\to x+T$ thì
$f(3f(x)+2y)=10x+10T+f(2f(y)-x)$ nên $T=0.$ Suy ra $f$ đơn ánh. Cuối cùng, cho $x=0$ thì
$f(3f(0)+2y)=f(f(y))$ nên
$$3f(0)+2y=f(y)\Leftrightarrow f(y)=2y+\frac{3}{2}f(0),\forall y.$$
Thay $y=0,$ ta có ngay $f(0)=0$ nên $f(y)=2y.$ Thử lại ta thấy thỏa.

Vậy hàm số $f(x)$ cần tìm là $f(x)=2x,\forall x.$

Bài 2.

(a) Do tứ giác $ABDM,ACEM$ nội tiếp nên $\angle DAB=\angle DMB,\angle EAC=\angle EMC$, mà $\angle DAB=\angle EAC$ nên ta có $\angle DMB=\angle EMC.$ Ta sẽ chứng minh bổ đề sau

Bổ đề (hệ thức Steiner) $\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{A{{B}^{2}}}{A{{C}^{2}}}$.

Thật vậy, kẻ đường tròn$(ADE)$ cắt $AB,AC$ tại $X,Y.$ Khi đó, ta có $DX=EY$ (vì cùng chắn các cung bằng nhau), suy ra $XY\parallel DE$.
Áp dụng phương tích từ các điểm $B,C$ đến đường tròn $(ADE)$ thì
$$BD\cdot BE=BX\cdot BA \text{ và } CE\cdot CD=CY\cdot CA$$
nên suy ra $$\frac{BD\cdot BE}{CE\cdot CD}=\frac{AB}{AC}\cdot \frac{BX}{CY}=\frac{A{{B}^{2}}}{A{{C}^{2}}}.$$
Áp dụng bổ đề này vào tam giác $BMC$ với hai điểm $D,E.$ Ta cũng có $$\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{M{{B}^{2}}}{M{{C}^{2}}}.$$ Từ đó suy ra $\frac{MB}{MC}=\frac{AB}{AC}$. Gọi $MS$ là phân giác của $\angle DME$ với $S\in BC.$ Suy ra $MS$ cũng là phân giác của góc $\angle BMC.$ Do đó $$\frac{SB}{SC}=\frac{MB}{MC}=\frac{AB}{AC}$$ nên $S$ chính là chân đường phân giác góc $A$ của tam giác $ABC,$ là điểm cố định.

(b) Gọi $J$ là tâm nội tiếp tam giác $ABC$ thì rõ ràng $I\in BJ,K\in CJ.$
Đặt $\angle DAB=\angle EAC=2\alpha ,\angle DAE=2\beta $ thì
$$\frac{IB}{IJ}=\frac{{{S}_{IAB}}}{{{S}_{IAJ}}}=\frac{AI\cdot AB\cdot \sin \alpha }{AI\cdot AJ\cdot \sin \beta }=\frac{AB}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }.$$
Tương tự thì $$\frac{KC}{JC}=\frac{AC}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }$$ nên $\frac{IB}{IJ}:\frac{KC}{KJ}=\frac{AB}{AC}$. Từ đây gọi $T$ là giao điểm của $IK,BC$ thì theo định lý Menelaus cho tam giác $JBC,$ ta có $\frac{TB}{TC}=\frac{AB}{AC}$ nên $T$ là chân phân giác ngoài góc $A$ của tam giác $ABC,$ là điểm cố định.

 

Bài 3. 

Nhắc lại về khai triển Abel, xem như bổ đề:

Bổ đề. Xét 2 dãy số thực ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n}}$ và ${{b}_{1}},{{b}_{2}},\ldots ,{{b}_{n}}$. Đặt ${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}$. Khi đó
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}=({{a}_{1}}-{{a}_{2}}){{S}_{1}}+({{a}_{2}}-{{a}_{3}}){{S}_{2}}+\cdots +({{a}_{n-1}}-{{a}_{n}}){{S}_{n}}+{{a}_{n}}{{S}_{n}}.$$
Trở lại bài toán đã cho, chuyển vế và quy đồng, ta cần có
$$\frac{{{x}_{1}}-{{y}_{1}}}{{{x}_{1}}{{y}_{1}}}+\frac{{{x}_{2}}-{{y}_{2}}}{{{x}_{2}}{{y}_{2}}}+\cdots +\frac{{{x}_{n}}-{{y}_{n}}}{{{x}_{n}}{{y}_{n}}}>0.$$
Đặt ${{b}_{k}}={{x}_{k}}-{{y}_{k}}$ và ${{a}_{k}}=\frac{1}{{{x}_{k}}{{y}_{k}}}$ với $1\le k\le n$, ta cần chứng minh
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}>0.$$
Chú ý rằng $${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}=({{x}_{1}}+{{x}_{2}}+\cdots +{{x}_{k}})-({{y}_{1}}+{{y}_{2}}+\cdots +{{y}_{k}})>0$$ đúng theo ii).
Ngoài ra, dãy ${{a}_{k}}$ là dãy giảm nên ${{a}_{1}}-{{a}_{2}},{{a}_{2}}-{{a}_{3}},\ldots ,{{a}_{n-1}}-{{a}_{n}}>0$. Từ đó, áp dụng khai triển Abel ở trên, ta có ngay đpcm.

 

Bài 4.

Nếu như $f(S)=S$ thì ta có đpcm.

Giả sử rằng $f(S)\ne S$. Ta đặt $f(S)={{S}_{1}}$ là một tập con thực sự của $S.$ Khi đó vì ${{S}_{1}}\subset S$ nên ta phải có $f({{S}_{1}})\subset f(S)\Rightarrow f({{S}_{1}})\subset {{S}_{1}}$.

Nếu $f({{S}_{1}})={{S}_{1}}$ thì ta cũng có đpcm nên giả sử $f({{S}_{1}})={{S}_{2}}\ne {{S}_{1}}$ và ${{S}_{2}}\subset {{S}_{1}}.$

Tiếp tục như thế, ta thấy rằng với mỗi số nguyên dương $k$ thì hoặc là $f({{S}_{k}})={{S}_{k}}$ hoặc $f({{S}_{k}})={{S}_{k+1}}$ là tập con thực sự của ${{S}_{k}}.$ Và nếu như không có trường hợp thứ nhất xảy ra thì quá trình này lặp lại vô hạn lần, và sinh ra vô hạn tập con thực sự của tập hữu hạn $S$ ban đầu. Đây là điều vô lý.

Vậy nên luôn tồn tại $T \in P(S)$ để cho $f(T)=T.$

Leave a Reply

Your email address will not be published. Required fields are marked *