Tag Archives: TPHCM

ĐỀ VÀ ĐÁP ÁN THI VÀO LỚP 10 CHUYÊN TOÁN SGD TPHCM NĂM 2022

Thời gian làm bài 150 phút

Bài 1: ( 1,0 điểm)
Cho $x, y$ là hai số thực thỏa mãn $x y+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1$.
Tính giá trị của biểu thức $M=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)$.

Bài 2: (2,5 điểm)
a) Giải phương trình $\sqrt{x+4}+|x|=x^2-x-4$
b) Giải hệ phương trình $\left\{\begin{array}{l}\frac{x}{y+z}=2 x-1 \\\ \frac{y}{z+x}=3 y-1 \\\ \frac{z}{x+y}=5 z-1\end{array}\right.$

Bài 3: (1,5 điểm)
Cho hình vuông $A B C D$. Trên các cạnh $B C$ và $C D$ lần lượt lấy các điểm $M$ và $N$ sao cho $\widehat{M A N}=45^{\circ}$.
a) Chứng minh $M N$ tiếp xúc với đường tròn tâm $A$ bán kính $A B$.
b) Kė $M P$ song song với $A N$ ( $P$ thuộc đoạn $A B$ ) và kẻ $N Q$ song song với $A M$ ( $Q$ thuộc đoạn $A D$ ). Chứng minh $A P=A Q$.
Bài 4: (2,0 điếm)
Cho ba số thực dương $a, b, c$ thỏa $a+b+c=3$.
a) Chứng minh rằng $a b+b c+c a \leq 3$.
b) Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}$.

Bài 5: (2,0 điểm)
Cho tam giác $A B C$ nhọn $(A B<A C)$ có các đường cao $A D, B E, C F$ cắt nhau tại $H$. Đường thẳng $E F$ cắt đường thẳng $B C$ tại $I$. Đường thẳng qua $A$ vuông góc với $I H$ tại $K$ và cắt $B C$ tại $M$.
a) Chứng minh tứ giác $I F K C$ nội tiếp và $\frac{B I}{B D}=\frac{C I}{C D}$.
b) Chứng minh $M$ là trung điểm của $B C$.

Bài 6: (1,0 điểm )
Số nguyên dương $n$ được gọi là “số tốt” nếu $n+1$ và $8 n+1$ đều là các số chính phương.
a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có $1,2,3$ chữ số.
b) Tìm các số nguyên $k$ thỏa mãn $|k| \leq 10$ và $4 n+k$ là hợp số với mọi $n$ là “số tốt”.

Đáp án do Star Education thực hiện

ĐỀ VÀ ĐÁP ÁN THI VÀO 10 CHUYÊN TOÁN SGD THÀNH PHỐ HỒ CHÍ MINH NĂM 2023

THỜI GIAN LÀM BÀI 150 PHÚT

Bài 1. (1,0 diểm) Cho $a, b$ là các số thực, $b \neq 0$ thỏa mãn điều kiện
$$
a^2+b^2=\frac{4 b^2}{\sqrt{a^2+b^2}+a}+a \sqrt{a^2+b^2}
$$

Tính giá trị của biểu thức $P=a^2+b^2$.
Bài 2. (2,5 điếm)
a) Giải phương trình: $x=\frac{5}{x-1}+2 \sqrt{x-2}$.
b) Giải hệ phương trình $\left\{\begin{array}{l}\frac{9 y+49}{x+y}+x+y=23 \\\ x \sqrt{x}+y \sqrt{y}=7(\sqrt{x}+\sqrt{y})\end{array}\right.$.

Bài 3. (2,5 điểm) Cho tam giác $A B C$ vuông tại $A(A B<A C)$, có đường cao $A H$. Dường tròn tâm $I$ nội tiếp tam giác $A B C$, tiếp xúc với các cạnh $B C, C A, A B$ lần lượt tại $D, E, F$. Gọi $J$ là giao điểm của $A I$ và $D E . K$ là trung điểm $A B$.
a) Chứng minh tứ giác $B I J D$ nội tiếp
b) Gọi $M$ là giao điểm của $K I$ và $A C, N$ là giao điểm của $A H$ và $E D$. Chứng minh $A M=A N$.
c) Gọi $Q$ là giao điểm của $D I$ và $E F, P$ là trung điểm của $B C$. Chứng minh ba điểm $A, P, Q$ thẳng hàng.

Bài 4. (2,0 diểm) Cho các số thực dương $x, y, z$ thỏa mãn $\sqrt{1+4 x y+2 x+2 y}+2 z=5$.
a) Chứng minh $\frac{1}{\sqrt{(2 x+1)(2 y+1)}}+\frac{1}{2 z+1} \geq \frac{2}{3}$.
b) Tìm giá trị nhỏ nhất của biễu thức $P=\frac{x+1}{2 x+1}+\frac{y+1}{2 y+1}+\frac{2 z+3}{4 z+2}$.

Bài 5. (1,0 điểm) Cho đường tròn tâm $O$ nội tiếp hình thoi $A B C D$. Gọi $E, F, G, H$ là các điểm lần lượt thuộc các cạnh $A B, B C, C D, D A$ sao cho $E F, G H$ cùng tiếp xúc với $(O)$.
a) Chứng minh $C G \cdot A H=A O^2$.
b) Chứng minh $E H$ song song $F G$.

Bài 6. (1,0 điểm) Xét các số nguyên $a<b<c$ thỏa mãn $n=a^3+b^3+c^3-3 a b c$ là số nguyên tố.
a) Chứng minh $a<0$.
b) Tìm tât cả các số nguyên $a, b, c(a<b<c)$ sao cho $n$ là một ước của 2023.

ĐÁP ÁN CỦA GIÁO VIÊN STAR EDUCATION

Đề và đáp án thi vào lớp 10 Chuyên Toán TPHCM năm 2022

Bài 1. (1,0 diểm)
Cho $x, y$ là hai số thực thỏa mãn $x y+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1$.
Tính giá trị của biểu thức $M=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)$.
Bài 2. (2,5 diểm)
a) Giải phương trình $\sqrt{x+4}+|x|=x^2-x-4$.
Bài 3. (1,5 diểm)
Cho hình vuông $A B C D$ Trên các cạnh $B C$ và $C D$ lần lượt lấy các điểm $M$ và $N$ sao cho $\angle M A N=45^{\circ}$.
a) Chứng minh $M N$ tiếp xúc với dường tròn tâm $A$ bán kính $A B$.
b) Kẻ $M P$ song song với $A N$ ( $P$ thuộc đoạn $A B)$ và kẻ $N Q$ song song với $A M(Q$ thuộc đoạn $A D)$. Chứng minh $A P=A Q$.
Bài 4. (2,0 diểm)
Cho ba số thực dương $a, b, c$ thỏa $a+b+c=3$.
a) Chứng minh rằng $a b+b c+c a \leq 3$.
b) Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}$.
Bài 5. (2,0 diểm)
Cho tam giác $A B C$ nhọn $(A B<A C)$ có các đường cao $A D, B E, C F$ cắt nhau tại $H$. Đường thẳng $E F$ cắt đường thẳng $B C$ tại $I$. Đường thẳng qua $A$ vuông góc với $I H$ tại $K$ và cắt $B C$ tại $M$.
a) Chứng minh tứ giác $I F K C$ nội tiếp và $\frac{B I}{B D}=\frac{C I}{C D}$.
b) Chứng minh $M$ là trung diểm của $B C$.

Bài 6. (1,0 diểm)
Số nguyên dương $n$ được gọi là “số tốt” nếu $n+1$ và $8 n+1$ dều là các số chính phương.
a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số.
b) Tìm các số nguyên $k$ thỏa mãn $|k| \leq 10$ và $4 n+k$ là hợp số với mọi $n$ là “số tốt”.

Đáp án được thực hiện vởi Star Education

Bài 1.

Điều kiện: $x y \leq 1$. Biến đổi giả thiết
$$
\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1-x y \Leftrightarrow\left(1+x^2\right)\left(1+y^2\right)=(1-x y)^2 \Leftrightarrow(x+y)^2=0 \Leftrightarrow y=-x .
$$
Thay vào biểu thức $M$ ta được
$$
\begin{aligned}
M & =\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right) \
& =\left(x+\sqrt{1+x^2}\right)\left(-x+\sqrt{1+x^2}\right) \
& =\left(\sqrt{1+x^2}\right)^2-x^2=1
\end{aligned}
$$

Bài 2.

a)

Lời giải:
a) Điều kiện: $\left\{\begin{array}{l}x+4 \geq 0 \\\\ x^2-x-4 \geq 0\end{array} \right.$

$\Leftrightarrow\left[\begin{array}{l}-4 \leq x \leq \frac{1-\sqrt{17}}{2} \\\\ x \geq \frac{1+\sqrt{17}}{2}\end{array}\right.$
Phương trình đã cho tương đương
$$
x^2-\sqrt{x+4}-|x|-(x+4)=0 \Leftrightarrow(|x|+\sqrt{x+4})(|x|-\sqrt{x+4}-1)=0 \Leftrightarrow|x|-1=\sqrt{x+4}
$$

  • Nếu $x \geq 0,(1) \Rightarrow x-1=\sqrt{x+4}$
    $$
    \Rightarrow x^2-2 x+1=x+4 \Leftrightarrow x^2-3 x-3=0 \Leftrightarrow\left[\begin{array}{l}
    x=\frac{3+\sqrt{21}}{2} \text { (Nhận) } \\\\
    x=\frac{3-\sqrt{21}}{2} \text { (Loại) }
    \end{array}\right.
    $$
  • Nếu $x<0,(1) \Rightarrow-x-1=\sqrt{x+4}$
    $$
    \Rightarrow x^2+2 x+1=x+4 \Leftrightarrow x^2+x-3=0 \Leftrightarrow\left[\begin{array}{l}
    x=\frac{-1+\sqrt{13}}{2} \text { (Loại) } \\\\
    x=\frac{-1-\sqrt{13}}{2} \text { (Nhận) }
    \end{array} .\right.
    $$
    Thử lại, ta được $x=\frac{3+\sqrt{21}}{2}$ và $x=\frac{-1-\sqrt{13}}{2}$ là các nghiệm của phương trình đã cho.

b) Điều kiện: $(x+y)(y+z)(z+x) \neq 0$. Hệ dã cho tương dương
$$
\left\{\begin{array} { l }
{ \frac { x } { y + z } + 1 = 2 x } \\\\
{ \frac { y } { z + x } + 1 = 3 y } \\\\
{ \frac { z } { x + y } + 1 = 5 z }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ \frac { x + y + z } { y + z } = 2 x } \\\\
{ \frac { x + y + z } { z + x } = 3 y } \\\\
{ \frac { x + y + z } { x + y } = 5 z }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x+y+z=2 x(y+z) \\\\
x+y+z=3 y(z+x) \\\\
x+y+z=5 z(x+y)
\end{array}\right.\right.\right.
$$
Dễ thấy $x y z \neq 0$. Từ trên suy ra
$$
2 x(y+z)=3 y(z+x)=5 z(x+y) \Leftrightarrow 2\left(\frac{1}{y}+\frac{1}{z}\right)=3\left(\frac{1}{z}+\frac{1}{x}\right)=5\left(\frac{1}{x}+\frac{1}{y}\right) .
$$
Ta tính được $\frac{1}{z}=\frac{19}{x}, \frac{1}{y}=\frac{11}{x} \Rightarrow x=11 y=19 z$. Thay lại vào phương trình $(*)$ ta dược
$$
x+\frac{x}{11}+\frac{x}{19}=2 x\left(\frac{x}{11}+\frac{x}{19}\right) \Leftrightarrow 1+\frac{1}{11}+\frac{1}{19}=2\left(\frac{x}{11}+\frac{x}{19}\right) \Leftrightarrow x=\frac{239}{60} .
$$
Suy ra $y=\frac{239}{660}, z=\frac{239}{1140}$.
Vậy nghiệm duy nhất của hệ là $(x, y, z)=\left(\frac{239}{60}, \frac{239}{660}, \frac{239}{1140}\right)$.

Bài 3.

a) Trên tia đối của tia $D C$ lấy $F$ sao cho $D F=B M$.
Xét $\triangle A D F$ và $\triangle A B M$ có $A D=A B, \angle A D F=\angle A B M=90^{\circ}$ và $D F=B M$.
Do đó $\triangle A D F=\triangle A B M(\mathrm{c}-\mathrm{g}-\mathrm{c})$
$\Rightarrow \angle D A F=\angle B A M$ và $A F=A M$.
Suy ra $\angle D A F+\angle D A N=\angle B A M+\angle D A N=90^{\circ}-45^{\circ}=45^{\circ}$.
$\Rightarrow \angle N A F=45^{\circ}=\angle N A M$, mà $A F=A M$ nên $\triangle N A F=\triangle N A M$. (c-g-c)
Kẻ $A E \perp M N(E \in M N) \Rightarrow A E=A D=A B \Rightarrow M N$ tiếp xúc với $(A, A B)$.
b) Ta có: $\triangle N A F=\triangle N A M \Rightarrow \angle A N F=\angle A N M$, mà $\angle A N F=\angle N A P($ do $D C | A B)$, dẫn đến $\angle A N M=\angle N A P$.

Từ $A N | M P \Rightarrow A P M N$ là hình thang, kết hợp với $\angle A N M=\angle N A P$, ta được $A P M N$ là hình thang cân.
Do đó $A P=M N$, tương tự ta cũng có $A Q=M N$, dẫn dến $A P=A Q$.

Bài 4.

a)

a) Ta có $a^2+b^2 \geq 2 a b, b^2+c^2 \geq 2 b c, c^2+a^2 \geq 2 c a$ nên
$$
2\left(a^2+b^2+c^2\right) \geq 2(a b+b c+c a) \Leftrightarrow a^2+b^2+c^2 \geq a b+b c+c a .
$$
Khi đó
$$
\begin{aligned}
9=(a+b+c)^2 & =a^2+b^2+c^2+2 a b+2 b c+2 c a \
& \geq a b+b c+c a+2(a b+b c+c a)=3(a b+b c+c a)
\end{aligned}
$$
Do đó $a b+b c+c a \leq 3$.
Dấu “=” xảy ra khi và chỉ khi $a=b=c=1$.

b)

b) Ta có
$$
\begin{aligned}
& \frac{a}{b^2+1}-a=\frac{-a b^2}{b^2+1} \geq-\frac{a b^2}{2 b}=-\frac{a b}{2} \
& \frac{b}{c^2+1}-b=\frac{-b c^2}{c^2+1} \geq-\frac{b c^2}{2 c}=-\frac{b c}{2} \
& \frac{c}{a^2+1}-c=\frac{-c a^2}{a^2+1} \geq-\frac{c a^2}{2 a}=-\frac{c a}{2}
\end{aligned}
$$
Do đó
$$
\begin{aligned}
& \frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c^2}{a^2+1}-(a+b+c) \geq-\frac{a b+b c+c a}{2} \geq-\frac{3}{2} \
\Rightarrow & \frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1} \geq-\frac{3}{2}+a+b+c=\frac{3}{2}
\end{aligned}
$$
Vậy giá trị nhỏ nhất của $P$ là $\frac{3}{2}$, dấu “=” xảy ra khi và chỉ khi $a=b=c=1$.

Bài 5.

Vẽ dường tròn $(O)$ ngoại tiếp $\triangle A B C$
a) Ta có: Các tứ giác $A F D C, A K D I, B F E C, A F H E$ nội tiếp.
$\Rightarrow H F \cdot H C=H D \cdot H A=H K . H I \Rightarrow I F K C$ nội tiếp.
Mặt khác: $\widehat{I F B}=\widehat{A C B}=\widehat{B F D}$ (do các tứ giác $B F E C, A F D C$ nội tiếp)
$\Rightarrow F B$ là phân giác $\widehat{I F D}$.
Mà $F B \perp F C$ nên $F B$ là phân giác trong, $F C$ là phân giác ngoài $\triangle I F D$
$$
\Rightarrow \frac{B I}{B D}=\frac{C I}{C D}
$$
b) Gọi $S$ là giao điểm thứ hai của $I A$ và đường tròn ngoại tiếp $O$.
Ta chứng minh được $I F . I E=I B . I C=I S . I A$
$\Rightarrow A S F E$ nội tiếp hay 5 điểm $A, S, F, H, E$ cùng thuộc đường tròn đường kính $A H$
$\Rightarrow \widehat{A S H}=\widehat{A F H}=90^{\circ}$
Mặt khác do: $I K \perp A M, A D \perp I M$ nên $H$ là trực tâm $\triangle A I M \Rightarrow M H \perp A I$.
Từ đó, ta có: $S, H, M$ thẳng hàng.
Vẽ đường kính $A Q$ của đường tròn ngoại tiếp $\triangle A B C$.
Ta có $\widehat{A S Q}=90^{\circ}$ nên $S, H, M, Q$ thẳng hàng
Xét tứ giác $B H C Q$ có: $B H / / C Q$ (cùng $\perp A C)$ và $C H / / B Q($ cùng $\perp A B)$
Nên $B H C Q$ là hình bình hành nghĩa là có $M$ là trung điểm $B C$.

Bài 6.

Lời giải:
a) Ví dụ: $3\left(3+1=2^2\right.$ và $\left.8 \cdot 3+1=5^2\right), 15\left(15+1=4^2\right.$ và $\left.8 \cdot 15+1=11^2\right)$ và 120 $\left(120+1=11^2\right.$ và $\left.8 \cdot 120+1=31^2\right)$.
b) Nhận xét $a^2 \equiv 0,1(\bmod 3)$ với mọi $a \in \mathbb{N}$.
Đặt $n+1=x^2$ và $8 n+1=y^2(x, y \in \mathbb{N})$.

  • Nếu $n \equiv 1(\bmod 3)$ thì $x^2=n+1 \equiv 2(\bmod 3)$, vô lí.
  • Nếu $n \equiv 2(\bmod 3)$ thì $y^2=8 n+1 \equiv 17 \equiv 2(\bmod 3)$, vô lí.
    Vậy $n \equiv 0(\bmod 3)$ hay $n$ chia hết cho 3 .
    Nếu $k=1,5,7,-5,-7$ thì với $n=3$ (là số tốt), $4 n+k$ nhận các giá trị $13,17,19,7,5$ là các số nguyên tố. (Loại)
    Nếu $k=-1$, với $n=15$ (là số tốt) thì $4 n+k=59$ là số nguyên tố. (Loại)
    Nếu $k=-10$, với $n=3$ thì $4 n+k=2$ là số nguyên tố. (Loại)
    Nếu $k=-9$, với $n=3$ thì $4 n+k=3$ là số nguyên tố. (Loại)
    Nếu $k \geq-8, k$ chẵn hoặc $k$ chia hết cho 3 thì $4 n+k \geq 4 \cdot 3-8=4$ và $4 n+k$ có ước là 2 hoặc 3 , do đó $4 n+k$ là hợp số.
    Vậy các giá trị cần tìm của $k$ là
    $$
    k \in{-8,-6,-4,-3,-2,0,2,3,4,6,8,9,10} .
    $$

ĐỀ THI VÀO CHUYÊN TOÁN LỚP 10 TP.HCM 2012

Bài 1. Giải phương trình:

$\sqrt{8 x+1}+\sqrt{46-10 x}=-x^{3}+5 x^{2}+4 x+1$

Bài 2. Cho đa thức $f(x)=a x^{3}+b x^{2}+c x+d$ với $a$ là số nguyên dương, biết $f(5)-$ $f(4)=$ 2012. Chứng minh rằng: $f(7)-f(2)$ là hợp số.

Bài 3. Cho ba số dương $a, b, c$ thỏa $a+b+c=1$. Tìm giá trị nhỏ nhất của biểu thức:

$A=14\left(a^{2}+b^{2}+c^{2}\right)+\frac{a b+b c+c a}{a^{2} b+b^{2} c+c^{2} a}$

Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn $(O, R)$ có $A C$ vuông góc với $B D$ tại $H$. Trên cạnh $A B$ lấy điểm $M$ sao cho $A B=3 A M$. Trên cạnh $H C$ lấy trung điểm $N$. Chứng minh rằng $M H$ vuông góc với $D N$.

Bài 5. Cho đường tròn tâm $O$ và đường tròn tâm $I$ cắt nhau tại hai điểm $A$ và $B(O$ và $I$ nằm khác phía đối với đường thẳng $A B), I B$ cắt $(O)$ tại $E, O B$ cắt $(I)$ tại $F$. Qua $B$ vẽ đường thẳng $M N$ song song với $E F(M$ thuộc $(O), N$ thuộc $(I)$ ).

(a) Chứng minh rằng $O A I E$ nội tiếp.

(b) Chứng minh rằng: $A E+A F=M N$.

Bài 6. Trên mặt phẳng cho 2013 điểm tùy ý sao cho trong ba điểm bất kì thì tồn tại 2 điểm mà khoảng cách giữa hai điểm đó luôn bé hơn 1. Chứng minh rằng tồn tại một đường tròn có bán kính bằng 1 chứa ít nhất 1007 điểm (kế cả biên).

 

LỜI GIẢI

Bài 1. Giải phương trình:

$\sqrt{8 x+1}+\sqrt{46-10 x}=-x^{3}+5 x^{2}+4 x+1$

Lời giải. $\sqrt{8 x+1}+\sqrt{46-10 x}=-x^{3}+5 x^{2}+4 x+1$

ĐKХĐ: $\frac{-1}{8} \leq x \leq \frac{23}{5}$

Sử dụng lượng liên hợp, phương trình ban đầu tương đương với:

$\sqrt{8 x+1}-3+\sqrt{46-10 x}-6+x^{3}-x^{2}-4 x^{2}+4 x-8 x+8=0$

$\Leftrightarrow(x-1)\left(\frac{8}{\sqrt{8 x+1}+3}-\frac{10}{\sqrt{46-10 x}+6}+x^{2}-4 x-8\right)=0$

Từ đó ta có phương trình có một nghiệm là $x=1$. Xét biểu thức:

$\frac{8}{\sqrt{8 x+1}+3}-\frac{10}{\sqrt{46-10 x}+6}+x^{2}-4 x-8=0$

Từ điều kiện ta có:

$-1<x<5 \Leftrightarrow(x+1)(x-5)<0 \Leftrightarrow x^{2}-4 x-5<0$

Lại có: $\frac{8}{\sqrt{8 x+1}+3} \leq \frac{8}{3}<\frac{9}{3}=3 \Leftrightarrow \frac{8}{\sqrt{8 x+1}+3}-3<0$ Từ đó ta có:

$\frac{8}{\sqrt{8 x+1}+3}-\frac{10}{\sqrt{46-10 x}+6}+x^{2}-4 x-8<0$

Vậy phương trình đã cho có nghiệm duy nhất là: $x=1$

Bài 2. Cho đa thức $f(x)=a x^{3}+b x^{2}+c x+d$ với $a$ là số nguyên dương, biết $f(5)-$ $f(4)=2012$. Chứng minh rằng: $f(7)-f(2)$ là hợp số.

Lời giải. Ta có: $f(x)=a x^{3}+b x^{2}+c x+d$

Từ đó ta tính được: $f(5)=125 a+25 b+5 c+d, f(4)=64 a+16 b+4 c+d$

Vậy: $f(5)-f(4)=61 a+9 b+c=2012, f(7)=343 a+49 b+7 c+d, f(2)=8 a+4 b+$ $2 c+d$

Vậy: $f(7)-f(2)=335 a+45 b+5 c=5(67 a+9 b+c)=30 a+5(61 a+9 b+c)=30 a+$ 10060

Từ đó ta có: $f(7)-f(2)$ là hợp số vì $a$ là số nguyên dương và nó chia hết cho $2,5,10$.

Bài 3. Cho ba số dương $a, b, c$ thỏa $a+b+c=1$. Tìm giá trị nhỏ nhât của biểu thức:

$A=14\left(a^{2}+b^{2}+c^{2}\right)+\frac{a b+b c+c a}{a^{2} b+b^{2} c+c^{2} a}$

Lời giải.

Cách 1:

$\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)=a^{3}+b^{3}+c^{3}+\left(a^{2} b+b^{2} c+c^{2} a\right)+\left(b^{2} a+a^{2} c+c^{2} b\right) $

$\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)=\left(a^{3}+a b^{2}\right)+\left(b^{3}+b c^{2}\right)+\left(c^{3}+c a^{2}\right)+\left(a^{2} b+b^{2} c+c^{2} a\right)$

Áp dụng bất đẳng thức Cauchy và do $a+b+c=1$, ta có:

$\left(a^{2}+b^{2}+c^{2}\right) \geq 2 a^{2} b+2 b^{2} c+2 c^{2} a+\left(a^{2} b+b^{2} c+c^{2} a\right)=3\left(a^{2} b+b^{2} c+c^{2} a\right)$

Mặt khác: $a b+b c+c a=\frac{1-\left(a^{2}+b^{2}+c^{2}\right)}{2}$

Từ đó ta có: $F \geq 14\left(a^{2}+b^{2}+c^{2}\right)+\frac{3-3\left(a^{2}+b^{2}+c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)}$

Hay: $F \geq 14\left(a^{2}+b^{2}+c^{2}\right)+\frac{3}{2\left(a^{2}+b^{2}+c^{2}\right)}-\frac{3}{2}$

Áp dụng bất đẳng thức Cauchy, ta có:

$27\left(a^{2}+b^{2}+c^{2}\right)+\frac{3}{\left(a^{2}+b^{2}+c^{2}\right)} \geq 2 \sqrt{27\left(a^{2}+b^{2}+c^{2}\right) \cdot \frac{3}{\left(a^{2}+b^{2}+c^{2}\right)}}=18 $

$a^{2}+b^{2}+c^{2} \geq \frac{1}{3}(a+b+c)^{2}=\frac{1}{3}$

Vậy: $28\left(a^{2}+b^{2}+c^{2}\right)+\frac{3}{\left(a^{2}+b^{2}+c^{2}\right)} \geq 18+\frac{1}{3}=\frac{55}{3}$

Từ đó ta có: $F \geq \frac{55}{6}-\frac{3}{2}=\frac{23}{3}$

Đẳng thức xảy ra khi: $a=b=c=\frac{1}{3}$

Cách 2:

Do $a, b, c$ dương và $a+b+c=1$ nên ta có:

$(1-c)^{2}=(a+b)^{2} \geq 4 a b \Leftrightarrow 1-2 c+c^{2} \geq 4 a b \Leftrightarrow a-2 a c+a c^{2} \geq 4 a^{2} b $

$(1-a)^{2}=(b+c)^{2} \geq 4 b c \Leftrightarrow 1-2 a+a^{2} \geq 4 b c \Leftrightarrow b-2 a b+a^{2} b \geq 4 b^{2} c $

$(1-b)^{2}=(c+a)^{2} \geq 4 c a \Leftrightarrow 1-2 b+b^{2} \geq 4 c a \Leftrightarrow c-2 b c+b^{2} c \geq 4 a c^{2}$

Hay: $a+b+c-2(a b+b c+c a) \geq 3\left(a^{2} b+b^{2} c+c^{2} a\right)$

$\Leftrightarrow 1-2(a b+b c+c a) \geq 3\left(a^{2} b+b^{2} c+c^{2} a\right)$

Vậy: $F \geq 14[1-2(a b+b c+c a)]+\frac{3(a b+b c+c a)}{1-2(a b+b c+c a)}$

Đạt: $t=1-2(a b+b c+c a), t \geq \frac{1}{3}$

Áp dụng bất đẳng thức Cauchy ta có:

$F \geq 14 t+\frac{\frac{3}{2}(1-t)}{t}=14 t+\frac{3}{2 t}-\frac{3}{2}=\frac{1}{2} t+\frac{27}{2} t+\frac{3}{2 t}-\frac{3}{2} \geq \frac{1}{2} t+2 \sqrt{\frac{27}{2} t \cdot \frac{3}{2 t}}-\frac{3}{2}$

Vậy: $F \geq \frac{1}{2} \cdot \frac{1}{3}+9-\frac{3}{2}=\frac{23}{3}$

Đẳng thức xảy ra khi: $a=b=c=\frac{1}{3}$

Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn $(O, R)$ có $A C$ vuông góc với $B D$ tại $H$. Trên cạnh $A B$ lấy điểm $M$ sao cho $A B=3 A M$. Trên cạnh $H C$ lấy trung điểm $N$. Chứng minh rằng $M H$ vuông góc với $D N$.

Lời giải.

  • Gọi $K, L$ lần lượt là trung điểm $B M$ và $H B, P$ là giao điểm của $H M$ và $A K$.

  • Ta có $K L$ là đường trung bình của tam giác $H M B$ nên $K L$ song song $H M$. Khi đó xét tam giác $A K L$ thì $P H$ là đường trung bình nên $P$ là trung điểm của $A K$.

  • Ta có từ $A B C D$ nội tiếp suy ra $H D \cdot H B=H A \cdot A C \Rightarrow H K \cdot H D=H A \cdot H N$, do đó $A D N K$ nội tiếp.

  • Suy ra $\angle N H Q=\angle A H P=\angle H A P=\angle H D N$, suy ra $\angle H Q N=90^{\circ}$.

Bài 5. Cho đường tròn tâm $O$ và đường tròn tâm $I$ cắt nhau tại hai điểm $A$ và $B(O$ và $I$ nằm khác phía đối với đường thẳng $A B), I B$ cắt $(O)$ tại $E, O B$ cắt $(I)$ tại $F$. Qua $B$ vẽ đường thẳng $M N$ song song với $E F(M$ thuộc $(O), N$ thuộc $(I))$.

a) Chứng minh rằng $O A I E$ nội tiếp.

b) Chứng minh rằng: $A E+A F=M N$.

Lời giải.

a) Chứng minh rằng tứ giác $A O E F$ nội tiếp

Do hai đường tròn $(\mathrm{O})$ và $(\mathrm{I})$ cắt nhau tại $A$ và $B$ nên ta có: $A$ đối xứng với $B$ qua $O I$. Vậy: $\angle O A I=\angle O B I$

Ta có tam giác $\triangle O B E$ cân tại $O$ nên $\angle O B E=\angle O E B$, do $\angle O B E+\angle O B I=180^{\circ}$ nên $\angle O E B+\angle O B I=180^{\circ}$. Từ đó ta có: $\angle O E B+\angle O A I=180^{\circ}$

Vậy tứ giác $O A I E$ là tứ giác nội tiếp. Chứng minh tương tự ta có: tứ giác $O A I F$ là tứ giác nội tiếp.

$\angle O E A=\angle O I A$ (tứ giác $O A I E$ là tứ giác nội tiếp)

$\angle O I A=\angle O F A$ (tứ giác $O A I F$ là tứ giác nội tiếp)

Vậy: $\angle O E A=\angle O F A$ nên tứ giác $O A F E$ là tứ giác nội tiếp

b) Chứng minh rằng: $M N=A E+A F$

Bài toán cần chứng minh tương đương với: $A F=B N$ và $A E=B M$.

Ta chỉ cần chứng minh $A F=B N$ vì $A E=B M$ là điều tương tự.

Để chứng minh $A F=B N$. Ta chỉ cần chứng minh số đo cung $\mathrm{AF}$ bằng số đo cung $\mathrm{BN}(A F, B N$ lần lượt là dây căng cung $\mathrm{AF}$, cung $\mathrm{BN}$ trong đường tròn (I)). Hay chỉ cần chứng minh: số đo cung $\mathrm{AB}$ bằng số đo cung FN. Từ đó ta chứng minh: $\angle O F A=\angle F B N$ là bài toán được giải quyết.

Do $E F | M N$ nên ta có: $\angle O F E=\angle F B N$

Mà $\angle O F E=\angle O A E=\angle O E A=\angle O F A$ (tứ giác $A O E F$ là tứ giác nội tiếp)

Từ đó ta có: $\angle O F A=\angle F B N$ (đpcm)

Bài 6. Trên mặt phẳng cho 2013 điểm tùy ý sao cho trong ba điểm bất kì thì tồn tại 2 điểm mà khoảng cách giữa hai điểm đó luôn bé hơn 1. Chứng minh rằng tồn tại một đường tròn có bán kính bằng 1 chứa ít nhất 1007 điểm (kế cả biên).

Lời giải. Gọi $A$ là một điểm bất kì trong 2013 điểm trên. Lấy $A$ làm tâm vẽ đường tròn có bán kính bằng 1 .

Nếu 2012 điểm còn lại thuộc đường tròn $(A)$ thì bài toán được chứng minh xong. Giả tồn tại một số điểm nằm ngoài đường tròn tâm $(A)$. Lấy điểm $(B)$ bất kì trong các điểm đó và vẽ đường tròn tâm $(B)$ có bán kính bằng 1 .

Giả sử tồn tại một điểm $C$ nằm ngoài hai đường tròn $(A)$ và $(B)$ thì $A B, A C$ đều lớn hơn 1. Điều này vô lí.

Từ đó ta có tất cả các điểm đã cho đều thuộc trong hai đường tròn $(A)$ và $(B)$.

Theo nguyên lí Dirichlet sẽ tồn tại một đường tròn chứa $\frac{2012}{2}+1=1007$ điểm (đpcm).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM 2013

Bài 1. (a) Giải phương trình: $x \sqrt{2 x-2}+5 x=9$.

(b) Cho $x, y, z$ đôi một khác nhau thỏa mãn: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$. Tính giá trị biểu thực:

$P=\frac{y z}{x^{2}+2 y z}+\frac{z x}{y^{2}+2 z x}+\frac{x y}{z^{2}+2 x y}$

Bài 2. Cho phương trình $x^{2}-5 m x-4 m=0$.

(a) Định $m$ để phương trình có hai nghiệm phân biệt.

(b) Gọi $x_{1}, x_{2}$ là hai nghiệm của phương trình. Tìm $m$ để biểu thức sau đạt giá trị nhỏ nhất:

$\frac{m^{2}}{x_{1}^{2}+5 m x_{2}+12 m}+\frac{x_{2}^{2}+5 m x_{1}+12 m}{m^{2}}$

Bài 3. Cho tam giác $\triangle A B C$ có $B C$ là cạnh dài nhất. Trên $B C$ lấy hai điểm $D$ và $E$ sao cho $B D=B A, C E=C A$. Đường thẳng qua $D$ song song với $A B$ cắt $A C$ tại $M$. Đường thẳng qua $E$ song song với $A C$ cắt $A B$ tại $N$. Chứng minh rằng $A M=A N$.

Bài 4. Cho $x, y$ là hai số dương thỏa mãn: $x+y=1$. Chứng minh: $3(3 x-2)^{2}+\frac{8 x}{y} \geq$ $7 .$

Bài 5. Từ một điểm $A$ bên ngoài đường tròn $(O)$ vẽ các tiếp tuyến $A B, A C$ và cát tuyến $A E F$ (EF không đi qua $O, B$ và $C$ là các tiếp điểm). Gọi $D$ là điểm đôi xứng của $B$ qua $O . D E, D F$ lần lượt cắt $A O$ tại $M$ và $N$. Chứng minh rằng :

(a) Hai tam giác $\triangle C E F$ và $\triangle C M N$ đồng dạng.

(b) $O M=O N$.

Bài 6. Chữ số hàng đơn vị trong hệ thập phân của số $M=a^{2}+a b+b^{2}$ là $0\left(a ; b \in N^{*}\right)$.

(a) Chứng minh rằng $M$ chia hết cho 20 .

(b) Tìm chữ số hàng chục của $M$.

LỜI GIẢI

Bài 1.

a) Giải phương trình: $x \sqrt{2 x-2}+5 x=9$.

b) Cho $x, y, z$ đôi một khác nhau thỏa mãn: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$. Tính giá trị biểu thực:

$P=\frac{y z}{x^{2}+2 y z}+\frac{z x}{y^{2}+2 z x}+\frac{x y}{z^{2}+2 x y}$

Lời giải.

a) Giải phương trình: $x \sqrt{2 x-2}+5 x=9$

ĐKXĐ: $x \geq 1$. Đặt $a=\sqrt{2 x-2}$ (ĐKXĐ: $a \geq 0$ )

Phương trình đã cho tương đương với:

$a x=9-5 x=9-\frac{5}{2}\left(a^{2}+2\right)=4-\frac{5}{2} a^{2}$

Ta có hệ phương trình sau:

$\left\{\begin{array} { l }{ 5 a ^ { 2 } + 2 a x = 8 } \\{ a ^ { 2 } – 2 x = – 2 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=\frac{a^{2}+2}{2} \\x=\frac{9}{a+5}
\end{array}\right.\right.$

$\Leftrightarrow \frac{9}{a+5}=\frac{a^{2}+2}{2} \Leftrightarrow a^{3}+5 a^{2}+2 a-8=0 \Leftrightarrow(a-1)(a+2)(a+4)=0$

Kết hợp với: ĐKXĐ: $a \geq 0$. Từ đó ta tính được: $a=1 \Leftrightarrow x=\frac{3}{2}$

b) Tính giá trị biểu thức: $P=\frac{y z}{x^{2}+2 y z}+\frac{z x}{y^{2}+2 z x}+\frac{x y}{z^{2}+2 x y}$

Từ điều kiện của đề bài ta có: $x y+y z+z x=0$

Thêm vào đó: $x^{2}+2 y z=x^{2}+y z-x y-x z=(x-y)(x-z)$

Từ đó ta có:

$P=\sum_{x, y, z} \frac{y z}{x^{2}+2 y z}=\sum_{x, y, z} \frac{y z}{(x-y)(x-z)}=-\frac{y z(y-z)+x z(z-x)+x y(x-y)}{(x-y)(y-z)(z-x)}$

Vậy: $P=1$

Bài 2. Cho phương trình $x^{2}-5 m x-4 m=0$.

a) Định $m$ để phương trình có hai nghiệm phân biệt.

b) Gọi $x_{1}, x_{2}$ là hai nghiệm của phương trình. Tìm $m$ để biểu thức sau đạt giá trị nhỏ nhất:

$\frac{m^{2}}{x_{1}^{2}+5 m x_{2}+12 m}+\frac{x_{2}^{2}+5 m x_{1}+12 m}{m^{2}}$

Lời giải.

a) Định $m$ để phương trình có hai nghiệm phân biệt

ĐKXĐ đề phương trình có hai nghiệm phân biệt là:

$\Delta=(-5 m)^{2}-4(-4 m)=25 m^{2}+16 m=m(25 m+16)>0$

$\Leftrightarrow\left\{\begin{array}{l}m>0 \\ m<\frac{-16}{25}\end{array}\right.$

b) Tìm $m$ để biếu thức sau đạt giá trị nhỏ nhất:

$P=\frac{m^{2}}{x_{1}^{2}+5 m x_{2}+12 m}+\frac{x_{2}^{2}+5 m x_{1}+12 m}{m^{2}}$

Do $x_{1}, x_{2}$ là hai nghiệm của phương trình nên ta có: $\left\{\begin{array}{l}x_{1}^{2}=5 m x_{1}+4 m \\ x_{2}^{2}=5 m x_{2}+4 m\end{array}\right.$

Do phương trình đã cho có hai nghiệm phân biệt nên: $25 m^{2}+16 m>0$. Từ đó áp dụng bất đẳng thức Cauchy, ta có:

$P=\frac{m^{2}}{x_{1}^{2}+5 m x_{2}+12 m}+\frac{x_{2}^{2}+5 m x_{1}+12 m}{m^{2}}$

$P=\frac{m^{2}}{25 m^{2}+16 m}+\frac{25 m^{2}+16 m}{m^{2}} \geq 2$

Đẳng thức xảy ra khi và chỉ khi: $m^{2}=25 m^{2}+16 m \Leftrightarrow m=\frac{-2}{3}$

Bài 3. Cho tam giác $\triangle A B C$ có $B C$ là cạnh dài nhất. Trên $B C$ lấy hai điểm $D$ và $E$ sao cho $B D=B A, C E=C A$. Đường thẳng qua $D$ song song với $A B$ cắt $A C$ tại $M$. Đường thẳng qua $E$ song song với $A C$ cắt $A B$ tại $N$. Chứng minh rằng $A M=A N$.

Lời giải.

Do $D M | A B$, áp dụng định lí Talet:

$\frac{A M}{A C}=\frac{B D}{B C} \Leftrightarrow A M=\frac{B D}{B C} \cdot A C=\frac{B A \cdot A C}{B C}$

Do $E N | A C$, áp dụng định lí Talet:

$\frac{A N}{A B}=\frac{C E}{B C} \Leftrightarrow A N=\frac{C E}{B C} \cdot A B=\frac{B A \cdot A C}{B C}$

Từ đó ta có $A M=A N$. Đây chính là điều phải chứng minh.

Bài 4. Cho $x, y$ là hai số dương thỏa mãn: $x+y=1$. Chứng minh: $3(3 x-2)^{2}+\frac{8 x}{y} \geq 7$.

Lời giải. Do $x+y=1$ nên ta có điều phải chứng minh trở thành:

$3(3 x-2)^{2}+\frac{8 x}{1-x} \geq 7$

Bằng khai triển và biến đổi tương đương ta có: $(5-3 x)(3 x-1)^{2} \geq 0$. Bất đẳng thức này hiển nhiên đúng do $x<1$

Bài 5.Từ một điểm $A$ bên ngoài đường tròn $(O)$ vẽ các tiếp tuyến $A B, A C$ và cát tuyến $A E F$ ( $E F$ không đi qua $O, B$ và $C$ là các tiếp điểm). Gọi $D$ là điểm đối xứng của $B$ qua $O$. $D E, D F$ lần lượt cắt $A O$ tại $M$ và $N$. Chứng minh rằng :

a) Hai tam giác $\triangle C E F$ và $\triangle C M N$ đồng dạng.

b) $O M=O N$.

Lời giải.
a) Chứng minh rằng $\triangle C E F \backsim \triangle C M N$
Ta có: $A N | C D$ (cùng vuông góc với $B C$ )
$\angle D F C=\angle D B C=\angle B A O=\angle C A O$
Từ đó ta có: tứ giác $C F N A$ nội tiếp
Vậy: $\angle C F E=\angle C N M$
Ta có: $A N | C D$ nên: $\angle O M E=\angle C D E$
Do tứ giác $C D F E$ nội tiếp nên: $\angle C D E=\angle C F E$
Vậy: $\angle O M E=\angle C F E$
Mà: $\angle A C E=\angle C F E$ (Tính chất tiếp tuyến)
Từ đó ta có: $\angle A C E=\angle O M E$. Vậy tứ giác $A M E C$ nội tiếp. Nên: $\angle E A M=$ $\angle E C M$

Mà: $\angle E A M=\angle F C N$ (Tứ giác $A N F C$ nội tiếp)

Vậy: $\angle E C M=\angle F C N$

Từ đó ta có: $\angle E C F=\angle M C N$

Do: $\angle C F E=\angle C N M$ và $\angle E C F=\angle M C N$ nên ta có: $\triangle C E F \sim \triangle C M N$

b) Chứng minh rằng: $O M=O N$

Từ giác $A M E C$ nội tiếp: $\angle D C M=\angle C A F$

Từ giác $C F N A$ nội tiếp: $\angle C A F=\angle C N D$

Vậy ta có: $\angle D C M=\angle C N D$ và do: $A N | C D$. Vậy $C D N M$ là hình thang cân nên: $C N=D M$ và $\angle C N M=\angle D M N$

Do $A O$ là đường trung trực của $B C$ nên ta có: $\angle C N M=\angle B N M$ và $N C=N B$

Từ đó ta có: $\angle D M N=\angle B N M$ và $D M=B N$

Hay: $D M | B N$ và $D M=B N$. Từ đó $B M D N$ là hình bình hành. Mà $O$ là trung điểm của $B D$ nên $O$ cũng là trung điểm của $M N$ hay: $O M=O N$ (đpcm)

Bài 6. Chữ số hàng đơn vị trong hệ thập phân của số $M=a^{2}+a b+b^{2}$ là $0\left(a ; b \in N^{*}\right)$.

a) Chứng minh rằng $M$ chia hết cho 20 .

b) Tìm chữ số hàng chục của $M$.

Lới giải.

a) Chứng minh rằng: $M \vdots 20$

Do chữ số hàng đơn vị của $M$ là 0 nên ta có: $M \vdots 5$ và $M \vdots 2$

Giả sử cả $a$ và $b$ đều không chia hết cho 2 . Từ đó ta có:

$\left\{\begin{array} { l }{ a \equiv 1 } \\ { b \equiv 1 }\end{array} \Rightarrow \left\{\begin{array}{l}a^{2} \equiv 1 \\ b^{2} \equiv 1 \\ a b \equiv 1\end{array} \Rightarrow a^{2}+a b+b^{2} \equiv 1 \Rightarrow M \equiv 1(\bmod 2)\right.\right.$

Điều này vô lí: từ đó ta có trong hai số $a$ và $b$ phải có một số chia hết cho 2 .

Giả sử $a \vdots$ 2. Do $M \vdots 2$ nên $b^{2} \vdots 2$. Từ đó ta có: $b \vdots 2$

Vi $a \vdots 2$ và $b \vdots 2$ nên $M \vdots 4$

Do $M \vdots 4$ và $M \vdots 5$ nên ta có: $M \vdots 20$ (đpcm)

b) Nhận xét: Một số chính phương khi chia cho 5 dư 0,1 hoặc 4 .

Ta có $5 \mid a^{2}+a b+b^{2}$, suy ra $5 \mid 4 a^{2}+4 a b+4 b^{2}$ hay $5 \mid(2 a+b)^{2}+3 b^{2}$.

Từ nhận xét trên suy ra $5|b, 5| 2 a+b \Rightarrow 5 \mid a$. Do đó $a^{2}+a b+b^{2}$ chia hết cho $25 .$

Kết hợp với câu a ta có $M$ chia hết cho 100 nên chữ số hàng chục là số 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM – NĂM 2014

Bài 1. (a) Giải phương trình: $x \sqrt{2 x-3}=3 x-4$

(b) Cho 3 số thực $x, y, z$ thỏa mãn điều kiện: $x+y+z=0 ; x y z \neq 0$. Tính giá trị biểu thức:

$P=\frac{x^{2}}{y^{2}+z^{2}-x^{2}}+\frac{y^{2}}{z^{2}+x^{2}-y^{2}}+\frac{z^{2}}{x^{2}+y^{2}-z^{2}}$

Bài 2. Giải hệ phương trình: $\left\{\begin{array}{l}x+y+\frac{1}{y}=\frac{9}{x} \\ x+y-\frac{4}{x}=\frac{4 y}{x^{2}}\end{array}\right.$

Bài 3. Cho tam giác đều $A B C$ và $M$ là một điểm bất kì trên cạnh $B C$. Gọi $D, E$ lần lượt là hình chiếu vuông góc của $M$ trên $A B$ và $A C$. Xác định vị trí của $M$ để tam giác $M D E$ có chu vi nhỏ nhất.

Bài 4. (a) Cho $x, y$ là 2 số thực khác 0 . Chứng minh rằng: $\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}} \geq \frac{x}{y}+\frac{y}{x}$

(b) Cho $a, b$ là hai số dương. Tìm giá trị nhỏ nhất của biểu thức: $P=\frac{a^{2}+3 a b+b^{2}}{\sqrt{a b}(a+b)}$

Bài 5. Từ một điểm $M$ nằm ngoài đường tròn $(\mathrm{O})$, kẻ các tiếp tuyến $M A, M B$ với $(\mathrm{O})$ $(A, B$ là các tiếp điểm $)$. Gọi $H$ là giao điểm của $A B$ với $O M, I$ là trung điểm của $M H$. Đường thẳng $A I$ cắt $(\mathrm{O})$ tại điểm $K(K$ khác $A)$.

(a) Chứng minh $H K$ vuông góc với $A I$.

(b) Tính số đo góc $\angle M K B$.

Bài 6. Tìm cặp số nguyên $(x, y)$ thỏa mãn phương trình:

$2015\left(x^{2}+y^{2}\right)-2014(2 x y+1)=25$

LỜI GIẢI

 

Bài 1.

a) Giải phương trình: $x \sqrt{2 x-3}=3 x-4$

b) Cho 3 số thực $x, y, z$ thỏa mãn điều kiện: $x+y+z=0 ; x y z \neq 0$. Tính giá trị biểu thức:

$P=\frac{x^{2}}{y^{2}+z^{2}-x^{2}}+\frac{y^{2}}{z^{2}+x^{2}-y^{2}}+\frac{z^{2}}{x^{2}+y^{2}-z^{2}}$

Lời giải.

a) Giải phương trình: $x \sqrt{2 x-3}=3 x-4 Đ \mathrm{~K} Đ: x \geq \frac{3}{2}$

Phương trình đã cho tương đương với:

$x^{2}(2 x-3)=9 x^{2}-24 x+16 \Leftrightarrow 2 x^{3}-12 x^{2}+24 x-16=0 $

$\Leftrightarrow x^{3}-6 x^{2}+12 x-8=0 \Leftrightarrow(x-2)^{3}=0 \Leftrightarrow x=2$

Ta thấy $x=2$ thỏa yêu cầu bài toán, vậy $x=2$ là nghiệm duy nhất của phương trình.

b) Cho 3 số thực $x, y, z$ thỏa mãn điều kiện: $x+y+z=0 ; x y z \neq 0$. Tính giá trị biểu thức:

$P=\frac{x^{2}}{y^{2}+z^{2}-x^{2}}+\frac{y^{2}}{z^{2}+x^{2}-y^{2}}+\frac{z^{2}}{x^{2}+y^{2}-z^{2}}$

Ta có:

$y+z=-x \Leftrightarrow y^{2}+2 y z+z^{2}=x^{2} \Leftrightarrow y^{2}+z^{2}-x^{2}=-2 y z $

$x+z=-y \Leftrightarrow x^{2}+2 x z+z^{2}=y^{2} \Leftrightarrow x^{2}+z^{2}-y^{2}=-2 x z $

$y+x=-z \Leftrightarrow y^{2}+2 y x+x^{2}=z^{2} \Leftrightarrow y^{2}+x^{2}-z^{2}=-2 y x$

Từ đó ta tính được $P$ :

$P=\frac{x^{2}}{-2 y z}+\frac{y^{2}}{-2 x z}+\frac{z^{2}}{-2 y x}=\frac{x^{3}+y^{3}+z^{3}}{-2 x y z}$

Chú ý:

$x^{3}+y^{3}+z^{3}-3 x y z=0 \Rightarrow x^{3}+y^{3}+z^{3}=3 x y z$

Vậy: $P=\frac{x^{3}+y^{3}+z^{3}}{-2 x y z}=\frac{3 x y z}{-2 x y z}=\frac{-3}{2}$

Bài 2. Giải hệ phương trình: $\left\{\begin{array}{l}x+y+\frac{1}{y}=\frac{9}{x} \\ x+y-\frac{4}{x}=\frac{4 y}{x^{2}}\end{array}\right.$

Lời giải. ĐKXĐ: $x, y \neq 0$

Lấy phương trình (1) trừ phương trình (2) ta thu được:

$\frac{1}{y}+\frac{4}{x}=\frac{9}{x}-\frac{4 y}{x^{2}}  \Leftrightarrow \frac{1}{y}=\frac{5}{x}-\frac{4 y}{x^{2}} \Leftrightarrow x^{2}=5 x y-4 y^{2} \Leftrightarrow x^{2}-5 x y+4 y^{2}=0 $

$\Leftrightarrow(x-4 y)(x-y)=0 \Leftrightarrow\left[\begin{array}{l}x=4 y \\ x=y\end{array}\right.$

Trường hợp 1: $x=4 y$. Thay vào phương trình (1) ta có:

$5 y+\frac{1}{y}=\frac{9}{4 y} \Leftrightarrow 5 y=\frac{5}{4 y} \Leftrightarrow\left[\begin{array} { l }{ y = \frac { 1 } { 2 } } \\ { y = \frac { – 1 } { 2 } }\end{array} \Leftrightarrow \left[\begin{array}{l}x=2, y=\frac{1}{2} \\ x=-2, y=\frac{-1}{2}\end{array}\right.\right.$

Trường hợp $2: x=y$. Thay vào phương trình (1) ta có:

$2 y+\frac{1}{y}=\frac{9}{y} \Leftrightarrow 2 y=\frac{8}{y} \Leftrightarrow\left[\begin{array}{l}y=2 \\ y=-2\end{array} \Leftrightarrow\left[\begin{array}{l}x=2, y=2 \\ x=-2, y=-2\end{array}\right.\right.$

Vậy tập nghiệm của phương trình là: $(x, y)=(2,2),(-2,-2),\left(2, \frac{1}{2}\right),\left(-2, \frac{-1}{2}\right)$

Bài 3. Cho tam giác đều $A B C$ và $M$ là một điểm bất kì trên cạnh $B C$. Gọi $D, E$ lần lượt là hình chiếu vuông góc của $M$ trên $A B$ và $A C$. Xác định vị trí của $M$ để tam giác MDE có chu vi nhỏ nhất.

Lời giải.

  • Gọi độ dài cạnh tam giác đều là $a$.

Ta có $M D \cdot A B+M E \cdot A C=2 S_{A M D}+2 S_{A M C}=2 S_{A B C}$. Hay $(M D+M E)=A H \cdot a$, suy ra $M D+M E=A H$ không đổi.

  • Ta có $D, E$ thuộc đường tròn đường kính $A M$. Vẽ đường kính $D F$, ta có $\angle D F E=$ $\angle D A E=60^{\circ}$.

Suy ra $D E=D F \sin D F E=A M \sin 60^{\circ}$.

$D E$ nhỏ nhất khi và chỉ khi $A M$ nhỏ nhất, khi và chỉ khi $M$ trùng với $H$ trung điểm $B C$.

  • Vậy chu vi tam giác $M D E$ nhỏ nhất khi và chỉ khi $M$ là trung điểm $B C$.

Bài 4.

a) Cho $x, y$ là 2 số thực khác 0 . Chứng minh rằng: $\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}} \geq \frac{x}{y}+\frac{y}{x}$

b) Cho $a, b$ là hai số dương. Tìm giá trị nhỏ nhất của biểu thức:

$P=\frac{a^{2}+3 a b+b^{2}}{\sqrt{a b}(a+b)}$

Lời giải.

a) Bằng biến đổi tương đương ta có:

$\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}-\left(\frac{x}{y}+\frac{y}{x}\right) \geq 0 \Leftrightarrow \frac{(x-y)^{2}\left(\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} y^{2}\right)}{x^{2} y^{2}} \geq 0$

Bất đẳng thức cuối luôn đúng. Dấu bằng trong bất đẳng thức xảy ra khi $x=y$.

b) Cách 1: Với $a, b$ là hai số dương. Ta có:

$P=\frac{a^{2}+3 a b+b^{2}}{\sqrt{a b}(a+b)}=\frac{(a+b)^{2}+a b}{\sqrt{a b}(a+b)}=\frac{\frac{1}{4}(a+b)^{2}+a b+\frac{3}{4}(a+b)^{2}}{\sqrt{a b}(a+b)} $

$P=\frac{\frac{1}{4}(a+b)^{2}+a b}{\sqrt{a b}(a+b)}+\frac{\frac{3}{4}(a+b)}{\sqrt{a b}}$

Áp dụng bất đẳng thức Cauchy:

$P=\frac{\frac{1}{4}(a+b)^{2}+a b}{\sqrt{a b}(a+b)}+\frac{\frac{3}{4}(a+b)}{\sqrt{a b}} \geq \frac{2 \sqrt{\frac{1}{4} a b(a+b)^{2}}}{\sqrt{a b}(a+b)}+\frac{\frac{3}{4} \cdot 2 \sqrt{a b}}{\sqrt{a b}}=1+\frac{3}{2}=\frac{5}{2}$

Dấu bằng trong bất đẳng thức xảy ra khi $a=b$

Cách 2: Ta có:

$P=\frac{a^{2}+3 a b+b^{2}}{\sqrt{a b}(a+b)}=\frac{(a+b)^{2}+a b}{\sqrt{a b}(a+b)}=\frac{a+b}{\sqrt{a b}}+\frac{\sqrt{a b}}{a+b}=\frac{3}{4} \cdot \frac{a+b}{\sqrt{a b}}+\frac{1}{4} \cdot \frac{a+b}{\sqrt{a b}}+\frac{\sqrt{a b}}{a+b}$

Áp dụng bất đẳng thức Cauchy:

$P \geq \frac{3}{4} \cdot 2+2 \sqrt{\frac{1}{4} \cdot \frac{a+b}{\sqrt{a b}} \cdot \frac{\sqrt{a b}}{a+b}}=\frac{3}{2}+1=\frac{5}{2}$

Dấu bằng trong bất đẳng thức xảy ra khi $a=b$

Bài 5.Từ một điểm $M$ nằm ngoài đường tròn $(\mathrm{O})$, kẻ các tiếp tuyến $M A, M B$ với $(\mathrm{O})$ $(A, B$ là các tiếp điểm $)$. Gọi $H$ là giao điểm của $A B$ với $O M, I$ là trung điểm của $M H$. Đường thẳng $A I$ cắt $(\mathrm{O})$ tại điểm $K(K$ khác $A)$.

a) Chứng minh $H K$ vuông góc với $A I$.

b) Tính số đo góc $\angle M K B$.

Lời giải.

a) Vẽ đường kính $A C, C H$ cắt $A I$ tại $K^{\prime}$.

Dễ thấy hai tam giác $A B C$ và $M H A$ đồng dạng, từ đó suy ra $A C H$ và $M A I$ đồng dạng.

Suy ra $\angle A C H=\angle M A I$, mà $\angle M A I+\angle I A C=90^{\circ}$, suy ra $\angle A C H+\angle I A C=$ $90^{\circ}$.

Do đó $\angle A K^{\prime} C=90^{\circ}$, suy ra $K^{\prime}$ thuộc $(O)$, từ đó $K^{\prime} \equiv K$. Ta có điều cần chứng minh.

b) Ta có $I K \cdot I A=I H^{2}=I M^{2}$.

Suy ra $\triangle I K M \backsim \triangle I M A$, do đó $\angle I M K=\angle I A M=\angle K B H$.

Từ đó tứ giác $B H K M$ nội tiếp, suy ra $\angle B K M=\angle B H M=90^{\circ}$.

Bài 6. Tìm cặp số nguyên $(x, y)$ thỏa mãn phương trình:

$2015\left(x^{2}+y^{2}\right)-2014(2 x y+1)=25$

Lời giải.

Ta có: $2015\left(x^{2}+y^{2}\right)-2014(2 x y+1)=25$

$\Leftrightarrow 2014(x-y)^{2}+x^{2}+y^{2}=2039$

Vậy: $2014(x-y)^{2} \leq 2039 \Leftrightarrow|x-y| \leq 1$

  • Trường hợp 1: $x-y=0$. Ta có: $x^{2}+y^{2}=2039$

Phương trình này không có nghiệm nguyên vì 2039 không chia hết cho $2 .$

  • Trường hợp 2: $x-y=1$. Ta có: $y^{2}+y-12=0$

Phương trình này có nghiệm $y=3$ hay $y=-4$

Từ đó ta có hai cặp nghiệm của phương trình là: $(x, y)={(4 ; 3),(-3 ;-4)}$

  • Trường hợp 3: $x-y=-1$. Ta có: $y^{2}-y-12=0$

Phương trình này có nghiệm $y=-3$ hay $y=4$

Từ đó ta có hai cặp nghiệm của phương trình là: $(x, y)={(-4 ;-3),(3 ; 4)}$

Vậy tập nghiệm của phương trình là: $(x, y)={(4 ; 3),(-3 ;-4),(3 ; 4),(-4 ;-3)}$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM – NĂM 2015

Bài 1. Cho hai số thực $a, b$ thỏa điều kiện $a b=1, a+b \neq 0$. Tính giá trị của biểu thức:

$P=\frac{1}{(a+b)^{3}}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}\right)+\frac{3}{(a+b)^{4}}\left(\frac{1}{a^{2}+b^{2}}\right)+\frac{6}{(a+b)^{5}}\left(\frac{1}{a}+\frac{1}{b}\right)$

Bài 2. (a) Giải phương trình: $2 x^{2}+x+3=3 x \sqrt{x+3}$

(b) Chứng minh rằng: $a b c\left(a^{3}-b^{3}\right)\left(b^{3}-c^{3}\right)\left(c^{3}-a^{3}\right)$ chia hết cho 7 với mọi số nguyên $a, b, c$

Bài 3. Cho hình bình hành $A B C D$. Đường thẳng qua $C$ vuông góc với $C D$ cắt đường thẳng qua $A$ vuông góc với $B D$ tại $F$. Đường thẳng qua $B$ vuông góc với $A B$ cắt đường trung trực của $A C$ tại $E$. Hai đường thẳng $B C$ và $E F$ cắt nhau tại $K$. Tính tỉ số: $\frac{K E}{K F}$.

Bài 4. Cho hai số dương $a, b$ thỏa mãn điều kiện: $a+b \leq 1$. Chứng minh rằng: $a^{2}-$ $\frac{3}{4 a}-\frac{a}{b} \leq-\frac{9}{4}$

Bài 5. Cho tam giác $\triangle A B C$ có ba góc nhọn nội tiếp đường tròn $(\mathrm{O})$. Gọi $M$ là trung điểm của cạnh $B C$ và $N$ là điểm đối xứng của $M$ qua $O$. Đường thẳng qua $A$ vuông góc với $A N$ cắt đường thẳng qua $B$ vuông góc với $B C$ tại $D$. Kẻ đường kính $A E$.

(a) Chứng minh rằng: $B A \cdot B C=2 B D \cdot B E$

(b) $C D$ đi qua trung điểm của đường cao $A H$ của tam giác $\triangle A B C$.

Bài 6. Mười vận động viên tham gia cuộc thi đấu quần vợt. Cứ hai người trong họ chơi với nhau đúng một trận. Người thứ nhất thắng $x_{1}$ trận và thua $y_{1}$ trận, người thứ hai thắng $x_{2}$ và thua $y_{2}$ trận,… người thứ mười thắng $x_{10}$ trận và thua $y_{10}$. Biết rằng trong một trận đấu quần vợt không có kết quả hòa. Chứng minh rằng:

$x_{1}^{2}+x_{2}^{2}+\ldots+x_{10}^{2}=y_{1}^{2}+y_{2}^{2}+\ldots+y_{10}^{2}$

 

LỜI GIẢI

 

Bài 1. Cho hai số thực $a, b$ thỏa điều kiện $a b=1, a+b \neq 0$. Tính giá trị của biểu thức:

$P=\frac{1}{(a+b)^{3}}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}\right)+\frac{3}{(a+b)^{4}}\left(\frac{1}{a^{2}+b^{2}}\right)+\frac{6}{(a+b)^{5}}\left(\frac{1}{a}+\frac{1}{b}\right)$

Lời giải. Ta có: $a b=1$ và $a+b \neq 0$

$P=\frac{1}{(a+b)^{3}}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}\right)+\frac{3}{(a+b)^{4}}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)+\frac{6}{(a+b)^{5}}\left(\frac{1}{a}+\frac{1}{b}\right)$ $=\frac{1}{(a+b)^{3}}\left(\frac{a^{3} b^{3}}{a^{3}}+\frac{a^{3} b^{3}}{b^{3}}\right)+\frac{3}{(a+b)^{4}}\left(\frac{a^{2} b^{2}}{a^{2}}+\frac{a^{2} b^{2}}{b^{2}}\right)+\frac{6}{(a+b)^{5}}\left(\frac{a b}{a}+\frac{a b}{b}\right)$ $=\frac{1}{(a+b)^{3}}\left(a^{3}+b^{3}\right)+\frac{3}{(a+b)^{4}}\left(a^{2}+b^{2}\right)+\frac{6}{(a+b)^{5}}(a+b)$ $=\frac{a^{2}-a b+b^{2}}{(a+b)^{2}}+\frac{3(a+b)^{2}-6}{(a+b)^{4}}+\frac{6}{(a+b)^{4}}$ $=\frac{a^{2}-a b+b^{2}}{(a+b)^{2}}+\frac{3}{(a+b)^{2}}=\frac{(a+b)^{2}}{(a+b)^{2}}$

Vậy P=1

Bài 2.

a) Giải phương trình: $2 x^{2}+x+3=3 x \sqrt{x+3}$

b) Chứng minh rằng: $a b c\left(a^{3}-b^{3}\right)\left(b^{3}-c^{3}\right)\left(c^{3}-a^{3}\right)$ chia hết cho 7 với mọi số nguyên $a, b, c$

Lời giải.

a) Điều kiện xác định: $x \geq-3$

$Ta có:  2 x^{2}+x+3=3 x \sqrt{x+3} $

$\Leftrightarrow 2 x^{2}-2 x \sqrt{x+3}-x \sqrt{x+3}+x+3=0 $

$\Leftrightarrow(x-\sqrt{x+3})(2 x-\sqrt{x+3})=0 $

$\Leftrightarrow\left[\begin{array} { l }{ x = \sqrt { x + 3 } ( x \geq 0 ) } \\ { 2 x = \sqrt { x + 3 } ( x \geq 0 ) }\end{array} \Leftrightarrow \left[\begin{array}{l}x^{2}-x-3=0(x \geq 0) \\ 4 x^{2}-x-3=0(x \geq 0)\end{array}\right.\right. $

$\Leftrightarrow\left[\begin{array}{l}x=\frac{1+\sqrt{13}}{2} \\ x=1\end{array}\right.$

b) Ta áp dụng bổ đề sau: Lập phương một số nguyên bất kì khi chia cho 7 đều chỉ có số dư là: $0,1,-1$.

Chứng minh tính chất này ta chỉ cần lập bảng số dư.

Nếu một trong ba số $a, b, c$ chia hết cho 7 , ta có điều cần chứng minh.

Nếu $a, b, c$ không có số nào chia hết cho 7 thì $a^{3}, b^{3}, c^{3}$ chia 7 dư $1,-1$, do đó theo nguyên lý Dirichlet thì có 2 số có hiệu chia hết cho 3, do đó ít nhất một trong các số $a^{3}-b^{3}, b^{3}-c^{3}, c^{3}-a^{3}$ chia hết cho 7 . Từ đó ta có điều cần chứng minh.

Bài 3. Cho hình bình hành $A B C D$. Đường thẳng qua $C$ vuông góc với $C D$ cắt đường thẳng qua $A$ vuông góc với $B D$ tại $F$. Đường thẳng qua $B$ vuông góc với $A B$ cắt đường trung trực của $A C$ tại $E$. Hai đường thẳng $B C$ và $E F$ cắt nhau tại $K$. Tính tỉ số: $\frac{K E}{K F}$.

Lời giải.

Gọi $M$ là giao điểm của $A F$ và $B D$ và $J$ là giao điểm của $A B$ và $O E$.

Ta có các tứ giác $A B E O, C D M F$ nội tiếp. Khi đó $\angle J E A=\angle J B O=180^{\circ}-\angle A B O=$ $180^{\circ}-\angle B D C=\angle A F C$

Và $\angle E J A=90^{\circ}-\angle J A O=\angle A C F$.

Khi đó $\triangle A J E \backsim \triangle A F C \Rightarrow \frac{A J}{A C}=\frac{J E}{C F} \Rightarrow \frac{A C}{C F}=\frac{A J}{J E}$. (1)

Mặt khác $\triangle A J O \backsim \triangle E J B \Rightarrow \frac{A J}{J E}=\frac{A O}{B E}$. (2)

Từ (1) và (2) ta có $\frac{A C}{C F}=\frac{A O}{B E} \Rightarrow \frac{B E}{C F}=\frac{A O}{A C}=\frac{1}{2}$.

Mặt khác $\frac{K E}{K F}=\frac{B E}{C F}=\frac{1}{2}$.

Bài 4. Cho hai số dương $a, b$ thỏa mãn điều kiện: $a+b \leq 1$. Chứng minh rằng: $a^{2}-$ $\frac{3}{4 a}-\frac{a}{b} \leq-\frac{9}{4}$

Lời giải. Do $a>0, b>0$ và $a+b \leq 1$. Ta chứng minh: $a^{2}-\frac{3}{4} a-\frac{a}{1-a} \leq-\frac{9}{4}$

$\Leftrightarrow 4 a^{4}-4 a^{3}+13 a^{2}-12 a+3 \geq 0 $

$\Leftrightarrow(2 a-1)^{2}\left(a^{2}+3\right) \geq 0 ${ (luôn đúng)

Dấu bằng trong bất đẳng thức này xảy ra khi: $a=b=\frac{1}{2}$

Bài 5. Cho tam giác $\triangle A B C$ có ba góc nhọn nội tiếp đường tròn $(\mathrm{O})$. Gọi $M$ là trung điểm của cạnh $B C$ và $N$ là điểm đối xứng của $M$ qua $O$. Đường thẳng qua $A$ vuông góc với $A N$ cắt đường thẳng qua $B$ vuông góc với $B C$ tại $D$. Kẻ đường kính $A E$.

a) Chứng minh rằng: $B A \cdot B C=2 B D \cdot B E$

b) $C D$ đi qua trung điểm của đường cao $A H$ của tam giác $\triangle A B C$.

Lời giải.

a) Chứng minh rằng: $B A \cdot B C=2 B D \cdot B E$

Điều này tương đương với: $B A . B M=B D . B E$

Xét hai tam giác $\triangle B M E$ và tam giác $\triangle B D A$ ta có:

$\angle D B A=\angle M B E$ (cùng phụ với góc $\angle A B C$ ) (1)

$\angle D A B+\angle B A E+\angle O A N=90^{\circ}$

Do $\triangle A O N=\triangle E O M$ nên $\angle O A N=\angle O E M$

Từ đó ta có: $\angle D A B+\angle B A E+\angle O E M=90^{\circ}$

Do $A E$ là đường kính của đường tròn $(O)$. Nên $\triangle A B E$ vuông tại $B$.

Từ đó ta có: $\angle B A E+\angle O E M+\angle B E M=90^{\circ}$

Vậy: $\angle D A B=\angle B E M$ (2)

Từ (1) và (2) ta có $\triangle B M E \backsim \triangle B D A$

Vậy: $\frac{B M}{B D}=\frac{B E}{B A}=\frac{M E}{D A}$ (đpcm)

b) Chứng minh rằng: $C D$ đi qua trung điểm $I$ của $A H$ Gọi $F$ là giao điểm của $B D$ và $C A$

Từ đó điều phải chứng minh tương đương với chứng minh rằng $D$ là trung điểm của $B F$. Mà $M$ là trung điểm của $B C$ như vậy ta chỉ cần chứng minh được: $M D | A C$

Xét hai tam giác vuông $\triangle B D M$ và tam giác $\triangle B A E$ ta có: $\frac{B D}{B M}=\frac{B A}{B E}$ Vậy: $\triangle B D M \backsim \triangle B A E$

Từ đó ta có: $\angle B M D=\angle B E A$

Mà: $\angle B E A=\angle B C A$ (cùng chắn cung $A B$ của đường tròn $(O)$ )

Vậy: $\angle B M D=\angle B C A$

Từ đó ta có: $M D | A C$. Đây cũng chính là điều phải chứng minh.

Bài 6. Mười vận động viên tham gia cuộc thi đấu quần vợt. Cứ hai người trong họ chơi với nhau đúng một trận. Người thứ nhất thắng $x_{1}$ trận và thua $y_{1}$ trận, người thứ hai thắng $x_{2}$ và thua $y_{2}$ trận,… người thứ mười thắng $x_{10}$ trận và thua $y_{10}$. Biết rằng trong một trận đấu quần vợt không có kết quả hòa. Chứng minh rằng:

$x_{1}^{2}+x_{2}^{2}+\ldots+x_{10}^{2}=y_{1}^{2}+y_{2}^{2}+\ldots+y_{10}^{2}$

Lời giải. Do trong một trận đấu chỉ có thắng hoặc thua nên tổng số trận thằng phải bằng với tổng số trận thua. Từ đó ta có:

$x_{1}+\ldots \ldots . .+x_{10}=y_{1}+\ldots \ldots . .+y_{10}$

Ta có tổng cộng là 45 trận $\left(\frac{10.9}{2}\right)$ nên tổng sổ trận thắng bằng tổng số trận thua bằng 45 trận.

$x_{1}+\ldots \ldots . .+x_{10}=y_{1}+\ldots \ldots . .+y_{10}=45$

Mỗi người sẽ thi đấu với 9 người còn lại nên:

$x_{i}+y_{i}=9 \Leftrightarrow x_{i}=9-y_{i} \Leftrightarrow x_{i}^{2}=81-18 y_{i}+y_{i}^{2}$

Từ đó ta có:

$\sum_{i=1}^{10} x_{i}^{2}=810-18 \sum_{i=1}^{10} y_{i}+\sum_{i=1}^{10} y_{i}^{2}=810-18.45+\sum_{i=1}^{10} y_{i}^{2}=\sum_{i=1}^{10} y_{i}^{2}$

Đây chính là điều phải chứng minh

Bài toán này cũng có thể tổng quát lên cho trường hợp $n$ người, phần này dành cho các em tự chứng minh.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2020

Bài 1. Cho ba số dương $a, b, c$ thỏa mãn điều kiện $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2020$ Tính giá trị của biểu thức $P=\left(\frac{a^{2}}{b+c}+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b}\right):(a+b+c)$

Bài 2. (a) Giải phương trình: $\sqrt{2 x^{2}+x+9}+\sqrt{2 x^{2}-x+1}=x+4$

(b) Giải hệ phương trình: $\left\{\begin{array}{l}y^{2}-2 x y=8 x^{2}-6 x+1 \\ y^{2}=x^{3}+8 x^{2}-x+1\end{array}\right.$

Bài 3. Cho tam giác nhọn $A B C(A B<B C<C A)$ nội tiếp đường tròn $(O)$. Từ $A$ kẻ đường thẳng song song với $B C$ cắt $(O)$ tại $A_{1}$. Từ $B$ kẻ đường thẳng song song với $A C$ cắt $(O)$ tại $B_{1}$. Từ $C$ kẻ đường thẳng song song với $A B$ cắt $(O)$ tại $C_{1}$. Chứng minh rằng các đường thẳng qua $A_{1}, B_{1}, C_{1}$ lần lượt vuông góc với $B C$, $C A, A B$ đồng quy.

Bài 4. (a) Cho 2 số thực $a, b$. Chứng minh rằng: $\frac{a^{2}+b^{2}}{2} \geq a b+\frac{(a-b)^{2}}{a^{2}+b^{2}+2}$

(b) Cho hai số dương $a, b$ thỏa mãn điều kiện $a+b \leq 3$

Tìm giá trị nhỏ nhất của biểu thức: $Q=b-a+\frac{20}{a}+\frac{7}{b}$.

Bài 5. Đường tròn $(I)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, B C, C A$ lần lượt tại $D, E, F$. Kẻ đường kính $E J$ của đường tròn $(I)$. Gọi $d$ là đường thẳng qua $A$ song song với $B C$. Đường thẳng $J D$ cắt $d, B C$ lần lượt tại $L, H$.

(a) Chứng minh: $E, F, L$ thẳng hàng.

(b) $J A, J F$ cắt $B C$ lần lượt tại $M, K$. Chứng minh: $M H=M K$.

Bài 6. Tìm tất cả các số nguyên dương $x, y$ thỏa mãn phương trình: $3^{x}-y^{3}=1$

 

LỜI GIẢI

 

Bài 1. Cho ba số dương $a, b, c$ thỏa mãn điều kiện $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2020$ Tính giá trị của biểu thức $P=\left(\frac{a^{2}}{b+c}+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b}\right):(a+b+c)$

Lời giải.

Ta có: $\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)(a+b+c)=2020(a+b+c)$

$\Leftrightarrow \frac{a^{2}}{b+c}+a+b+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b}+c=2020(a+b+c)$ $\Leftrightarrow \frac{a^{2}}{b+c}+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b}=2019(a+b+c)$ $\Leftrightarrow\left(\frac{a^{2}}{b+c}+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b}\right):(a+b+c)=2019$ Vạy $P=2019 .$

Bài 2.

a) Giải phương trình: $\sqrt{2 x^{2}+x+9}+\sqrt{2 x^{2}-x+1}=x+4$

b) Giải hệ phương trình: $\left\{\begin{array}{l}y^{2}-2 x y=8 x^{2}-6 x+1 \\ y^{2}=x^{3}+8 x^{2}-x+1\end{array}\right.$

Lời giải.

a) $\sqrt{2 x^{2}+x+9}+\sqrt{2 x^{2}-x+1}=x+4$ (1)

Đặt $\sqrt{2 x^{2}+x+9}=a(a>0)\left(\right.$ do $\left.2 x^{2}+x+9>0\right)$

và $\sqrt{2 x^{2}-x+1}=b(b>0)\left(\right.$ do $\left.2 x^{2}-x+1>0\right)$

Khi đó ta có: $a^{2}-b^{2}=2 x+8$

Thay vào phương trình ta có:

$a+b=\frac{a^{2}-b^{2}}{2} \Leftrightarrow 2(a+b)=(a-b)(a+b) \Leftrightarrow\left[\begin{array}{l}a+b=0 \\a-b=2\end{array}\right.$

  • TH1: $a+b=0 \Leftrightarrow\left\{\begin{array}{l}a=0 \\ b=0\end{array}\right.$ (Loại do $\left.a>0, b>0\right)$

  • TH2: $a-b=2$ khi đó ta có:

$\sqrt{2 x^{2}+x+9}-\sqrt{2 x^{2}-x+1}=2 $

$\Leftrightarrow \sqrt{2 x^{2}+x+9}=2+\sqrt{2 x^{2}-x+1} $

$\Leftrightarrow 2 x^{2}+x+9=4+2 x^{2}-x+1+4 \sqrt{2 x^{2}-x+1} $

$\Leftrightarrow x+2=2 \sqrt{2 x^{2}-x+1}$

$\Leftrightarrow\left\{\begin{array} { l }{ x \geq – 2 } \\{ x ^ { 2 } + 4 x + 4 = 8 x ^ { 2 } – 4 x + 4 }\end{array} \Leftrightarrow \left\{\begin{array}{l}x \geq-2 \\{\left[\begin{array}{l}x=0(n) \\x=\frac{8}{7}(n)\end{array}\right.}\end{array}\right.\right.$

Vậy $S=(0 ; \frac{8}{7})$

b) $\left\{\begin{array}{l}y^{2}-2 x y=8 x^{2}-6 x+1 \\ y^{2}=x^{3}+8 x^{2}-x+1(2)\end{array}\right.$

Từ $(2)$ ta có: $y^{2}=x^{3}+8 x^{2}-x+1$ thay vào $(1)$ ta có: $x^{3}+8 x^{2}-x+1-2 x y=8 x^{2}-6 x+1 \Leftrightarrow x^{3}-2 x y+5 x=0$ $\Leftrightarrow x\left(x^{2}-2 y+5\right)=0 \Leftrightarrow\left[\begin{array}{l}x=0 \\ x^{2}-2 y+5=0\end{array}\right.$

  • TH1: $x=0$ thay vào (2) ta có: $y^{2}=1 \Rightarrow y=\pm 1$

  • TH2: $x^{2}-2 y+5=0 \Leftrightarrow 2 y=x^{2}+5$ thay vào (2) ta có:

$4 y^{2}=4 x^{3}+32 x^{2}-4 x+4 $

$\Leftrightarrow\left(x^{2}+5\right)^{2}=4 x^{3}+32 x^{2}-4 x+4$

$\Leftrightarrow x^{4}-4 x^{3}-22 x^{2}+4 x+21=0 $

$\Leftrightarrow(x-7)(x+3)(x-1)(x+1)=0 $

$\Leftrightarrow\left[\begin{array}{l}x=7 \Rightarrow y=27 \\x=1 \Rightarrow y=3 \\x=-1 \Rightarrow y=3 \\x=-3 \Rightarrow y=7\end{array}\right.$

Vậy nghiệm của hệ phương trình là: $(-3 ; 7),(-1 ; 3),(0 ;-1),(0 ; 1),(1 ; 3)$, $(7 ; 27)$.

Bài 3. Cho tam giác nhọn $A B C(A B<B C<C A)$ nội tiếp đường tròn $(O)$. Từ $A$ kẻ đường thẳng song song với $B C$ cắt $(O)$ tại $A_{1}$. Từ $B$ kẻ đường thẳng song song với $A C$ cắt $(O)$ tại $B_{1}$. Từ $C$ kẻ đường thẳng song song với $A B$ cắt $(O)$ tại $C_{1}$. Chứng minh rằng các đường thẳng qua $A_{1}, B_{1}, C_{1}$ lần lượt vuông góc với $B C, C A, A B$ đồng quy.

Lời giải.

Gọi $H$ là trực tâm của tam giác $A B C$ và $O H$ cắt đường thẳng qua $A_{1}$, vuông góc với $B C$ ở điểm $K$. Gọi $M$ là trung điểm $A A_{1}$ thì $O M \perp A A_{1}$. Suy ra $O M \perp B C$.

Mặt khác, tứ giác $A H K A_{1}$ là hình thang vì $A H | A_{1} K$ nên ta có $O M$ là đường trung bình, kéo theo $O$ là trung điểm $H K$ hay nói cách khác, đường thẳng qua $A_{1}$, vuông góc với $B C$ sẽ đi qua điểm đối xứng với trực tâm $H$ của tam giác $A B C$ qua $O$.

Rõ ràng điểm này bình đẳng với $B, C$ nên hai đường qua $B_{1}, C_{1}$ lần lượt vuông góc với $C A, A B$ cũng đi qua $K$. Vì thế nên ta có các đường thẳng của đề bài đồng quy ở $K$.

Bài 4.

a) Cho 2 số thực $a, b$. Chứng minh rằng: $\frac{a^{2}+b^{2}}{2} \geq a b+\frac{(a-b)^{2}}{a^{2}+b^{2}+2}$

b) Cho hai số dương $a, b$ thỏa mãn điều kiện $a+b \leq 3$ Tìm giá trị nhỏ nhất của biểu thức: $Q=b-a+\frac{20}{a}+\frac{7}{b}$.

Lời giải.

a) Ta có: $\frac{a^{2}+b^{2}}{2} \geq a b+\frac{(a-b)^{2}}{a^{2}+b^{2}+2}$

$\Leftrightarrow \frac{(a-b)^{2}}{2} \geq \frac{(a-b)^{2}}{a^{2}+b^{2}+2} $

$\Leftrightarrow(a-b)^{2}\left(\frac{1}{2}-\frac{1}{a^{2}+b^{2}+2}\right) \geq 0 $

$\Leftrightarrow(a-b)^{2} \frac{a^{2}+b^{2}}{a^{2}+b^{2}+2} \geq 0 (đúng) $

b) Ta có: $a, b>0$ và $a \leq 3-b$

$Q=b-a+\frac{20}{a}+\frac{7}{b} \geq b-(3-b)+\frac{20}{3-b}+\frac{7}{b} $

$=(2 b-3)+\frac{20}{3-b}+\frac{7}{b} $

$=\left[5(3-b)+\frac{20}{3-b}\right]+\left(7 b+\frac{7}{b}\right)-18 $

$\geq 2 \sqrt{100}+2 \sqrt{49}-18=16$

Dấu “=” xảy ra khi và chỉ khi $a=2$ và $b=1$.

Bài 5. Đường tròn $(I)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, B C, C A$ lần lượt tại $D, E, F$. Kẻ đường kính $E J$ của đường tròn $(I)$. Gọi $d$ là đường thẳng qua $A$ song song với $B C$. Đường thẳng $J D$ cắt $d, B C$ lần lượt tại $L, H$.

a) Chứng minh: $E, F, L$ thẳng hàng.

b) $J A, J F$ cắt $B C$ lần lượt tại $M, K$. Chứng minh: $M H=M K$.

Lời giải.

a) Ta có $J E$ là đường kính của $(I)$ nên $\angle J D E=90^{\circ}$ và $\triangle H D E$ vuông ở $D$. Chú ý rằng $B D=B E$, do cùng là tiếp tuyến kẻ từ $B$ đến $(I)$ nên $B D=B H$ (tính chất trung tuyến ứng với cạnh huyền). Do đó $\triangle B H D$ cân ở $B$.

Vị $A L / / B H$ nên $\triangle A D L$ và $\triangle B D H$ đồng dạng, kéo theo $\triangle A D L$ cân ở $A$ hay $A L=A D=A F$.

Vị $A L / / C E$ nên $\angle L A F=\angle F C E$, mà $\triangle A L F, \triangle C E F$ đều cân có các góc ở đỉnh bằng nhau nên chúng đồng dạng.

Suy ra $\angle A F L=\angle C F E$, kéo theo $L, F, E$ thẳng hàng.

b) Kéo dài $J F$ cắt $d$ ở $T$ thì tương tự câu $a$, ta có $T, D, E$ thẳng hàng và $A T=A D=$ $A F=A L$.

Theo định lý Thales với $d / / B C$ thì $\frac{A L}{M H}=\frac{A J}{J M}=\frac{A T}{M K}$, mà $A T=A L$ nên $M H=M K$.

Bài 6. Tìm tất cả các số nguyên dương $x, y$ thỏa mãn phương trình: $3^{x}-y^{3}=1$

Lời giải.

Ta có: $3^{x}-y^{3}=1 \Leftrightarrow y^{3}+1=3^{x}$

$\Leftrightarrow(y+1)\left(y^{2}-y+1\right)=3^{x} \Leftrightarrow\left\{\begin{array}{l}y+1=3^{m}(1) \\ y^{2}-y+1=3^{n}(2)\end{array}\right.$

  • TH1: $m=1 \Leftrightarrow y=2 \Rightarrow x=2$ (nhận).

  • TH2: $m \geq 2 \Leftrightarrow y=3^{m}-1$

Thế vào $(2):\left(3^{m}-1\right)^{2}-\left(3^{m}-1\right)+1=3^{n}$ $\Leftrightarrow 3^{n}=3^{2 m}-3^{m+1}+3=3^{m+1}\left(3^{m-1}-1\right)+3>3^{m+1} \Rightarrow n>m+1$

Ta lại có: $3=3^{n}-3^{2 m}+3^{m+1}=3^{m+1}\left(3^{n-m-1}-3^{m-1}+1\right) \vdots 3^{m+1} \Rightarrow m=0$ (vô lí).

Vậy phương trình có nghiệm $\left\{\begin{array}{l}x=2 \\ y=2\end{array}\right.$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2018

Bài 1. (1 điểm )Cho $a, b, c$ là ba số thỏa điều kiện $a+b+c=0$ và $a^{2}=2(a+c+$ 1) $(a+b-1)$. Tính giá trị của biểu thức $A=a^{2}+b^{2}+c^{2}$.

Bài 2. (2 điểm)

(a) Giải phương trình: $4 \sqrt{x+3}=1+4 x+\frac{2}{x}$.

(b) Giải hệ phương trình: $\left\{\begin{array}{l}x^{2}+y^{3}=1 \\ x^{2}+y^{5}=x^{3}+y^{2}\end{array}\right.$

Bài 3. (2 điểm) Cho tam giác $A B C(A B<A C)$ vuông tại $A$ có đường cao $A H$. Gọi $E, F$ lần lượt là hình chiếu của $H$ lên $A B, A C$.

(a) Chứng minh rằng: $B E \sqrt{C H}+C F \sqrt{B H}=A H \sqrt{B C}$

(b) Gọi $D$ là điểm đối xứng của $B$ qua $H$ và gọi $O$ là trung điểm của $B C$. Đường thẳng đi qua $D$ và vuông với $B C$ cắt $A C$ tại $K$. Chứng minh rằng: $B K$ vuông góc với $A O$.

Bài 4. (1,5 điểm)

(a) Chứng minh rằng: $x^{4}-x+\frac{1}{2}>0$ với mọi số thực $x$.

(b) Cho $x, y$ là các số thực thỏa mãn điều kiện $x^{2}-x y+y^{2}=3$. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=x^{2}+y^{2}$.

Bài 5. (1,5 điểm) Cho tam giác $A B C$ vuông tại $A$. Gọi $M$ là trung điểm của $B C$ và $O$ là tâm đường tròn ngoại tiếp của tam giác $A M B$. Đường thẳng $A C$ cắt $(O)$ tại điểm thứ hai $K$. Đường thẳng $B K$ cắt đường tròn ngoại tam giác $A B C$ tại $L$. Các đường thẳng $C L$ và $K M$ cắt nhau tại $E$. Chứng minh rằng $E$ nằm trên đường tròn ngoại tiếp tam giác $A C M$.

Bài 6. (2 điểm) Các số nguyên dương từ 1 đến 2018 được tô màu theo nguyên tắc sau: Các số mà khi chia hết cho 24 dư 17 tô được màu xanh. Các số mà khi chia cho 40 dư 7 được tô màu đỏ. Các số còn lại được tô màu vàng.

(a) Chứng tỏ rằng không có số nào được tô cả hai màu xanh và đỏ. Hỏi có bao nhiêu số được tô màu vàng?

(b) Có bao nhiêu cặp số $(a, b)$ sao cho $a$ được tô màu xanh, $b$ được tô màu đỏ và $|a-b|$ bằng 2 ?

LỜI GIẢI

 

Bài 1. Cho $a, b, c$ là ba số thỏa điều kiện $a+b+c=0$ và $a^{2}=2(a+c+1)(a+b-1)$. Tính giá trị của biểu thức $A=a^{2}+b^{2}+c^{2}$.

Lời giải. Ta có $: a+b+c=0 \Rightarrow\left\{\begin{array}{l}a+c=-b \\ a+b=-c \\ a=-(b+c)\end{array}\right.$

Khi đó: $a^{2}=2(a+c+1)(a+b-1)=2(-b+1)(-c-1)$ $\Leftrightarrow a^{2}=2(b-1)(c+1)$

$\Leftrightarrow a^{2}=2(b c+b-c-1)$

$\Leftrightarrow(b+c)^{2}=2(b c+b-c-1)$

$\Leftrightarrow b^{2}+2 b c+c^{2}=2 b c+2 b-2 c-2$

$\Leftrightarrow(b-1)^{2}+(c+1)^{2}=0 \Leftrightarrow\left\{\begin{array}{l}b=1 \\ c=-1 .\end{array}\right.$

Suy ra $a=0$.

Vậy $A=a^{2}+b^{2}+c^{2}=0^{2}+1^{2}+(-1)^{2}=2$.

Bài 2.

a) Giải phương trình: $4 \sqrt{x+3}=1+4 x+\frac{2}{x}$.

b) Giải hệ phương trình: $\left\{\begin{array}{l}x^{2}+y^{3}=1 \\ x^{2}+y^{5}=x^{3}+y^{2}\end{array}\right.$

Lời giải.

a) Giải phương trình: $4 \sqrt{x+3}=1+4 x+\frac{2}{x}$.

Điều kiện xác định: $\left\{\begin{array}{l}x \neq 0 \\ x \geq 3 .\end{array}\right.$

Ta có: $(1) \Leftrightarrow 4 x \sqrt{x+3}=x+4 x^{2}+2 $

$\Leftrightarrow 4 x^{2}-4 x \sqrt{x+3}+(x+3)=1 $

$\Leftrightarrow(2 x-\sqrt{x+3})^{2}=1 $

$\Leftrightarrow\left[\begin{array}{l}2 x-\sqrt{x+3}=1 \\2 x-\sqrt{x+3}=-1\end{array}\right.$

– Trường hợp 1: $2 x-1=\sqrt{x+3} \Leftrightarrow\left\{\begin{array}{l}2 x-1 \geq 0 \\ (2 x-1)^{2}=x+3\end{array} \Leftrightarrow\left\{\begin{array}{l}x \geq \frac{1}{2} \\ 4 x^{2}-5 x-2=0\end{array}\right.\right.$

– Trường hợp 2: $2 x+1=\sqrt{x+3} \Leftrightarrow\left\{\begin{array}{l}2 x+1 \geq 0 \\ (2 x+1)^{2}=x+3\end{array} \Leftrightarrow\left\{\begin{array}{l}x \geq-\frac{1}{2} \\ 4 x^{2}+3 x-2=0\end{array}\right.\right.$

$\Leftrightarrow\left\{\begin{array}{l}x \geq-\frac{1}{2} \\{\left[\begin{array}{l}x=\frac{-3+\sqrt{41}}{8} \\x=\frac{-3-\sqrt{41}}{8}\end{array} \Rightarrow x=\frac{-3+\sqrt{41}}{8}\right.}\end{array}\right.$

Vậy tập nghiệm của phương trình đã cho là $\mathcal{S}=(\frac{5+\sqrt{57}}{8} ; \frac{-3+\sqrt{41}}{8})$

b) $\left\{\begin{array}{l}x^{2}+y^{3}=1 \\x^{2}+y^{5}=x^{3}+y^{2}\end{array}\right.\quad(2)$

Ta có phương trình

$(2) \Leftrightarrow x^{2}(1-x)=y^{2}\left(1-y^{3}\right)=y^{2} x^{2} \Leftrightarrow x^{2}\left(1-x-y^{2}\right)=0 \Leftrightarrow\left[\begin{array}{l}x=0 \\ 1-x-y^{2}=0\end{array}\right.$

– Trường hợp 1: Với $x=0$ thì $(1) \Leftrightarrow y^{3}=1 \Leftrightarrow y=1$.

– Trường hợp 2: Với $1-x-y^{2}=0 \Leftrightarrow x=1-y^{2}$ thì

(1) $\Leftrightarrow\left(1-y^{2}\right)^{2}+y^{3}=1 $

$\Leftrightarrow y^{4}+y^{3}-2 y^{2}=0 $

$\Leftrightarrow y^{2}\left(y^{2}+y-2\right)=0 $

$\Leftrightarrow y^{2}(y-1)(y+2)=0 $

$\Leftrightarrow\left[\begin{array}{l}y=0 \\\\y=1 \\\\y=-2 \end{array}\right. $

  • Với $y=0$ thì $x=1$.

  • Với $y=1$ thì $x=0$.

  • Với $y=-2$ thì $x=-3$.

Vậy hệ phương trình đã cho có nghiệm là: $\mathcal{S}={(0 ; 1),(1 ; 0),(-3 ;-2)}$

Bài 3. Cho tam giác $A B C(A B<A C)$ vuông tại $A$ có đường cao $A H$. Gọi $E, F$ lần lượt là hình chiếu của $H$ lên $A B, A C$.

a) Chứng minh rằng: $B E \sqrt{C H}+C F \sqrt{B H}=A H \sqrt{B C}$

b) Gọi $D$ là điểm đối xứng của $B$ qua $H$ và gọi $O$ là trung điểm của $B C$. Đường thẳng đi qua $D$ và vuông với $B C$ cắt $A C$ tại $K$. Chứng minh rằng: $B K$ vuông góc với $A O$.

Lời Giải.

a) Chứng minh rằng: $B E \sqrt{C H}+C F \sqrt{B H}=A H \sqrt{B C}$.

Ta có: $H E | A C$ (vì cùng vuông góc với $A B$ ).

Suy ra: $\frac{B E}{A B}=\frac{B H}{B C} \quad$ (1) (theo định lí Ta- lét).

Ta lại có: $H F | A B$ (Vi cùng vuông góc với $A C$ ).

Suy ra: $\frac{C F}{A C}=\frac{C H}{B C} \quad$ (2) (theo định lí Ta-lét).

Từ (1) và (2) suy ra  $\frac{B E}{A B}+\frac{C F}{A C}=\frac{B H}{B C}+\frac{C H}{B C}=1 $

$\Rightarrow B E \cdot A C+C F \cdot A B=A B \cdot A C $

$\Leftrightarrow B E \cdot \sqrt{C H \cdot B C}+C F \sqrt{B H \cdot B C}=A H \cdot B C $

Vì $ A H \cdot B C=A B \cdot A C) $

$\Leftrightarrow \sqrt{B C}(B E \sqrt{C H}+C F \sqrt{B H})=\sqrt{B C} \cdot A H \cdot \sqrt{B C} $

$\Leftrightarrow B E \sqrt{C H}+C F \sqrt{B H}=A H \sqrt{B C} . \text { (dpcm) }$

b) Ta có: $\triangle C D K \sim \triangle C A B \quad(g-g)$

Suy ra: $\frac{C D}{C K}=\frac{C A}{C B}$

Xét $\triangle A C D$ và $\triangle B C K$ có:

$C$ chung và $\frac{C D}{C K}=\frac{C A}{C B}(\mathrm{cmt})$.

Suy ra: $\triangle A C D \sim \triangle B C K \quad(c-g-c)$.

Do đó: $\widehat{K B D}=\widehat{C A D}=90^{\circ}-\widehat{B A D}=90^{\circ}-2 \widehat{B A H}=90^{\circ}-2 \widehat{B C A}($ Vi $\widehat{B A H}=$ $\widehat{B C A}$ (cùng phụ với $A B C$) (1)

Mà $\triangle A B C$ vuông tại $A$ có $O$ là trung điểm của $B C$.

Suy ra $O$ là tâm đường tròn ngoại tiếp $\triangle A B C \Rightarrow 2 \widehat{A C B}=\widehat{A O B}$ Khi đó $(1) \Leftrightarrow \widehat{K B D}=90^{\circ}-\widehat{A O B}$.

Vậy $B K \perp A O$ (đpcm).

Bài 4.

a) Chứng minh rằng: $x^{4}-x+\frac{1}{2}>0$ với mọi số thực $x$.

b) Cho $x, y$ là các số thực thỏa mãn điều kiện $x^{2}-x y+y^{2}=3$. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=x^{2}+y^{2}$.

Lời giải.

a) Ta có: $x^{4}-x+\frac{1}{2}=x^{4}-x^{2}+x^{2}-x+\frac{1}{2}=x^{4}-2 \cdot \frac{1}{2} x^{2}+\frac{1}{4}+x^{2}-2 \cdot \frac{1}{2} x+\frac{1}{4}$ $=\left(x^{2}-\frac{1}{2}\right)^{2}+\left(x-\frac{1}{2}\right)^{2} \geq 0$ với mọi số thực $x$.

Dấu bằng xảy $\mathrm{ra} \Leftrightarrow\left\{\begin{array}{l}x^{2}-\frac{1}{2}=0 \\x-\frac{1}{2}=0\end{array} \Leftrightarrow\left\{\begin{array}{l}x^{2}=\frac{1}{2} \\x=\frac{1}{2}\end{array}\right.\right.$ Hệ phương trình vô nghiệm.

Do đó đẳng thức không xảy ra, tức là $x^{4}-x+12>0$ với mọi số thực $x$.

b) Cách 1:

Ta có: $A=\frac{P}{3}=\frac{x^{2}+y^{2}}{x^{2}-x y+y^{2}}$

Xét $y=0 \Rightarrow x=\pm \sqrt{3} \Rightarrow P=3$.

Xét $y \neq 0$, khi đó $A=\frac{\left(\frac{x}{y}\right)^{2}+1}{\left(\frac{x}{y}\right)^{2}-\frac{x}{y}+1} \quad(1)$. Đặt $t=\frac{x}{y}$.

Khi đó $(1)$ trở thành $A=\frac{t^{2}+1}{t^{2}-t+1} \Leftrightarrow t^{2}(A-1)+A t+A-1=0$.

Xét $A=1 \Rightarrow P=3$.

Xét $A \neq 1 \Rightarrow \Delta=A^{2}-4(A-1)^{2}=-(3 A-2)(A-2) \geq 0 \Leftrightarrow \frac{2}{3} \leq A \leq 2 \Leftrightarrow$ $2 \leq P \leq 6$.

$\operatorname{Min} P=2$ khi $x=1 ; y=-1$ hoặc $x=-1 ; y=1$.

$\operatorname{Max} P=6$ khi $x=y=\pm \sqrt{3}$.

Cách 2: $3=\frac{1}{2}\left(2 x^{2}-2 x y+2 y^{2}\right)=\frac{1}{2}\left[3\left(x^{2}+y^{2}\right)-(x-y)^{2}\right]$.

$\Rightarrow x^{2}+y^{2} \geq 2$

$3=\frac{1}{2}\left(2 x^{2}-2 x y+2 y^{2}\right)=\frac{1}{2}\left[x^{2}+y^{2}+(x-y)^{2}\right] .$

$\Rightarrow x^{2}+y^{2} \leq 6$

Vậy $2 \leq P \leq 6$.

Bài 5. Cho tam giác $A B C$ vuông tại $A$. Gọi $M$ là trung điểm của $B C$ và $O$ là tâm đường tròn ngoại tiếp của tam giác $A M B$. Đường thẳng $A C$ cắt $(O)$ tại điểm thứ hai $K$. Đường thẳng $B K$ cắt đường tròn ngoại tam giác $A B C$ tại $L$. Các đường thẳng $C L$ và $K M$ cắt nhau tại $E$. Chứng minh rằng $E$ nằm trên đường tròn ngoại tiếp tam giác ACM.

Lời giải. Ta có: tứ giác $A K M B$ nội tiếp ( tổng hai góc đối bằng $180^{\circ}$ )

Suy ra: $\widehat{M A K}=\widehat{K B M}=\widehat{L B C}$ (cùng chắn cung $K M$ )

Ta lại có: $\widehat{L B C}=\widehat{M E C}$ (cùng phụ với $\widehat{E C B}$ ) $\Rightarrow \widehat{M A K}=\widehat{M E C}$

Suy ra tứ giác $M A E C$ nội tiếp

Vậy $E$ nằm trên đường tròn ngoại tiếp $\triangle A M C$.

Bài 6. Các số nguyên dương từ 1 đến 2018 được tô màu theo nguyên tắc sau: Các số mà khi chia hết cho 24 dư 17 tô được màu xanh. Các số mà khi chia cho 40 dư 7 được tô màu đỏ. Các số còn lại được tô màu vàng.

a) Chứng tỏ rằng không có số nào được tô cả hai màu xanh và đỏ. Hỏi có bao nhiêu số được tô màu vàng?

b) Có bao nhiêu cặp số $(a, b)$ sao cho $a$ được tô màu xanh, $b$ được tô màu đỏ và $|a-b|$ bằng 2 ?

Lời giải.

a) Theo đề bài ta có

  • Số màu xanh có dạng: $24 x+17 \quad(x \in \mathbb{N})$ với $1 \leq 24 x+17 \leq 2018 \Leftrightarrow-\frac{2}{3} \leq x \leq \frac{667}{8} \Leftrightarrow 0 \leq x \leq 83 .$

Do đó có 84 số được tô màu xanh.

  • Số màu đỏ có dạng: 40y $+7 \quad(y \in \mathbb{N})$ với $1 \leq 40 y+7 \leq 2018 \Leftrightarrow-\frac{3}{20} \leq x \leq \frac{2011}{40} \Leftrightarrow 0 \leq x \leq 50$.

Do đó có 51 số được tô màu đỏ.

  • Giả sử có số được tô cả hai màu xanh và đỏ khi đó tồn tại $x_{0} ; y_{0}$ sao cho $24 x_{0}+17=40_{0} y+7 \Leftrightarrow 24_{0} x+10=40_{0} y$

Vì $24: 4$ và $40: 4$ nên $10: 4$ (vô lí)

Vậy không có số nào được tô cả hai màu xanh và đỏ. Khi đó số lượng số được tô màu vàng là: $2018-84-51=1883$ (số).

b) Ta có $a=24 x+17$ và $b=40 y+7$ với $(x, y \in \mathbb{N})$ Xét 2 trường hợp sau:

  • Trường hợp 1: $a-b=2 \Leftrightarrow 24 x-40 y+10=2 \Leftrightarrow 3 x-5 y=-1 \Leftrightarrow 3 x=$ $5 y-1 .$

Mà $0 \leq x \leq 83 \Leftrightarrow 0 \leq 3 x \leq 249$

Suy ra $0 \leq 5 y-1 \leq 249 \Leftrightarrow \frac{1}{5} \leq y \leq 50$.

Vi $(5 y-1)$ : 3 nên $y$ chia 3 dư 2 .

Kiểm tra ta thấy $y$ nhận 17 giá trị khác nhau $\Rightarrow$ có 17 cặp $(x ; y)$.

  • Trường hợp 2: $a-b=-2 \Leftrightarrow 24 x+17-40 y-7=-2 \Leftrightarrow 24 x-40 y=$ $-12$

$\Leftrightarrow 6 x-10 y=-3$ (loại)

Vậy có 17 cặp $(a ; b)$ thỏa mãn yêu cầu bài toán.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2019

Bài 1. Cho $a, b, c$ là ba số thực thỏa mãn điều kiện $a+b+c=1$. Tính giá trị của biểu thức

$A=a^{3}+b^{3}+c^{3}-3(a b+c)(c-1)$

Bài 2. (a) Giải phương trình:

$5 \sqrt{x-1}-\sqrt{x+7}=3 x-4$

(b) Giải hệ phương trình:

$\left\{\begin{array}{l}2(x+y)-x y=4 \\x y(x+y-4)=-2\end{array}\right.$

Bài 3. Đường tròn nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $B C, C A, A B$ lần lượt tại $M, N, P$. Gọi $K$ là hình chiếu vuông góc của $M$ lên $N P$. Chứng minh rằng $K M$ là phân giác của góc $\angle B K C$.

Bài 4. Cho $x, y, z$ là các số thực thuộc đoạn $[0,2]$ thỏa mãn điều kiện $x+y+z=3$.

(a) Chứng minh rằng

$x^{2}+y^{2}+z^{2}<6$

(b) Tìm giá trị lớn nhất của biểu thức

$P=x^{3}+y^{3}+z^{3}-3 x y z$

Bài 5. Cho tam giác đều $A B C$. Gọi $M, N$ là hai điểm nằm trên cạnh $B C$ sao cho $\angle M A N=30^{\circ}(M$ nằm giữa $B$ và $N)$. Gọi $K$ là giao điểm của hai đường tròn $(A B N)$ và $(A C M)(K$ khác $A)$. Chứng minh rằng:

(a) Hai điểm $K$ và $C$ đối xứng với nhau qua $A N$.

(b) Đường thẳng $A K$ đi qua tâm đường tròn $(A M N)$.

Bài 6. Cho $m, n$ là hai số nguyên. Chứng minh rằng, nếu $7(m+n)^{2}+2 m n$ chia hết cho 225 thì $m n$ cũng chia hêt cho 225 .

 

LỜI GIẢI

 

Bài 1.Cho $a, b, c$ là ba số thực thỏa mãn điều kiện $a+b+c=1$. Tính giá trị của biểu thức

$A=a^{3}+b^{3}+c^{3}-3(a b+c)(c-1)$

Lời giải. $A=(a+b)^{3}-3 a b(a+b)+c^{3}+3(a b+c)(a+b)$

$=(a+b)^{3}+c^{3}+3(a+b) c $

$=(a+b)^{3}+c^{3}+3(a+b) c(a+b+c) $

$=(a+b+c)^{3}=1$

Bài 2.

a) Giải phương trình:

$5 \sqrt{x-1}-\sqrt{x+7}=3 x-4$

b) Giải hệ phương trình:

$\left\{\begin{array}{l}2(x+y)-x y=4 \\ x y(x+y-4)=-2\end{array}\right.$

Lời giải.

a) Điều kiện $x \geq 1.5 \sqrt{x-1}-\sqrt{x+7}=3 x-4$

$\Leftrightarrow \frac{25(x-1)-(x+7)}{5 \sqrt{x-1}+\sqrt{x+7}}=3 x-4 $

$\Leftrightarrow \frac{8(3 x-4)}{5 \sqrt{x-1}+\sqrt{x+7}}=3 x-4 $

$3 x-4=0$ (1) hoặc $5 \sqrt{x-1}+\sqrt{x+7}=8(2) $

$(1) \Leftrightarrow x=\frac{4}{3}(\text { nhận }) $

$(2)  64=25(x-1)+x+7+10 \sqrt{(x-1)(x+7)} $

$\Leftrightarrow 82-26 x=10 \sqrt{\left(x^{2}+6 x-7\right)}$

Giải ra được nghiệm $x=2$.

Vậy phương trình có hai nghiệm $S=(2, \frac{4}{3})$.

b) Từ phương trình (1) ta có $(x-2)(y-2)=0 \Leftrightarrow x=2$ hoặc $y=2$. Với $x=2$ thế vào $(2)$ ta có $y=1$. Ta có nghiệm $(x ; y)$ là $(2 ; 1)$.

Với $y=2$ thế vào $(2)$ ta có $y=1$. Ta có nghiệm $(x ; y)$ là $(1 ; 2)$.

Vậy hệ phương trình có hai nghiệm $(x ; y)$ là $(2 ; 1)$ và $(1 ; 2)$.

Bài 3. Đường tròn nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $B C, C A, A B$ lần lượt tại $M, N, P$. Gọi $K$ là hình chiếu vuông góc của $M$ lên $N P$. Chứng minh rằng $K M$ là phân giác của góc $\angle B K C$.

Lời giải. Vẽ $B X, C Y$ vuông góc với $P N$ tại $X, Y$. Ta có $\angle A P=A N$ nên tam giác $A P N$ cân.

Suy ra $\angle A P N=\angle A N P ;$ mà $\angle B P X=\angle A P N, \angle C N Y=\angle A N P$ nên $\angle B P X=\angle C N Y$. Do đó $\triangle B P X \backsim \triangle C N Y$, suy ra $\frac{B X}{C Y}=\frac{B P}{C N}$.

Mà $B P=B M, C N=C M$ suy ra $\frac{B P}{C N}=\frac{B M}{C M}=\frac{X K}{Y K}$.

Do đó $\frac{B X}{C Y}=\frac{X K}{Y K}$.

suy ra $\triangle B X K \backsim \triangle C Y K$ do đó $\angle X K B=\angle C K Y$ mà $M K \perp X Y$ nên $K M$ là phân giác $\angle B K C$.

Bài 4.Cho $x, y, z$ là các số thực thuộc đoạn $[0,2]$ thỏa mãn điều kiện $x+y+z=3$.

a) Chứng minh rằng

$x^{2}+y^{2}+z^{2}<6$

b) Tìm giá trị lớn nhất của biểu thức

$P=x^{3}+y^{3}+z^{3}-3 x y z$

Lời giải.

a) Ta có $x, y, z \in[0 ; 2]$ nên $x(2-x) \geq 0 \Leftrightarrow x^{2} \leq 2 x$, tương tự $y^{2} \leq 2 y$, $z^{2} \leq 2 z$. Suy ra $x^{2}+y^{2}+z^{2} \leq 2(x+y+z)=6$. Đẳng thức xảy ra khi $x=0$ hoặc $x=2$, $y=0$ hoặc $y=2, z=0$ hoặc $z=2$ và $x+y+z=3$ (vô nghiệm).

Vậy $x^{2}+y^{2}+z^{2}<6$.

b) $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-z y-z x\right)=3\left(x^{2}+y^{2}+\right.$ $\left.z^{2}\right)-\frac{3}{2}\left((x+y+z)^{2}-x^{2}-y^{2}-z^{2}\right)=\frac{9}{2}\left(x^{2}+y^{2}+z^{2}\right)-\frac{27}{2}$.

Không mất tính tổng quát, giả sử $z=\max x, y, z$, suy ra $z \geq 1$.

Ta có $x^{2}+y^{2}+z^{2}=(x+y)^{2}+z^{2}-2 x y=(3-z)^{2}+z^{2}-2 x y=2 z^{2}-6 z+$ $9-2 x y=2(z-1)(z-2)-2 x y+5 \leq 5$.

Đẳng thức xảy ra khi $z=2, x=0, y=1$.

Do đó $x^{3}+y^{3}+z^{3}-3 x y z \leq 9$, đẳng thức xảy ra khi $z=2, x=0, y=1$. Vậy giá trị lớn nhất của biểu thức $x^{3}+y^{3}+z^{3}-3 x y z$ là 9 .

Bài 5. Cho tam giác đều $A B C$. Gọi $M, N$ là hai điểm nằm trên cạnh $B C$ sao cho $\angle M A N=30^{\circ}(M$ nằm giữa $B$ và $N)$. Gọi $K$ là giao điểm của hai đường tròn $(A B N)$ và $(A C M)(K$ khác $A)$. Chứng minh rằng:

a) Hai điểm $K$ và $C$ đối xứng với nhau qua $A N$.

b) Đường thẳng $A K$ đi qua tâm đường tròn $(A M N)$.

Lời giải.

a) Gọi $K$ là điểm đối xứng của $C$ qua $A N$. Có

$\angle A K^{\prime} N=\angle A C N=\angle A B N$

nên tứ giác $A B K^{\prime} N$ nội tiếp. Suy ra $K^{\prime} \in(A B N)$. Có

$\angle M A K^{\prime}+\angle N A C=\angle M A K^{\prime}+\angle K^{\prime} A N=30^{\circ}$

$\angle B A M+\angle N A C=30^{\circ}$

suy ra $\angle M A K^{\prime}=\angle B A M$.

Suy ra $\triangle A B M=\triangle A K^{\prime} M(c-g-c)$ nên $\angle A K^{\prime} M=\angle A B C=\angle A C B$ ta thu được $K^{\prime} \in(A M C)$. Vậy $K \equiv K^{\prime}$ ta có điều phải chứng minh.

b) Gọi $O$ là tâm $(A M N)$.

Có $\angle M K A=\angle M C A=\angle A K N=60^{\circ}$ nên $\angle M K N=120^{\circ}$. Mà $\angle M O N=$ $2 \angle M A N=60^{\circ}$ nên tứ giác $M O N K$ nội tiếp.

Lại có $O M=O N$ nên $\angle O K N=\angle O K M=60^{\circ}$ và $\angle A K N=60^{\circ}$ nên $A, O, K$ thẳng hàng.

Bài 6. Cho $m, n$ là hai số nguyên. Chứng minh rằng, nếu $7(m+n)^{2}+2 m n$ chia hết cho 225 thì mn cũng chia hết cho 225 .

Lời giải. Đặt $A=7(m+n)^{2}+2 m n$, ta có $2 A=14(m+n)^{2}+4 m n=15(m+n)^{2}-(m-$ $n)^{2}$ chia hết cho 225 , suy ra $(m-n)^{2}$ chia hết cho 15 .

Ta có $(m-n)^{2}$ chia hết cho 3,5 suy ra $m-n$ chia hết cho 3 và 5 (do 3,5 là số nguyên tố), do đó $m-n$ chia hết cho 15 , suy ra $(m-n)^{2}$ chia hết cho 225 .

Khi đó $15(m+n)^{2}$ chia hết cho 225 , suy ra $(m+n)^{2}$ chia hết cho 15 , tương tự trên thì $(m+n)^{2}$ chia hết cho 225 .

Khi đó $4 m n=(m+n)^{2}-(m-n)^{2}$ chia hết cho 225 , mà $(4,225)=1$ nên $m n$ chia hết cho $225 .$