ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1998

ĐỀ THI

Câu 1

a) Cho tam giác $\mathrm{ABC}$ cạnh $\mathrm{BC}=\mathrm{a} ; \mathrm{CA}=\mathrm{b} ; \mathrm{AB}=\mathrm{c}$. Chứng minh duy nhất một điểm $M$ thỏa $a \cdot M A^2+b \cdot M B^2+c \cdot M C^2 \leq a b c$.

b) Cho tam giác ABC.M, N theo thứ tự là hai điểm thuộc các đoạn thẳng $\mathrm{AC}, \mathrm{BC}$ ( $\mathrm{M}, \mathrm{N}$ không trùng với $\mathrm{A}, \mathrm{B}, \mathrm{C})$. Gọi $\mathrm{S}_1, \mathrm{~S}_2, \mathrm{~S}$ lần lượt là diện tích tam giác $A M E$ tam giác $B N E$ và tam giác $A B C$ ( $\mathrm{E}$ là điểm thuộc đoạn thẳng $\mathrm{MN}$ ). Tìm điều kiện của các điểm M, N, E sao cho:

$\sqrt[3]{\mathrm{S}}=\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2} .$

Câu 2

Tìm tất cả các cặp số nguyên tố $(\mathrm{x}, \mathrm{y})$ thỏa mãn phương trình:

$[\sqrt{1}]+[\sqrt{2}]+\ldots+\left[\sqrt{\mathrm{x}^2-1}\right]=\mathrm{y}$

Câu 3

Cho hệ phương trình: $\left\{\begin{array}{l}a x^2+b x+c=0 \\ b x^2+c x+a=26 \\ c x^2+a x+b=-26\end{array}\right.$, trong đó $a, b, c$ khác 0 .

Tìm các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ để hệ phương trình có nghiệm nguyên.

Câu 4

Tìm giá trị nhỏ nhất của biểu thức: $\mathrm{T}=\sin 7 \mathrm{~A}+\sin 7 \mathrm{~B}+\sin 7 \mathrm{C}$, với $\mathrm{A}, \mathrm{B}, \mathrm{C}$ là ba góc của một tam giác.

 

LỜI GIẢI

Câu 1

a) Cho tam giác $\mathrm{ABC}$ cạnh $\mathrm{BC}=\mathrm{a} ; \mathrm{CA}=\mathrm{b} ; \mathrm{AB}=\mathrm{c}$. Chứng minh duy nhất một điểm $M$ thỏa $a \cdot M A^2+b \cdot M B^2+c \cdot M C^2 \leq a b c$.

b) Cho tam giác ABC.M, N theo thứ tự là hai điểm thuộc các đoạn thẳng $\mathrm{AC}, \mathrm{BC}$ ( $\mathrm{M}, \mathrm{N}$ không trùng với $\mathrm{A}, \mathrm{B}, \mathrm{C})$. Gọi $\mathrm{S}_1, \mathrm{~S}_2, \mathrm{~S}$ lần lượt là diện tích tam giác $A M E$ tam giác $B N E$ và tam giác $A B C$ ( $\mathrm{E}$ là điểm thuộc đoạn thẳng $\mathrm{MN}$ ). Tìm điều kiện của các điểm M, N, E sao cho:

$\sqrt[3]{\mathrm{S}}=\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2} .$

Lời Giải

a) Gọi I là tâm đường tròn nội tiếp tam giác $\mathrm{ABC}$, chứng minh:

$ a \overrightarrow{\mathrm{IA}}+\mathrm{b} \cdot \overrightarrow{\mathrm{IB}}+\mathrm{c} \cdot \overrightarrow{\mathrm{IC}}=\overrightarrow{0} $

$- \text { Từ bất đẳng thức: }(\mathrm{a} \cdot \overrightarrow{\mathrm{MA}}+\mathrm{b} \cdot \overrightarrow{\mathrm{MB}}+\mathrm{c} \cdot \overrightarrow{\mathrm{MC}})^2 \geq 0, \text { dấu “=” xảy ra khi } \mathrm{M} \equiv \mathrm{I} $

$\Rightarrow  \mathrm{a} \cdot \mathrm{MA}^2+\mathrm{b} \cdot \mathrm{MB}^2+\mathrm{c} \cdot \mathrm{MC}^2+2 \mathrm{ab} \overrightarrow{\mathrm{MA}} \cdot \overrightarrow{\mathrm{MB}}+2 \mathrm{bc} \overrightarrow{\mathrm{MB}} \cdot \overrightarrow{\mathrm{MC}}+$

$+2 \mathrm{ca} \overrightarrow{\mathrm{MB}} \cdot \overrightarrow{\mathrm{MC}} \geq 0$

$ \overrightarrow{\mathrm{MA}} \cdot \overrightarrow{\mathrm{MB}}=\frac{1}{2}\left(\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{AB}^2\right) \text { thì có } $

$(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(\mathrm{a} \cdot \mathrm{MA}^2+\mathrm{mB} \cdot \mathrm{MB}^2+c \cdot \mathrm{MC}^2-\mathrm{abc}\right) \geq 0 $

$= \mathrm{a} \cdot \mathrm{MA}^2+\mathrm{b} \cdot \mathrm{MB}^2+\mathrm{c} \cdot \mathrm{MC}^2 \geq \mathrm{abc}$

Do đó, theo giả thiết dấu “=” xảy ra

$\Rightarrow \mathrm{M} \equiv \mathrm{I}$ (đpcm)

b) (i) $\mathrm{E} \neq \mathrm{N}$ :

Đặt

$\mathrm{AM} / \mathrm{MC}=\alpha, \mathrm{CN} / \mathrm{NB}=\beta$

$\mathrm{ME} / \mathrm{EN}=\gamma(\alpha, \beta>0 ; \gamma \geq 0)$

Suy ra

$S_{\triangle M E C}=S_1 / \alpha ; S_{\triangle N E C}=\beta S_2$

$S_{\triangle M E C} / S_{\triangle N E C}=\gamma$

Do đó $\mathrm{S}_1=\alpha \beta \gamma . \mathrm{S}_2$

$S_{\triangle M N C} / S_{\triangle A B C}=M C \cdot N C / A B \cdot B C$

$S_{\triangle M N C}=S_{\triangle M E C}+S_{\triangle M N C}=\beta(\gamma+1) S_2$

$\mathrm{AC} / \mathrm{MC}=\alpha+1 ; \mathrm{BC} / \mathrm{NC}=(\beta+1) / \beta \Rightarrow \mathrm{S}=(\alpha+1)(\beta+1)(\gamma+1) \mathrm{S}_2$

$\mathrm{~S}_2=\mathrm{S} /(\alpha+1)(\beta+1)(\gamma+1) ; \mathrm{S}_1=\alpha \beta \gamma \mathrm{S} /(\alpha+1)(\beta+1)(\gamma+1)$

$\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2}=\sqrt[3]{\mathrm{S}}$

$\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2}=\sqrt[3]{\mathrm{S}} \Leftrightarrow \underbrace{\frac{1}{\sqrt[3]{(1+\alpha)(1+\beta)(1+\gamma)}}+\frac{\sqrt[3]{\alpha \beta \gamma}}{\sqrt[3]{(1+\alpha)(1+\beta)(1+\gamma)}}}_A=1$

Mặt khác, theo bất đẳng thức Côsi

$\mathrm{A} \leq \frac{1}{3}\left(\frac{1}{1+\alpha}+\frac{1}{1+\beta}+\frac{1}{1+\gamma}+\frac{\alpha}{1+\alpha}+\frac{\beta}{1+\beta}+\frac{\gamma}{1+\gamma}\right)=1$

Đẳng thức $\mathrm{A}=1 \Leftrightarrow \alpha=\beta=\gamma$.

Vậy vị trí $\mathrm{M}, \mathrm{N}, \mathrm{E}$ sao cho $\mathrm{AM} / \mathrm{MC}=\mathrm{CN} / \mathrm{NB}=\mathrm{ME} / \mathrm{EN}$

(ii) $\mathrm{E} \equiv \mathrm{N}$ : $\mathrm{S}_2=0$ và $\mathrm{S}_1<\mathrm{S}$ (không xảy ra $\sqrt[3]{\mathrm{S}}=\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2}$ ).

Câu 2

Tìm tất cả các cặp số nguyên tố $(\mathrm{x}, \mathrm{y})$ thỏa mãn phương trình:

$[\sqrt{1}]+[\sqrt{2}]+\ldots+\left[\sqrt{\mathrm{x}^2-1}\right]=\mathrm{y}$

Lời Giải

Nhận xét rằng với mọi $\mathrm{k} \in \mathrm{N}$ ta đều có:

$\mathrm{k}=\left[\sqrt{\mathrm{k}^2}\right]=\left[\sqrt{\mathrm{k}^2+1}\right]=\left[\sqrt{\mathrm{k}^2+2}\right]=\ldots=\left[\sqrt{\mathrm{k}^2+2 \mathrm{k}}\right] $

$\Rightarrow {\left[\sqrt{\mathrm{k}^2}\right]+\left[\sqrt{\mathrm{k}^2+1}\right]+\left[\sqrt{\mathrm{k}^2+2}\right]+\ldots+\left[\sqrt{(\mathrm{k}+1)^2}-1\right] } $

$=\mathrm{k}(2 \mathrm{k}+1)=2 \mathrm{k}^2+\mathrm{k}$

Lần lượt cho $\mathrm{k}=1,2, \ldots, \mathrm{x}-1$ ta được:

${[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]=2.1^2+1} $

${[\sqrt{4}]+[\sqrt{5}]+\ldots+[\sqrt{8}]=2.2^2+2} $

$\cdots $

${\left[\sqrt{(x-1)^2}\right]+\ldots+\left[\sqrt{x^2-1}\right]=2 .(x-1)^2+(x-1)}$

Cộng từng vế các đẳng thức trên ta được:

$ {[\sqrt{1}]+[\sqrt{2}]+\ldots+\left[\sqrt{x^2-1}\right] } $

$= 2 \cdot\left[1^2+2^2+\ldots+(x-1)^2\right]+[1+2+\ldots+(x-1)]$

$=\frac{(x-1) x(2 x-1)}{3}+\frac{x(x-1)}{2}$

Vậy phương trình đã cho có dạng $\frac{(\mathrm{x}-1) \mathrm{x}(4 \mathrm{x}-1)}{6}=\mathrm{y}\left({ }^*\right)$

Ta giải phương trình $\left(^*\right).$  trong tập hợp các số nguyên tố

Vì $\frac{(\mathrm{x}-1) \mathrm{x}(4 \mathrm{x}-1)}{\mathrm{y}}=6$ là một số nguyên dương và $\mathrm{y}$ là số nguyên tố nên $\mathrm{y}$ là ước của một trong ba thừa số $\mathrm{x}-1 ; \mathrm{x} ; 4 \mathrm{x}+1$

$\Rightarrow \mathrm{y} \leq \max {x-1 ; x ; 4 x+1}=4 x+1 $

$\Rightarrow 6=\frac{(x-1) x(4 x-1)}{y} \geq x(x-1) \Rightarrow x \leq 3$

Thử lại ta được các nghiệm nguyên tố sau đây của phương trình: $(2 ; 3) ;(3 ; 13)$.

Câu 3

Cho hệ phương trình: $\left\{\begin{array}{l}a x^2+b x+c=0 \\ b x^2+c x+a=26 \\ c x^2+a x+b=-26\end{array}\right.$, trong đó $a, b, c$ khác 0 .

Tìm các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ để hệ phương trình có nghiệm nguyên.

Lời Giải

$\left\{\begin{array}{l}a x^2+b x+c=0 \\ b x^2+c x+a=26 \\ c x^2+a x+b=-26\end{array}\right.$

Cộng (1), (2) và (3) vế theo vế ta có:

$(a+b+c)\left(x^2+x+1\right)=0 $

$\Rightarrow  a+b+c=0 \text { vì } x^2+x+1>0 \forall x$

Từ điều kiện $a+b+c=0$ ta có phương trình (1) có nghiệm

$x=1 \vee x=c / a$

$x=1$ không thỏa đồng thời (2) và (3) nên ta loại

Tữ $x=c / a$ ta có: $a x=c$, thay vào (2) ta được: $(a+b) x^2+a=26$

Mà $\mathrm{a}+\mathrm{b}=-\mathrm{c}=-\mathrm{ax}$ ta lại có: $-\mathrm{ax}{ }^3+\mathrm{a}=26 \Leftrightarrow \mathrm{a}\left(1-\mathrm{x}^3\right)=26(4)$

Do $\mathrm{x} \neq 1$ nên $26: \mathrm{a}, \mathrm{a} \in \mathrm{Z}$ nên a có thể là: $\pm 1 ; \pm 2 ; \pm 13 ; \pm 26$

Với $\mathrm{a}=1, \mathrm{a}=\pm 2 ; \mathrm{a}=-13, \mathrm{a}=-26,(4)$ không có nghiệm nguyên.

Với $\mathrm{a}=-1$, từ (4) ta có $\mathrm{x}^3=-1$ nên $\mathrm{x}=-1$ khi đó $\mathrm{x}=-13$ và $\mathrm{b}=0$

Với $\mathrm{a}=26$, từ (4) ta có $\mathrm{x}^3=0$ nên $\mathrm{x}=0$ khi đó $\mathrm{c}=0$ và $\mathrm{b}=-26$

Vậy $(-1 ; 4 ;-3) ;(13 ; 0 ;-13)$ và $(26 ;-26 ; 0)$ là bộ 3 số nguyên để hệ có nghiệm nguyên.

Câu 4

Tìm giá trị nhỏ nhất của biểu thức: $\mathrm{T}=\sin 7 \mathrm{~A}+\sin 7 \mathrm{~B}+\sin 7 \mathrm{C}$, với $\mathrm{A}, \mathrm{B}, \mathrm{C}$ là ba góc của một tam giác.

Lời Giải

Ta có: $\mathrm{T}^2=(\sin 7 \mathrm{~A}+\sin 7 \mathrm{~B}+\sin 7 \mathrm{C})^2 \leq 3\left(\sin ^2 7 \mathrm{~A}+\sin ^2 7 \mathrm{~B}+\sin ^2 7 \mathrm{C}\right)$

$\leq 3 / 2 \cdot[3-(\cos 14 \mathrm{~A}+\cos 14 \mathrm{~B}+\cos 14 \mathrm{C})]\quad\quad\quad (1)$

Mà với mọi tam giác $A B C$ ta luôn có:

$\cos 14 A+\cos 14 B+\cos 14 C \geq-3 / 2 \quad\quad\quad (2)$

Do $\cos 14 C=\cos [4 \pi-14(A+B)]=\cos 14(A+B)$

$=\cos 14 \mathrm{~A} \cos 14 \mathrm{~B}-\sin 14 \mathrm{~A} \sin 14 \mathrm{~B}$

Và $(2) \Leftrightarrow 3+2 \cos 14 \mathrm{~A}+2 \cos 14 \mathrm{~B}+2 \cos 14 \mathrm{C} \geq 0$

$\Leftrightarrow 1+\sin ^2 14 \mathrm{~A}+\cos ^2 14 \mathrm{~A}+\sin ^2 14 \mathrm{~B}+\cos ^2 14 \mathrm{~B}+2 \cos 14 \mathrm{~A}$

$+2 \cos 14 \mathrm{~B}+2 \cos 14 \mathrm{~A} \cos 14 \mathrm{~B}-2 \sin 14 \mathrm{~A} \sin 14 \mathrm{~B} \geq 0$

$\Leftrightarrow(\cos 14 \mathrm{~A}+\cos 14 \mathrm{~B}+1)^2+(\sin 14 \mathrm{~A}-\sin 14 \mathrm{~B})^2 \geq 0$

Từ (1), (2) $\Rightarrow \mathrm{T}^2 \leq 3 / 2 \cdot(3+3 / 2)=27 / 4 \Rightarrow \mathrm{T} \geq-3 \frac{\sqrt{3}}{2}$

Nếu $\mathrm{T}=-3 \frac{\sqrt{3}}{2}$ thì ta có $\sin 7 \mathrm{~A}=\sin 7 \mathrm{~B}=\sin 7 \mathrm{C}=-\frac{\sqrt{3}}{2}$

Ngược lại với $\sin 7 \mathrm{~A}=\sin 7 \mathrm{~B}=\sin 7 \mathrm{C}=-\frac{\sqrt{3}}{2}$ thì rõ ràng $\mathrm{T}=-3 \frac{\sqrt{3}}{2}$ Vậy ta có $\mathrm{T} \geq-3 \frac{\sqrt{3}}{2}$, với mọi tam giác $\mathrm{ABC}$ và $\mathrm{T}=-3 \frac{\sqrt{3}}{2}$ $\Leftrightarrow \sin 7 \mathrm{~A}=\sin 7 \mathrm{~B}=\sin 7 \mathrm{C}=-\frac{\sqrt{3}}{2}(1)$

Ta có: $\left\{\begin{array}{l}\sin 7 x=-\sqrt{\frac{3}{2}}=\sin \left(-\frac{\pi}{3}\right) \\ 0<x<\pi\end{array}\right.$

$\Leftrightarrow\left\{\begin{array}{l}\mathrm{x}=-\frac{\pi}{21}+\frac{\mathrm{k} 2 \pi}{7}=\frac{(6 \mathrm{k}-1) \pi}{21} \\ \mathrm{x}=\frac{4 \pi}{21}+\frac{l 2 \pi}{7}=\frac{(6 l+4) \pi}{21}\end{array} \quad(0<\mathrm{x}<\pi)\right.$

$\Leftrightarrow \mathrm{x} \in \mathrm{E}=\left(\frac{4 \pi}{21} ; \frac{5 \pi}{21} ; \frac{10 \pi}{21} ; \frac{11 \pi}{21} ; \frac{16 \pi}{21} ; \frac{17 \pi}{21}\right)$

Vai trò $\mathrm{A}, \mathrm{B}, \mathrm{C}$ như nhau nên có thể giả sử

$\mathrm{A} \leq \mathrm{B} \leq \mathrm{C} \Rightarrow \mathrm{A} \leq \frac{\pi}{3} \Rightarrow \mathrm{A}=\frac{4 \pi}{21} \text { hay } \mathrm{A}=\frac{5 \pi}{21}$

  • Nếu $\mathrm{A}=\frac{5 \pi}{21}$ thì $\mathrm{B}+\mathrm{C}=\frac{17 \pi}{21}$ nhưng với mọi $\mathrm{B}, \mathrm{C}$ thuộc $\mathrm{E}$, ta đã có $B+C \neq \frac{17 \pi}{21}$

  • Nếu $\mathrm{A}=\frac{5 \pi}{21} \Rightarrow \mathrm{B}+\mathrm{C}=\frac{16 \pi}{21} \Rightarrow \mathrm{B}=\frac{5 \pi}{21} \leq \mathrm{B} \leq(\mathrm{B}+\mathrm{C}) / 2=\frac{8 \pi}{21}$

$\Rightarrow \mathrm{B}=\frac{5 \pi}{21} \Rightarrow \mathrm{C}=\frac{11 \pi}{21} \in \mathrm{E}$

Vậy $\mathrm{T}$ có giá trị nhỏ nhất là $-3 \frac{\sqrt{3}}{2}$ đạt được khi tam giác $\mathrm{ABC}$ cân có góc ở đáy bằng $\frac{5 \pi}{21}$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *