Bài 2. Tìm tất cả các số nguyên dương $m,n$ để $\dfrac{5mn+5m}{3m^2+2n^2}$ là số nguyên.
Bài 3. Cho tập hợp $X={1,2,\ldots,2n-1}$ gồm $2n-1$ số tự nhiên $(n\ge 2)$. Tô màu ít nhất $n-1$ phần tử của $X$ với điều kiện sau: nếu $a,b\in X$ (không nhất thiết phân biệt) được tô màu thì $a+b$ cũng được tô màu, miễn là $a+b\in X$. Gọi $S$ là tổng tất cả các số không được tô màu của $X$.
a/Chứng minh rằng $S\le n^2$.
b/Chỉ ra tất cả các phép tô màu sao cho $S=n^2$.
Bài 4. Cho đường tròn $(O)$ và dây cung $AB$ cố định khác đường kính. Gọi $C$ là điểm chính giữa cung lớn $AB$. Đường thẳng $d$ thay đổi qua $C$ cắt tiếp tuyến tại $A$ và tiếp tuyến tại $B$ của $(O)$ lần lượt tại $D,E$. Gọi $Q$ là giao điểm của $AE$ và $BD$. Chứng minh rằng đường thẳng $PQ$ luôn đi qua một điểm cố định khi $d$ thay đổi.
Giải
Bài 1. Ta xét các trường hợp sau:
Nếu $ab<0$, ta có vế trái dương và vế phải âm nên bất đẳng thức đúng.
Nếu $ab \ge 0$, kết hợp với $a+b \ge 0$, ta suy ra $a,b \ge 0.$
Áp dụng lần lượt các đánh giá $4xy \le (x+y)^2$ và $2xy \le x^2 + y^2$ thì:
Nếu $k=1$ thì $\Delta = n^2 + 50n +25 = x^2$ ($x \in \mathbb{N}$) nên suy ra $$(n+x+25)(n-x+25) = 600.$$
Từ đây với lưu ý $n+x+25 > n-x+25 > 0, n+x+25 > 25$ ta có $$n \in \left\{ {126;52;28;10;6} \right\}.$$ Thay vào phương trình đầu, ta tìm được $$(m;n)=(9;6),(5;10),(32;28),(32;52),(81;126).$$
Bài 3.
(a) Rõ ràng nếu $1$ được tô thì tất cả các số cũng sẽ được tô, kéo theo $S=0 \le n^2$, thỏa mãn. Do đó, ta chỉ cần xét $1$ không được tô. Gọi các số được tô là $$1 < a_1 < a_2 < \ldots < a_m \le 2n-1,$$
trong đó $m \ge n-1$. Ta sẽ chứng minh rằng với mọi $k$ mà $1 \le k \le m/2$ thì
$$a_k + a_{m-k+1} \ge 2n.$$
Giả sử ngược lại rằng $a_k+a_{m-k+1} <2n$ thì tổng hai số trên phải là số được tô màu. Do đó, nó phải thuộc tập hợp
$$Q = \left\{ {{a_{m – k + 2}};{a_{m – k + 3}};\ldots;{a_m}} \right\}.$$
Mặt khác lại xét chỉ số $i < k$ thì rõ ràng do dãy đang xét là tăng nên ta cũng có tổng ${a_i} + {a_{m – k + 1}}$ thuộc tập hợp $Q$ ở trên. Suy ra $|Q| \ge k,$ mâu thuẫn vì rõ ràng $Q$ chỉ có $k-1$ phần tử. Vì thế nên ta phải có $a_k + a_{m-k+1} \ge 2n.$
Đến đây, ta có ${a_k} + {a_{m – k + 1}} \ge 2n$ với mọi $k \in \left\{ {1;2;3;\ldots;m} \right\}$ nên
(b) Để có $S=n^2$ thì dấu bằng xảy ra ở tất cả các đánh giá trên, tức là ta tô được đúng $m=n-1$ số và $a_k+a_{n-k}=2n$ với mọi $1 \le k \le n-1.$
Ta có $(2{{a}_{1}},{{a}_{1}}+{{a}_{2}},{{a}_{1}}+{{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}})$ là một hoán vị của các số $({{a}_{2}},{{a}_{3}},\ldots ,{{a}_{n-1}}).$
Do tính tăng của hai dãy này nên ta có $$2{{a}_{1}}={{a}_{2}},{{a}_{1}}+{{a}_{2}}={{a}_{3}},\ldots ,{{a}_{1}}+{{a}_{n-2}}={{a}_{n-1}}.$$ Vì thế nên ${{a}_{k}}=k{{a}_{1}}$ với mọi $1\le k\le n-1.$ Mà $2n={{a}_{1}}+{{a}_{n-1}}=n{{a}_{1}}$ nên ta có ${{a}_{1}}=2,$ từ đây tìm được các tô duy nhất là $(2,4,6,\ldots ,2n-2)$ thỏa mãn đề bài.
Bài 4.
Giả sử $AD\cap BE=T,AB\cap DE=I$ và $TQ$ cắt $DE,AB$ lần lượt ở $X,S.$ Khi đó dễ thấy rằng
$(IX,DE)=(IS,AB)=-1.$
Mà $PI$ đi qua trung điểm cung lớn $AB$ của $(O)$ nên $PI$ là phân giác ngoài, kéo theo $PS$ là phân giác trong nên nó đi qua $N$ là trung điểm cung nhỏ $AB$ của $(O)$.
Gọi $M$ là trung điểm $AB.$ Theo tính chất phương tích thì $TN\cdot TC=T{{A}^{2}}=T{{B}^{2}}=TM\cdot TO$, mà $O$ là trung điểm $CN$ nên theo hệ thức Maclaurin thì $(TM,NC)=-1.$
Lại có $(TQ,XS)=-1$ nên chùm $P(XS,QT)=-1$, mà $PX$ đi qua $C,$ $PS$ đi qua $N$ nên ta phải có $PQ$ đi qua $M$ là điểm cố định.
Nhận xét: Bài toán có thể xử lý theo hướng tự nhiên hơn bằng cách dùng định lý Ceva sin. Từ kết quả trên, ta còn thấy được rằng nếu lấy $CQ$ cắt $AB$ ở $K$ thì $PK$ là đối trung của tam giác $PAB,$ kéo theo $P,K,T$ thẳng hàng.