ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2000

ĐỀ THI

Câu 1

Giải hệ phương trình: $\left\{\begin{array}{l}\left(3-\frac{5}{y+42 x}\right) \sqrt{2 y}=4 \\ \left(3+\frac{5}{y+42 x}\right) \sqrt{x}=2\end{array}\right.$

Câu 2

Giải phương trình: $2 \sin 2 x-3 \sqrt{2} \sin x+\sqrt{2} \cos x-5=0$

Câu 3

Trong kì thi Olympic có 17 học sinh thi Toán được mang số kí danh trong khoảng từ 1 đến 1000 . Chứng tỏ rằng có thể chọn ra 9 học sinh thi Toán có tổng các số kí danh được mang chia hết cho 9.

Câu 4

Cho tứ giác lồi $\mathrm{ABCD}$ thỏa $\widehat{\mathrm{BAD}}>90^{\circ}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là 2 điểm nằm trên $\mathrm{BC}$ và $\mathrm{CD}$ sao cho $\widehat{\mathrm{MAD}}=\widehat{\mathrm{NAB}}=90^{\circ}$. Chứng minh rằng nếu $\mathrm{MN}$ và $\mathrm{BD}$ cắt nhau tại $\mathrm{I}$ thì $\mathrm{IA} \perp \mathrm{AC}$.

Câu 5

Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số không âm thỏa mãn: $\mathrm{a}+\mathrm{b}+\mathrm{c}=1$.

Tìm số $\mathrm{k}$ lớn nhất sao cho $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3+\mathrm{kabc} \geq \frac{1}{9}+\frac{\mathrm{k}}{27}$ đúng với mọi a, b, c thỏa điều kiện trên.

 

LỜI GIẢI

 

Câu 1

Giải hệ phương trình: $\left\{\begin{array}{l}\left(3-\frac{5}{y+42 x}\right) \sqrt{2 y}=4 \\ \left(3+\frac{5}{y+42 x}\right) \sqrt{x}=2\end{array}\right.$

Lời Giải

Điều kiện $\mathrm{x}>0, \mathrm{y}>0$.

Hệ phương trình có thể viết:

$\quad\quad\quad\quad \left\{\begin{array}{l}\frac{1}{\sqrt{x}}-\frac{\sqrt{2}}{\sqrt{y}}=\frac{5}{y+42 x}\quad\quad (1) \\ \frac{1}{\sqrt{x}}+\frac{\sqrt{2}}{\sqrt{y}}=3\quad\quad\quad\quad (2)\end{array} \Rightarrow \frac{1}{x}-\frac{2}{y}=\frac{15}{y+42 x}\right.$

$\quad\quad\quad \Leftrightarrow(y-2 x)(y+42 x)=15 x y \Leftrightarrow y^2-84 x^2+25 x y=0 $

$\quad\quad\quad \Leftrightarrow(y-3 x)(y+28 x)=0$

Do $y+28 x>0 \Rightarrow y=3 x$. Thế vào $(2) \Rightarrow$ hệ có nghiệm là:

$\quad\quad\quad\quad\quad\quad\quad\quad \left(\frac{5+2 \sqrt{6}}{27} ; \frac{5+2 \sqrt{6}}{9}\right)$

Câu 2

Giải phương trình: $2 \sin 2 x-3 \sqrt{2} \sin x+\sqrt{2} \cos x-5=0$

Dành cho bạn đọc

Câu 3

Trong kì thi Olympic có 17 học sinh thi Toán được mang số kí danh trong khoảng từ 1 đến 1000 . Chứng tỏ rằng có thể chọn ra 9 học sinh thi Toán có tổng các số kí danh được mang chia hết cho 9.

Lời Giải

a) Xét 5 số tự nhiên tuỳ ý, khi chia cho 3 có thể xảy ra:

  • Có 3 số dư giống nhau $\Rightarrow$ tổng 3 số tương ứng chia hết cho 3 .

  • Trái lại, sẽ có 3 số dư đôi một khác nhau $\Rightarrow$ tổng 3 số tương ứng chia hết cho 3.

Vậy trong 5 số tự nhiên bất kì, tồn tại 3 số có tổng chia hết cho 3 .

b) Xét 17 số tự nhiên tuỳ ý:

Chia chúng thành 3 tập, có lần lượt $5,5,7$ phần tử. Trong mỗi tập, chọn được 3 số có tổng lần lượt là $3 \mathrm{a}_1, 3 \mathrm{a}_2, 3 \mathrm{a}_3\left(\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3 \in \mathrm{N}\right)$

Còn lại: $17-9=8$ số

Trong 8 số này, chọn tiếp 3 số có tổng là $3 \mathrm{a}_4$, còn lại 5 số chọn tiếp 3 số có tổng là $3 \mathrm{a}_5$.

Trong 5 số $\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4$, a5 có 3 số ai1, ai2, ai3 có tổng chia hết cho 3 .

$\Rightarrow 9$ học sinh tương ứng có tổng các số kí danh là:

$\quad\quad\quad\quad\quad\quad 3 a_{i 1}+3 a_{i 2}+3 a_{i 3}=3\left(a_{i 1}+a_{i 2}+a_{i 3}\right) \vdots 9 .$

Câu 4

Cho tứ giác lồi $\mathrm{ABCD}$ thỏa $\widehat{\mathrm{BAD}}>90^{\circ}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là 2 điểm nằm trên $\mathrm{BC}$ và $\mathrm{CD}$ sao cho $\widehat{\mathrm{MAD}}=\widehat{\mathrm{NAB}}=90^{\circ}$. Chứng minh rằng nếu $\mathrm{MN}$ và $\mathrm{BD}$ cắt nhau tại $\mathrm{I}$ thì $\mathrm{IA} \perp \mathrm{AC}$.

Lời Giải

Để ý rằng nếu $\mathrm{M} \equiv \mathrm{C}$ (hay $\mathrm{N} \equiv \mathrm{C}$ ) thì $\mathrm{I} \equiv \mathrm{D}$ (hay $\mathrm{I} \equiv \mathrm{B}$ ) $\Rightarrow$ bài toán đúng.

Xét trường hợp $\mathrm{I} \neq \mathrm{B}, \mathrm{I} \neq \mathrm{D}$

Áp dụng định luật Menelaus cho tam giác $\mathrm{BCD}$ với bộ 3 điểm $\mathrm{M}, \mathrm{N}$, I ta có:

$\quad\quad \frac{\mathrm{MB}}{\mathrm{MC}} \cdot \frac{\mathrm{NC}}{\mathrm{ND}} \cdot \frac{\mathrm{ID}}{\mathrm{IB}}=1$

$\Leftrightarrow \frac{\mathrm{AB} \cdot \sin \mathrm{A}_5}{\mathrm{AC} \cdot \sin \mathrm{A}_4} \cdot \frac{\mathrm{AC} \cdot \sin \mathrm{A}_3}{\mathrm{AD} \cdot \sin \mathrm{A}_2} \cdot \frac{\mathrm{AD} \cdot \sin \mathrm{A}_1}{\mathrm{AB} \cdot \sin \widehat{\mathrm{AIB}}}=1$

$\Leftrightarrow \sin \mathrm{A}_1 \cdot \sin \mathrm{A}_3=\sin \mathrm{A}_4 \cdot \sin \widehat{\mathrm{IAB}}\left(\right.$ do $\left.\sin \mathrm{A}_2=\sin \mathrm{A}_5\right)$

$\Leftrightarrow \sin \mathrm{A}_1 \cdot \sin \mathrm{A}_3=\cos \left(\mathrm{A}_2+\mathrm{A}_3\right) \cdot \cos \left(\mathrm{A}_1+\mathrm{A}_2\right)$

$\Leftrightarrow \frac{1}{2}\left[\cos \left(\mathrm{A}_1-\mathrm{A}_3\right)-\cos \left(\mathrm{A}_1+\mathrm{A}_3\right)\right]$

$=\frac{1}{2}\left[\cos \left(\mathrm{A}_1+2 \mathrm{~A}_2+\mathrm{A}_3\right)+\cos \left(\mathrm{A}_1-\mathrm{A}_3\right)\right]$

$\Leftrightarrow \cos \left(\mathrm{A}_1+2 \mathrm{~A}_2+\mathrm{A}_3\right)+\cos \left(\mathrm{A}_1+\mathrm{A}_3\right)=0$

$\Leftrightarrow 2 \cos \left(\mathrm{A}_1+\mathrm{A}_2+\mathrm{A}_3\right) \cdot \cos \mathrm{A}_2=0$

$\Leftrightarrow \cos \left(A_1+A_2+A_3\right)=0 \Leftrightarrow A_1+A_2+A_3=90^{\circ} .$

Vậy $I A \perp A C$.

Câu 5

Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số không âm thỏa mãn: $\mathrm{a}+\mathrm{b}+\mathrm{c}=1$.

Tìm số $\mathrm{k}$ lớn nhất sao cho $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3+\mathrm{kabc} \geq \frac{1}{9}+\frac{\mathrm{k}}{27}$ đúng với mọi a, b, c thỏa điều kiện trên.

Lời Giải

Chọn $\mathrm{a}=\mathrm{b}=\frac{1}{2}=0$, ta có $\mathrm{k} \leq \frac{15}{4}$, ta chứng minh rằng $\mathrm{k}_{\max }=\frac{15}{4}$

tức là ta chứng $\operatorname{minh}: a^3+b^3+c^3+\frac{15}{4} a b c \geq \frac{1}{4}$.

Xét 3 số $(\mathrm{a}+\mathrm{c}-\mathrm{b}) ;(\mathrm{a}+\mathrm{b}-\mathrm{c}) ;(\mathrm{b}+\mathrm{c}-\mathrm{a})$ có nhiều nhất 1 số âm vì tổng số tuỳ ý đều không âm. Nếu có 1 số âm thì

$\quad\quad\quad\quad\quad\quad (a+b-c)(b+c-a)(b+c-a)<0 \leq a b c$

Nếu cả 3 số đều dương ta dễ dàng chứng minh

$\quad\quad\quad\quad\quad\quad (a+b-c)(b+c-a)(b+c-a) \leq a b c$

Do đó ta có $(1-2 \mathrm{a})(1-2 \mathrm{~b})(1-2 \mathrm{c}) \leq \mathrm{abc}$

$\quad\quad\quad\Leftrightarrow \frac{3}{4}-3(a b+b c+c a)+\frac{27}{4} a b c \geq 0$

$\quad\quad\quad\Leftrightarrow(a+b+c)^2-3(a b+b c+c a)(a+b+c)+\frac{27}{4} a b c \geq \frac{1}{4}$

$\quad\quad\quad\Leftrightarrow(a+b+c)\left(a^2+b^2+c^2-a b-b c-a c\right)+\frac{27}{4} a b c \geq \frac{1}{4}$

$\quad\quad\quad\Leftrightarrow a^3+b^3+c^3+\frac{15}{4} a b c \geq \frac{1}{4}$.

 

 

 

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *