ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2010

ĐỀ THI

Câu 1

Giải hệ phương trình: $\quad\left\{\begin{array}{l}\frac{1}{x}+\frac{1}{y}=9 \\ \left(\frac{1}{\sqrt[3]{x}}+\frac{1}{\sqrt[3]{y}}\right)\left(1+\frac{1}{\sqrt[3]{x}}\right)\left(1+\frac{1}{\sqrt[3]{y}}\right)=18\end{array}\right.$

Câu 2

Tìm số nguyên dương $n$ lón nhất sao cho tồn tại một tập hợp $[a_1,a_2, \ldots,a_n]$ các hợp số có tính chất:

$\quad$ i) Hai số bất kì trong chúng là nguyên tố cùng nhau.

$\quad$ ii) $1<\mathrm{a}_{\mathrm{i}} \leq(2 \mathrm{n}+5)^2$ với mọi $\mathrm{i}=1,2, \ldots, \mathrm{n}$.

Câu 3

Cho $\mathrm{M}$ là một điểm tùy ý thuộc miền trong tam giác $\mathrm{ABC}$ đều. Gọi $\mathrm{A}_1, \mathrm{~B}_1$, $\mathrm{C}_1$ lần lượt là hình chiếu vuông góc của $\mathrm{M}$ trên các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$.

Tìm giá trị nhỏ nhất của: $\quad\mathrm{P}=\frac{\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2}{\left(\mathrm{MA}_1+\mathrm{MB}_1+\mathrm{MC}_1\right)^2}$.

Câu 4

Cho các số thực: $a, b, c \geq 1$ thỏa $a+b+c+2=a b c$.

Chứng minh rằng: $\quad b c \sqrt{\mathrm{a}^2-1}+\mathrm{ca} \sqrt{\mathrm{b}^2-1}+\mathrm{ab} \sqrt{\mathrm{c}^2-1} \leq \frac{3 \sqrt{3}}{2} \mathrm{abc}$

Câu 5

Trong một giải thi đấu thể thao, một môn thể thao có $\mathrm{x}$ huy chương được phát trong $\mathrm{n}$ ngày thi đấu. Ngày thứ nhất người ta phát một huy chương và một phần mười số huy chương còn lại. Ngày thứ hai người ta phát hai huy chương và một phần mười số huy chương còn lại. Cứ tiếp tục, ngày thứ $\mathrm{k}$ người ta phát $\mathrm{k}(3 \leq \mathrm{k} \leq \mathrm{n})$ huy chương và một phần mười số huy chương còn lại. Ngày sau cùng, còn lại $\mathrm{n}$ huy chương đề phát. Hỏi môn thể thao đó có tất cả bao nhiêu huy chương đã được phát và đã phát trong bao nhiêu ngày?

LỜI GIẢI

Câu 1

Giải hệ phương trình: $\quad\left\{\begin{array}{l}\frac{1}{x}+\frac{1}{y}=9 \\ \left(\frac{1}{\sqrt[3]{x}}+\frac{1}{\sqrt[3]{y}}\right)\left(1+\frac{1}{\sqrt[3]{x}}\right)\left(1+\frac{1}{\sqrt[3]{y}}\right)=18\end{array}\right.$

Lời Giải

Đặt $a=\frac{1}{\sqrt[3]{x}}, b=\frac{1}{\sqrt[3]{y}}$.

Hệ phương trình thành:

$\quad\quad\left\{\begin{array}{l}a^3+b^3=9 \\ (a+b)(1+a)(1+b)=18\end{array} \Leftrightarrow\left\{\begin{array}{c}(a+b)^3-3 a b(a+b)=9 \\ (a+b)(1+a+b+a b)=18\end{array}\right.\right.$

Đặt $S=a+b, P=a b$.

Hệ phương trình thành:

$\quad\quad\left\{\begin{array}{l}S^3-3 P S=9 \\ S(S+P+1)=18\end{array} \Leftrightarrow\left\{\begin{array}{c}S^3-3 P S=9 \\ S^2+P S+S=18\end{array} \Leftrightarrow\left\{\begin{array}{c}S^3-3 P S=9\quad\quad(1) \\ P S=18-S-S^2\quad(2)\end{array}\right.\right.\right.$

Thế $(2)$ vào (1), ta được: $S^3+3 S^2+3 S-63=0 \Leftrightarrow(S+1)^3=64 \Leftrightarrow S=3$ (3)

Thế $(3)$ vào $(2)$, ta được: $\mathrm{P}=2$. Từ đó suy ra $(\mathrm{a}, \mathrm{b})=(1 ; 2)$ hay $(\mathrm{a}, \mathrm{b})=(2 ; 1)$.

Vậy $(x, y)=\left(\frac{1}{8} ; 1\right)$ hay $(x, y)=\left(1 ; \frac{1}{8}\right)$.

Câu 2

Tìm số nguyên dương $n$ lón nhất sao cho tồn tại một tập hợp $[a_1,a_2, \ldots,a_n]$ các hợp số có tính chất:

$\quad$ i) Hai số bất kì trong chúng là nguyên tố cùng nhau.

$\quad$ ii) $1<\mathrm{a}_{\mathrm{i}} \leq(2 \mathrm{n}+5)^2$ với mọi $\mathrm{i}=1,2, \ldots, \mathrm{n}$.

Lời Giải

Giả sử tìm được số nguyên dương $n$ thỏa bài toán.

Kí hiệu $q_j$ là ước nguyên tố nhỏ nhất của $a_j\left(j=1,2, \ldots, n\right.$ ) và $q_i$ là giá trị lớn nhất của các số $q_j$.

Do 2 số bất kì trong chúng là nguyên tố cùng nhau nên các $\mathrm{q}_{\mathrm{j}}$ là phân biệt.

Suy ra $q_i \geq p_n$ ($p_n$ là số nguyên tố thứ n).

Do đó ta có: $(2 n+5)^2 \geq a_i \geq q_i{ }^2 \geq p_n{ }^2 \Rightarrow p_n \leq 2 n+5$.

Ta xét bảng sau:

$\quad\quad\quad\quad\quad\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}\hline n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline u_n=2 n+5 & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 21 & 23 & 25 & 27 \\ \hline p_n & 2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & 31 \\\hline\end{array}$

Vì $u_{n+1}-u_n=2$ và $p_{n+1}-p_n \geq 2$ mà $p_{10}>u_{10} \Rightarrow p_n>u_n$ với mọi $n \geq 10$.

Suy ra $n=9$, lúc này $[2^2, 3^2, 5^2, 7^2, 11^2, 13^2, 17^2, 19^2, 23^2]$ thỏa 2 điều kiện bài toán.

Vậy $n=9$ là số nguyên dương lớn nhất thỏa yêu cầu bài toán.

Câu 3

Cho $\mathrm{M}$ là một điểm tùy ý thuộc miền trong tam giác $\mathrm{ABC}$ đều. Gọi $\mathrm{A}_1, \mathrm{~B}_1$, $\mathrm{C}_1$ lần lượt là hình chiếu vuông góc của $\mathrm{M}$ trên các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$.

Tìm giá trị nhỏ nhất của: $\quad\mathrm{P}=\frac{\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2}{\left(\mathrm{MA}_1+\mathrm{MB}_1+\mathrm{MC}_1\right)^2}$.

Lời Giải

Cách 1:

Gọi $\mathrm{D}, \mathrm{E}, \mathrm{F}$ tương ứng là trung điểm của các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$.

Ta có: $S_{ABC}=S_{MBC}+S_{MCA}+S_{MAB}$

$\quad\quad\Rightarrow \frac{\mathrm{a}^2 \sqrt{3}}{4}=\frac{1}{2} \mathrm{a}\left(MA_1+MB_1+MC_1\right) \Rightarrow MA_1+MB_1+MC_1=\frac{\mathrm{a} \sqrt{3}}{2}$

Mặt khác: $MD^2=\frac{MB^2+MC^2}{2}-\frac{BC^2}{4}$ ; $ME^2=\frac{MC^2+MA^2}{2}-\frac{AC^2}{4}$; $M F^2=\frac{M^2+M B^2}{2}-\frac{\mathrm{AB}^2}{4}$

$\quad\quad\Rightarrow \mathrm{MD}^2+\mathrm{ME}^2+\mathrm{MF}^2=\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2-\frac{3 \mathrm{a}^2}{4}$

$\quad\quad\Rightarrow  \mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2=\mathrm{MD}^2+\mathrm{ME}^2+\mathrm{MF}^2+\frac{3 \mathrm{a}^2}{4}$ $\quad\quad\quad\quad\quad =\mathrm{MD}^2+\mathrm{ME}^2+\mathrm{MF}^2+\left(\mathrm{MA}_1+\mathrm{MB}_1+\mathrm{MC}_1\right)^2$

Mà $\mathrm{MD}^2+M \mathrm{ME}^2+\mathrm{MF}^2 \geq \mathrm{MA}_1^2+\mathrm{MB}_1^2+M \mathrm{MC}_1^2 \geq \frac{1}{3}\left(\mathrm{MA}_1+M B_1+\mathrm{MC}_1\right)^2$

$\quad\quad\Rightarrow M A^2+M B^2+M C^2 \geq \frac{4}{3}\left(M A_1+M_1 B_1+M C_1\right)^2$

Do đó: $P=\frac{M A^2+M B^2+M C^2}{\left(M A_1+M B_1+M C_1\right)^2} \geq \frac{4}{3}$.

Đẳng thức xảy ra $\Leftrightarrow M$ là tâm của tam giác đều $\mathrm{ABC}$.

Vậy giá trị nhỏ nhất của $\mathrm{P}$ là $\frac{4}{3}$.

Cách 2:

$\text { Ta có: } S_{ABC}=S_{MBC}+S_{MCA}+S_{MAB} \Rightarrow \frac{\mathrm{a}^2 \sqrt{3}}{4}=\frac{1}{2} \mathrm{a}\left(MA_1+MB_1+MC_1\right)$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\Rightarrow  \mathrm{MA}_1+\mathrm{MB}_1+\mathrm{MC}_1=\frac{\mathrm{a} \sqrt{3}}{2}( * )$

$\quad\quad\quad(\overrightarrow{\mathrm{MA}}+\overrightarrow{\mathrm{MB}}+\overrightarrow{\mathrm{MC}})^2 \geq 0$

$\quad\quad\Rightarrow \mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2+2(\overrightarrow{\mathrm{MA}} \cdot \overrightarrow{\mathrm{MB}}+\overrightarrow{\mathrm{MB}} \cdot \overrightarrow{\mathrm{MC}}+\overrightarrow{\mathrm{MC}} \cdot \overrightarrow{\mathrm{MA}}) \geq 0$

$\quad\quad\Rightarrow \mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2+\left(\mathrm{MA}^2+\mathrm{MB}^2-\mathrm{AB}^2+\mathrm{MB}^2+\mathrm{MC}^2\right.$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\left(-B C^2+M C^2+M A^2-C A^2\right) \geq 0$

$\quad\quad\Rightarrow 3\left(\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2\right) \geq 3 \mathrm{a}^2 \Rightarrow \mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2 \geq \mathrm{a}^2(* *)$

Từ $( * )$ và $( ** )$: $\Rightarrow P \geq \frac{\mathrm{a}^2}{\left(\frac{\mathrm{a} \sqrt{3}}{2}\right)^2}=\frac{4}{3}$.

Dấu “=” xảy ra $\Leftrightarrow \overrightarrow{\mathrm{MA}}+\overrightarrow{\mathrm{MB}}+\overrightarrow{\mathrm{MC}}=\overrightarrow{0} \Leftrightarrow \mathrm{M}$ là trọng tâm tam giác $\mathrm{ABC}$.

Vậy giá trị nhỏ nhất của $P$ là $\frac{4}{3}$.

Câu 4

Cho các số thực: $a, b, c \geq 1$ thỏa $a+b+c+2=a b c$.

Chứng minh rằng: $\quad b c \sqrt{\mathrm{a}^2-1}+\mathrm{ca} \sqrt{\mathrm{b}^2-1}+\mathrm{ab} \sqrt{\mathrm{c}^2-1} \leq \frac{3 \sqrt{3}}{2} \mathrm{abc}$

Lời Giải

Ta có: $\frac{\mathrm{VT}}{\mathrm{abc}} =\sqrt{1-\frac{1}{\mathrm{a}^2}}+\sqrt{1-\frac{1}{\mathrm{~b}^2}}+\sqrt{1-\frac{1}{\mathrm{c}^2}} \leq \sqrt{3\left[3-\left(\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}+\frac{1}{\mathrm{c}^2}\right)\right]}$

$\quad\quad\quad\quad =\sqrt{9-3\left(\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}+\frac{1}{\mathrm{c}^2}\right)} \leq \sqrt{9-\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}\right)^2}$

Mà từ giả thiết ta có: $\quad\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}+\frac{2}{a b c}=1$.

Ta có: $\quad\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a} \leq \frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2$ và $\frac{1}{a b c} \leq \frac{1}{27}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3$

Đặt: $\quad t=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ ta được

$\quad\frac{1}{3} \mathrm{t}^2+\frac{2}{27} \mathrm{t}^3 \geq 1 \Leftrightarrow 2 \mathrm{t}^3+9 \mathrm{t}^2-27 \geq 0 \Leftrightarrow(2 \mathrm{t}-3)(\mathrm{t}+3)^2 \geq 0 \Leftrightarrow \mathrm{t} \geq \frac{3}{2}$

Suy ra: $\quad\frac{\mathrm{VT}}{\mathrm{abc}} \leq \sqrt{9-\frac{9}{4}}=\frac{3 \sqrt{3}}{2}$

Vậy: $\quad b c \sqrt{a^2-1}+c a \sqrt{b^2-1}+a b \sqrt{c^2-1} \leq \frac{3 \sqrt{3}}{2} a b c$

Câu 5

Trong một giải thi đấu thể thao, một môn thể thao có $\mathrm{x}$ huy chương được phát trong $\mathrm{n}$ ngày thi đấu. Ngày thứ nhất người ta phát một huy chương và một phần mười số huy chương còn lại. Ngày thứ hai người ta phát hai huy chương và một phần mười số huy chương còn lại. Cứ tiếp tục, ngày thứ $\mathrm{k}$ người ta phát $\mathrm{k}(3 \leq \mathrm{k} \leq \mathrm{n})$ huy chương và một phần mười số huy chương còn lại. Ngày sau cùng, còn lại $\mathrm{n}$ huy chương đề phát. Hỏi môn thể thao đó có tất cả bao nhiêu huy chương đã được phát và đã phát trong bao nhiêu ngày?

Lời Giải

Gọi $\mathrm{u}_{\mathrm{k}}$ là số huy chương còn lại khi bắt đầu ngày thi đấu thứ $\mathrm{k}(\mathrm{k}=1,2, \ldots, \mathrm{n})$.

Ta có: $\mathrm{u}_1=\mathrm{x} ; \mathrm{u}_2=\mathrm{u}_1-\left[1+\frac{1}{10}\left(\mathrm{u}_1-1\right)\right]=\frac{9}{10} \mathrm{u}_1-\frac{9}{10} .1$

$\quad\quad\quad\mathrm{u}_3=\mathrm{u}_2-\left[2+\frac{1}{10}\left(\mathrm{u}_2-2\right)\right]=\frac{9}{10} \mathrm{u}_2-\frac{18}{10}=\frac{9}{10} \mathrm{u}_2-\frac{9}{10} \cdot 2$

$\quad\quad\quad\text { …….. }$

$\quad\quad u_{k+1}=u_k-\left[k+\frac{1}{10}\left(u_k-k\right)\right]=\frac{9}{10} u_k-\frac{9 k}{10}=\frac{9}{10} u_k-\frac{9}{10} \cdot k$ $\quad(1)$ và $\quad u_n=n$

  • Tính $u_k$ theo $\mathrm{k}$ :

Cách 1: Đặt $\quad u_k=v_k+pk+q$, ta có:

(1) $\quad\Leftrightarrow v_{k+1}+pk+p+q=\frac{9}{10}\left(v_k+pk+q\right)-\frac{9}{10}{k}$

$\quad\quad\Rightarrow v_{k+1}=\frac{9}{10} v_k+k\left(\frac{9}{10} p-\frac{9}{10}-p\right)+\frac{9}{10} q-p-q$

Chọn $p, q$ thỏa $\left\{\begin{array}{l}\frac{9}{10} p-\frac{9}{10}-p=0 \\ \frac{9}{10} q-p-q=0\end{array}\Rightarrow p=-9\right.$ và $q=90$

Cách 2: Xét $\quad u_{k+1}=\frac{9}{10} u_k\quad(2)$

Ta có $\quad u_k^*=\left(\frac{9}{10}\right)^{k-1}\quad u_1$ là nghiệm của $(2)$

Đặt $\quad u_k=v_k-9 k+90$ ta có: $v_1=u_1-81=x-81$ và $v_{k+1}=\frac{9}{10} v_k$ với mọi $k$.

Suy ra: $v_1=x-81 ; v_2=\frac{9}{10} v_1 ; \ldots ; v_k=\frac{9}{10} v_{k-1} \Rightarrow v_k=\left(\frac{9}{10}\right)^{k-1}(x-81)$

Giả sử (1) có nghiệm riêng $\tilde{u_k}=Ak+B \Rightarrow \tilde u_k=-9 k+90$.

Vậy $\quad u_k=(x-81)\left(\frac{9}{10}\right)^{k-1}-9(k-10)$.

$\quad\quad\Rightarrow u_k=Cu_k^*+\tilde u_k=Cx\left(\frac{9}{10}\right)^{k-1}-9 k+90$

$\quad\quad\Rightarrow \mathrm{u}_{\mathrm{k}}=(\mathrm{x}-81)\left(\frac{9}{10}\right)^{\mathrm{k}-1}-9(\mathrm{k}-10)$

Theo giả thiết

$\quad\quad\quad u_n=n \Leftrightarrow n=(x-81)\left(\frac{9}{10}\right)^{n-1}-9(n-10) \Leftrightarrow x=81+\frac{10^n}{9^{n-1}}(n-9)$

Vì $x$ là số nguyên dương nên suy ra $n=9$ và $x=81$.

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *