Tag Archives: TuyenSinh

Đề thi thử vào 10 chuyên toán năm 2023 – Star Education

Thời gian làm bài 150 phút

Đề bài.

Bài 1. (2,5 diểm)
(a) Giải phương trình $3 x^3+x+3+(8 x-3) \sqrt{2 x^2+1}=0$.
(b) Cho phương trinh $(\sqrt{x}+1)\left(x^2-3(m+1) x+2 m^2+5 m+2\right)=0(m$ là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn nghiệm này là bình phương nghiệm kia.
(c) n là số tự nhiên lớn hơn hoạc bằng 4, cho $n$ số thực $a_1 \leq a_2 \leq \cdots \leq a_n$ thỏa mãn $a_1+a_2+\cdots a_n=0$ và $\left|a_1\right|+\left|a_2\right|+\cdots\left|a_n\right|=A$. Chứng minh rằng
$$
a_n-a_1 \geq \frac{2 A}{n}
$$

Bài 2. (1,5 điểm) Xét các số $a, b, c$ khác 0 và đôi một phân biệt sao cho các phương trình sau đây có một nghiệm chung:
$$
a x^3+b x+c=0(1), b x^3+c x+a=0(2), c x^3+a x+b=0(3) .
$$
(a) Chứng minh $a+b+c=0$.
(b) Chứng minh rằng một trong các phương trình này có ba nghiệm (không nhất thiết phân biệt).

Bài 3. $(1,5$ điểm)
(a) Tìm số tự nhiên có hai chũ số sao cho nó bằng tổng bình phương các chũ số của nó.
(b) Tìm tất cả các số nguyên tố p, sao cho p có thể biểu diễn được dưới dạng $\sqrt{\frac{a^2-4}{b^2-1}}$, trong đó a,b là các số nguyên dương.

Bài 4. ( 3,5 điểm) Cho đường tròn $(O ; R)$ và dây cung $B C=R \sqrt{3}$ cố định, $A$ thay đổi trên cung lớn $B C$ sao cho tam giác $A B C$ nhọn. Các đường cao $B D, C E$ cắt nhau tại $H$. Phân giác trong góc $A$ cắt $D E$ và $B C$ lần lượt tại $K, L$.
(a) Tính $\angle B A C$ và $\angle O H C$.
(b) Chứng minh $\frac{A K}{A L}$ không đổi. Tìm vị trí của A để KL lớn nhât, tính giá trị đó theo $R$.
(c) Chứng minh đường thẳng d qua L vuông góc $O A$ tiếp xúc với một đường tròn cố định.
(d) Đường thẳng qua K vuông góc DE và đường thẳng qua L vuông góc $B C$ cắt nhau tại P. Chứng minh AP luôn đi qua một điểm cố định.

Bài 5. (1 điểm) Có 10 viên bi vàng và 10 viên bi xanh được xếp thành một hàng. Chúng minh rằng tồn tại 10 viên bi liên tiếp sao cho số viên bi vàng và xanh bằng nhau.

LỜI GIẢI

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2017

Bài 1. Cho phương trình $x^{2}-2(m+1) x+2 m^{2}+4 m+1=0(1)$ với $m$ là tham số.

(a) Tìm $m$ để phương trình (1) có hai nghiệm phân biệt $x_{1}, x_{2}$. Chứng minh rằng $\left|\frac{x_{1}+x_{2}}{2}\right|<1$.

(b) Giả sử các nghiệm $x_{1}, x_{2}$ khác 0 , chứng minh rằng $\frac{1}{\sqrt{\left|x_{1}\right|}}+\frac{1}{\sqrt{\left|x_{2}\right|}} \geq 2 \geq$ $\left|x_{1}\right|+\left|x_{2}\right|$.

Bài 2. Cho $x, y$ là hai số nguyên với $x>y>0$.

(a) Chứng minh rằng nếu $x^{3}-y^{3}$ chia hết cho 3 thì $x^{3}-y^{3}$ chia hết cho 9 .

(b) Chứng minh rằng nếu $x^{3}-y^{3}$ chia hết cho $x+y$ thì $x+y$ không là số nguyên tố.

(c) Tìm tất cả những giá trị $k$ nguyên dương sao cho $x^{k}-y^{k}$ chia hết cho 9 với mọi $x, y$ mà $x y$ không chia hết cho 3 .

Bài 3. (a) Cho ba số $a, b, c \geq-2$ thỏa mãn $a^{2}+b^{2}+c^{2}+a b c=0$. Chứng minh rằng $a=b=c=0 .$

(b) Trên mặt phẳng $O x y$, cho ba điểm $A, B, C$ phân biệt với $O A=O B=$ $O C=1$. Biết rằng $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+6 x_{A} x_{B} x_{C}=0$.

Chứng minh rằng $min(x_A, x_B, x_C)<-\frac{1}{3}$ (kí hiệu $x_{M}$ là hoành độ của điểm $M$ ).

Bài 4. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$ với tâm $O$. Gọi $D$ là điểm thay đổi trên cạnh $B C(D$ khác $B, C)$. Các đường tròn ngoại tiếp các tam giác $A B D$ và $A C D$ lần lượt cắt $A C$ và $A B$ tại $E$ và $F(E, F$ khác $A)$. Gọi $K$ là giao điểm của $B E$ và $C F$.

(a) Chứng minh rằng tứ giác $A E K F$ nội tiếp.

(b) Gọi $H$ là trực tâm $\operatorname{tam} A B C$. Chứng minh rằng nếu $A, O, D$ thẳng hàng thì $H K$ song song với $B C$.

(c) Ký hiệu $S$ là diện tích tam giác $K B C$. Chứng minh rằng khi $D$ thay đổi trên cạnh $B C$ ta luôn có $S \leq\left(\frac{B C}{2}\right)^{2} \tan \frac{\widehat{B A C}}{2}$.

(d) Gọi I là tâm đường tròn ngoại tiếp tam giác $A E F$. Chứng minh rằng $B F . B A-C E . C A=B D^{2}-C D^{2}$ và $I D$ vuông góc với $B C$.

Bài 5. Lớp $9 \mathrm{~A}$ có 6 học sinh tham gia một kỳ thi toán và nhận được 6 điểm số khác nhau là các số nguyên từ 0 đến 20. Gọi $m$ là trung bình cộng các điểm số của 6 học sinh trên. Ta nói rằng hai học sinh (trong 6 hoc sinh trên) lập thành một cặp “hoàn hảo” nếu như trung bình cộng điểm số của hai em đó lớn hơn $m$.

(a) Chứng minh rằng không thể chia 6 học sinh trên thành 3 cặp mà mỗi cặp đều “hoàn hảo”.

(b) Có thể có được nhiều nhất là bao nhiêu cặp “hoàn hảo”?

 

LỜI GIẢI

 

Bài 1. Cho phương trình $x^{2}-2(m+1) x+2 m^{2}+4 m+1=0(1)$ với $m$ là tham số.

(a) Tìm $m$ để phương trình (1) có hai nghiệm phân biệt $x_{1}, x_{2}$. Chứng $\operatorname{minh}$ rằng $\left|\frac{x_{1}+x_{2}}{2}\right|<1$.

(b) Giả sử các nghiệm $x_{1}, x_{2}$ khác 0 , chứng minh rằng $\frac{1}{\sqrt{\left|x_{1}\right|}}+\frac{1}{\sqrt{\left|x_{2}\right|}} \geq$ $2 \geq\left|x_{1}\right|+\left|x_{2}\right|$.

Lời giải.

(a) Để phương trình có hai nghiệm phân biệt thì

$\Delta=(m+1)^{2}-\left(2 m^{2}+4 m+1\right)=-m^{2}-2 m>0 $

$\Leftrightarrow m(m+2)<0 \Leftrightarrow-2<m<0$

  • Khi đó theo định lý Viete ta có $x_{1}+x_{2}=2(m+1)$.

Suy ra $\left|\frac{x_{1}+x_{2}}{2}\right|=|m+1|<1($ do $-2<m<0)$.

(b) Ta có $m^{2}+2 m+1 \geq 0 \Rightarrow 2 m^{2}+4 m+1 \geq-1$.

Và $m(m+2)<0 \Rightarrow 2(m+1)^{2} \geq 0 \Rightarrow 2 m^{2}+4 m+1<1$.

Do đó $\left|2 m^{2}+4 m+1\right| \leq 1 .\left(^{*}\right)$

  • $\left|x_{1}\right|+\left|x_{2}\right| \leq 2 \Leftrightarrow x_{1}^{2}+x_{2}^{2}+2\left|x_{1} x_{2}\right| \leq 4$

$\Leftrightarrow\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}+2\left|x_{1} x_{2}\right| \leq 4$

$\Leftrightarrow 4(m+1)^{2}-2\left(2 m^{2}+4 m+1\right)+2\left|2 m^{2}+4 m+1\right| \leq 4$

$\left.\Leftrightarrow\left|2 m^{2}+4 m+1\right| \leq 1\left(\operatorname{do}{ }^{*}\right)\right)$.

  • Ta có $\frac{1}{\sqrt{\left|x_{1}\right|}}+\frac{1}{\sqrt{\left|x_{2}\right|}} \geq 2 \sqrt{\frac{1}{\sqrt{\left|x_{1} x_{2}\right|}}} \geq 2$ (đúng vì $\left|x_{1} x_{2}\right|=\mid 2 m^{2}+$ $4 m+1 \mid \leq 1$ ).

  • Vậy $\frac{1}{\sqrt{\left|x_{1}\right|}}+\frac{1}{\sqrt{\left|x_{2}\right|}} \geq 2 \geq\left|x_{1}\right|+\left|x_{2}\right|$.

Bài 2. Cho $x, y$ là hai số nguyên với $x>y>0$.

(a) Chứng minh rằng nếu $x^{3}-y^{3}$ chia hết cho 3 thì $x^{3}-y^{3}$ chia hết cho 9 .

(b) Chứng minh rằng nếu $x^{3}-y^{3}$ chia hết cho $x+y$ thì $x+y$ không là số nguyên tố.

(c) Tìm tất cả những giá trị $k$ nguyên dương sao cho $x^{k}-y^{k}$ chia hết cho 9 với mọi $x, y$ mà $x y$ không chia hết cho 3 .

Lời giải.

(a) Ta có $x^{3}-y^{3}$ chia hết cho 3 mà $x^{3}-y^{3}=(x-y)^{3}+3 x y(x-y) \vdots, 3$ nên $(x-y)^{3}$ :3. Hơn nữa 3 là số nguyên tố nên $\Rightarrow(x-y)$ :3. Suy ra $\left\{\begin{array}{l}(x-y)^{3}: 9 \\ 3 x y(x-y) \vdots 9\end{array} \Rightarrow x^{3}-y^{3} \vdots, 9\right.$

(b) Giả sử ngược lại $x+y$ nguyên tố.

Ta có $x^{3}-y^{3}=(x-y)\left[(x+y)^{2}-x y\right]=(x-y)(x+y)^{2}-x y(x-$ $y) \vdots(x+y)$.

$\Rightarrow(x-y) x y \vdots(x+y)$, mà $x+y$ nguyên tố nên $\left[\begin{array}{l}(x-y) \vdots(x+y) \\ x \vdots(x+y) \\ y \vdots(x+y)\end{array}\right.$ (vô lí vì $0<x, y, x-y<x+y)$.

(c) Cho $x=2, y=1 \Rightarrow x y$ không chia hết cho 3 . $\Rightarrow x^{k}-y^{k}=2^{k}-1 \vdots 9 \Rightarrow 2^{k}-1 \vdots 3 .$

Do $2 \equiv-1(\bmod 3) \Rightarrow 2^{k}-1 \equiv(-1)^{k}-1(\bmod 3)$ nên $k$ chẵn.

Ta chứng $\operatorname{minh} k=6 n,\left(n \in \mathbb{N}^{*}\right)$

Với $k=6 n+2 \Rightarrow 2^{k}-1 \equiv 2^{6 n+2}-1 \equiv 3(\bmod 9)$. $\Rightarrow k=6 n+2$ (không thỏa).

Với $n=6 k+4 \Rightarrow 2^{k}-1=2^{6 n+4}-1 \equiv 6(\bmod 9)$. $\Rightarrow k=6 n+4$ (không thỏa).

Nên $k=6 n$.

Lại có $x^{k}-y^{k}=x^{6 n}-y^{6 n}=\left(x^{6}\right)^{n}-\left(y^{6}\right)^{n}:\left(x^{6}-y^{6}\right)$

Do $x y$ không chia hết cho 3 nên cả $x$ và $y$ đều không chia hết cho 3 .

  • Trường hợp 1. $x \equiv y(\bmod 3) \Rightarrow x^{3}-y^{3}: 3$

Theo câu (a) $\Rightarrow x^{3}-y^{3}: 9 \Rightarrow x^{k}-y^{k}: 9$.

  • Trường hợp 2. $x$ không đồng dư với $y \bmod 3$.

Không mất tính tổng quát, giả sử $\left\{\begin{array}{l}x=3 a+1 \\ y=3 b+2\end{array}\right.$

Ta có $x^{3}+y^{3}=(3 a+1)^{3}+(3 b+2)^{2}=27 a^{3}+27 a^{2}+9 a+27 b^{3}+$ $27 b^{2}+9 b+9 \vdots 9$

Suy ra $x^{6}-y^{6}=\left(x^{3}-y^{3}\right)\left(x^{3}+y^{3}\right) \vdots 9 \Rightarrow x^{k}-y^{k} \vdots 9$.

Vậy tập tất cả các số thỏa đề bài là $k=6 n$ với $n$ tự nhiên.

Bài 3. (a) Cho ba số $a, b, c \geq-2$ thỏa mãn $a^{2}+b^{2}+c^{2}+a b c=0$. Chứng minh rằng $a=b=c=0$.

(b) Trên mặt phẳng $O x y$, cho ba điểm $A, B, C$ phân biệt với $O A=O B=$ $O C=1$. Biết rằng $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+6 x_{A} x_{B} x_{C}=0$.

Chứng minh rằng $\min(x_{A}, x_{B}, x_{C})<-\frac{1}{3}$ (kí hiệu $x_{M}$ là hoành độ của điểm $M$ ).

Lời giải.

(a) – Trong ba số $a, b, c$ phải có ít nhất 2 số cùng dấu. Không mất tính tổng quát, giả sử hai số đó là $a$ và $b$.

Ta có $a^{2}+b^{2}+c^{2}+a b c=0$

$\Leftrightarrow(a-b)^{2}+c^{2}+a b(c+2)=0(*)$

Do $(a-b)^{2}, c^{2}, a b(c+2) \geq 0$

Nên $(*) \Leftrightarrow\left\{\begin{array}{l}a=b \\ c=0 \ a b=0\end{array} \Leftrightarrow a=b=c=0\right.$

(b) –  Giả sử ngược lại $\min(x_{A}, x_{B}, x_{C}) \geq-\frac{1}{3} \Rightarrow x_{A}, x_{B}, x_{C} \geq-\frac{1}{3}$ Trong 3 số $x_{A}, x_{B}, x_{C}$ có 2 số cùng dấu, giả sử $x_{A}, x_{B}$.

$-$ Ta có $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+6 x_{A} x_{B} x_{C}=\left(x_{A}-x_{B}\right)^{2}+x_{C}^{2}+2 x_{A} x_{B}\left(3 x_{C}+1\right)=0$ $\Rightarrow x_{A}=x_{B}=x_{C}=0$, suy ra $A, B, C$ dều thuộc trục tung. Hơn nữa $O A=O B=O C=1$ nên có ít nhất hai điểm trùng nhau (vô lý). Vậy ta có điều phải chứng minh.

Bài 4. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$ với tâm $O$. Gọi $D$ là điểm thay đổi trên cạnh $B C(D$ khác $B, C)$. Các đường tròn ngoại tiếp các tam giác $A B D$ và $A C D$ lần lượt cắt $A C$ và $A B$ tại $E$ và $F(E, F$ khác $A)$. Gọi $K$ là giao điểm của $B E$ và $C F$.

(a) Chứng minh rằng tứ giác $A E K F$ nội tiếp.

(b) Gọi $H$ là trực tâm tam $A B C$. Chứng minh rằng nếu $A, O, D$ thẳng hàng thì $H K$ song song với $B C$.

(c) Ký hiệu $S$ là diện tích tam giác $K B C$. Chứng minh rằng khi $D$ thay đổi trên cạnh $B C$ ta luôn có $S \leq\left(\frac{B C}{2}\right)^{2} \tan \frac{\widehat{B A C}}{2}$.

(d) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $A E F$. Chứng minh rằng $B F . B A-C E . C A=B D^{2}-C D^{2}$ và $I D$ vuông góc với $B C$.

Lời giải.

(a) $-$Tứ giác $A E D B$ nội tiếp suy ra $\widehat{A E B}=\widehat{A D B}$, tứ giác $A F D C$ nội tiếp suy ra $\widehat{A F C}=\widehat{A D C}$.

Khi đó $\widehat{A E K}+\widehat{A F D}=\widehat{A D B}+\widehat{A D C}=180^{\circ}$. Vậy tứ giác $A E K B$ nội tiếp.

(b) $-$ Ta có $\widehat{B K C}=\widehat{F K E}=180^{\circ}-\widehat{B A C}$ và $\widehat{B H C}=180^{\circ}-\widehat{B A C}$.

Suy ra $\widehat{B K C}=\widehat{B H C} \Rightarrow B H K C$ nội tiếp.

Suy ra $\widehat{F K H}=\widehat{H B C}=\widehat{H A C}$ và $\widehat{K C B}=\widehat{B A D}$ (do $A F D C$ nội tiếp).

$-$ Khi $A, O, D$ thẳng hàng, ta có $\widehat{B A D}=\widehat{B A O}=\widehat{H A C}$. (tự chứng minh, hehe)

Do đó $\widehat{F K H}=\widehat{K C B}$ suy ra $K H / / B C$.

(c) – Ta có $K$ thuộc cung $B H C$ của đường tròn ngoại tiếp tam giác $B H C$ tâm $T$.

Gọi $M$ là trung điểm của $B C$ và $N$ là điểm chính giữa cung $B H C$ và $X$ là giao điểm của $T K$ và $B C$.

$-$ Dựng $K L \perp B C$. Ta có $K L \leq K X=T K-T D \leq T N-T M=M N$. Ta có $\widehat{B N C}=\widehat{B H C}=180^{\circ}-\widehat{B A C}$, suy ra $\widehat{N B M}=90^{\circ}-\widehat{B N M}=$ $90^{\circ}-\frac{1}{2} \widehat{B N C}=\frac{1}{2} \widehat{B A C}$.

Khi đó $\frac{M N}{B M}=\tan \frac{\widehat{N B M}}{2}=\tan \frac{\widehat{B A C}}{2}$, suy ra $M N=\tan \frac{\widehat{B A C}}{2} \cdot \frac{B C}{2}$.

Do đó $S_{B K C}=\frac{1}{2} . K L . B C \leq \frac{B C^{2}}{4} \tan \frac{\widehat{B A C}}{2}$.

(d) – Xét tam giác $B C F$ và tam giác $B A D$ có $\widehat{B C F}=\widehat{B A D}$ và góc $B$ chung. Suy ra $\Delta B C F \backsim \Delta B A D \Rightarrow \frac{B D}{B A}=\frac{B F}{B C} \Rightarrow B F . B A=B D . B C$.

$-$ Chứng minh tương tự ta có $C E . C A=C B . C D$.

Suy ra $B F . B A-C E . C A=B C . B D-B C . C D=B C(B D-C D)=$ $(B D+B C)(B D-B C)=B D^{2}-C D^{2} .$

$-$ Ta có $\widehat{A D F}=\widehat{A C F}=\widehat{A E B}-\widehat{E K C}=\widehat{A E B}-\widehat{A}$ và $\widehat{A D E}=\widehat{A B E}=\widehat{A F C}-\widehat{B A C}$, suy ra $\widehat{E D F}=\widehat{A D F}+\widehat{A D E}=\widehat{A E B}+\widehat{A F C}-2 \widehat{A}=180^{\circ}-2 \widehat{B A C}=$ $\widehat{E I F}$. Do đó tứ giác $I E D F$ nội tiếp, hơn nữa $I E=I F$ nên $D I$ là phân giác $\widehat{E D F}$.

Mặt khác $\widehat{F D B}=\widehat{B A C}=\widehat{C D E}$.

Suy ra $D B, D I$ lần lượt là phân giác ngoài và phân giác trong của $\widehat{E D F}$ nên $I D \perp B C$.

Vậy ta có điều phải chứng minh.

Bài 5. Lớp $9 \mathrm{~A}$ có 6 học sinh tham gia một kỳ thi toán và nhận được 6 điểm số khác nhau là các số nguyên từ 0 đến 20. Gọi $m$ là trung bình cộng các điểm số của 6 học sinh trên. Ta nói rằng hai học sinh (trong 6 hoc sinh trên) lập thành một cặp “hoàn hảo” nếu như trung bình cộng điểm số của hai em đó lớn hơn $m$.

(a) Chứng minh rằng không thể chia 6 học sinh trên thành 3 cặp mà mỗi cặp đều “hoàn hảo”.

(b) Có thể có được nhiều nhất là bao nhiêu cặp “hoàn hảo”?

Lời giải.

(a) Giả sử có thể chia 6 học sinh thành 3 cặp đều “hoàn hảo”. Gọi số điểm của các cặp học sinh này là $\left(x_{1} ; x_{2}\right),\left(x_{3} ; x_{4}\right),\left(x_{5} ; x_{6}\right)$.

Ta có $\frac{x_{1}+x_{2}}{2}>m ; \frac{x_{3}+x_{4}}{2}>m ; \frac{x_{5}+x_{6}}{2}>m$

Suy ra $\frac{x_{1}^{2}+x_{2}}{2}+\frac{x_{3}+x_{4}}{2}+\frac{x_{5}+x_{6}}{2}>3 m$

$\Leftrightarrow \frac{x_{1}+x_{2}+x_{3}+x_{4}^{2}+x_{5}+x_{6}^{2}}{2}>3 . \frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}$ (vô

lý).

Vậy ta có điều phải chứng minh.

(b) – Xét tập $A={0,16,17,18,19,20}$ với $m=15$ có 10 cặp hoàn hảo. (1)

$-$ Giả sử có nhiều hơn hoặc bằng 11 cặp “hoàn hảo”. Gọi tên 6 thí sinh là $A, B, C, D, E, F$.

Với tổng 15 cặp thí sinh. Ta chia thành các nhóm như sau:

Nhóm 1. $(A B ; C D ; E F)$

Nhóm 2. $(A C ; B E ; D F)$

Nhóm 3. $(A D ; C E ; B F)$

Nhóm 4. $(A E ; B D ; C F)$

Nhóm 5. $(A F ; B E ; C D)$

$-$ Do có ít nhất 11 cặp “hoàn hảo” mà chỉ có 5 nhóm nên theo nguyên lý Đi-rích-lê, có ít nhất 1 nhóm đủ 3 cặp thí sinh.

Mà theo câu (a), điều này vô lí (2)

$-$ Từ (1) và (2̃) thì có nhiều nhất 10 cặp “hoàn hảo”.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2016

I. ĐỀ 

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-2\sqrt{5}x+5=0$
b) $4x^4-5x^2-9=0$
c) $2x+5y=-1$ và $3x-2y=8 $
d) $x(x+3)=15-(3x-1)$.

Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = \dfrac{-x^2}{4}$ và đường thẳng (D): $y = \dfrac{x}{2}-2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3.
a) Thu gọn biểu thức $A = \dfrac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}} + \dfrac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}$
b) Ông Sáu gửi một số tiến vào ngân hàng theo mức lãi suất tiết kiệm với kù hạn 1 năm là 6$\%$. Tuy nhiên sau thời hạn một năm ông Sáu không đến nhận tiền lãi mà để thêm một năm nữa mới lãnh. Khi đó số tiền lãi có được sau năm đầu tiên sẽ được ngân ghàng cộng dồn vào số tiền gửi ban đầu để thành số tiền gửi cho năm kế tiếp với mức lãi suất cũ. Sau 2 năm ông Sáu nhận được số tiền là 112.360.000 đồng kể cả gốc lẫn lãi. Hỏi ban đầu ông Sáu đã gửi bao nhiêu tiền?
Bài 4. Cho phương trình $x^2 – 2mx + m – 2= 0 $(1) ($x$ là ẩn số.)

a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị $m$.
b) Định $m$ để hai nghiệm $x_1, x_2$ của phương trình (1) thỏa mãn : $(1+x_1)(2-x_2) + (1+x_2)(2-x_1) = x_1^2+x_2^2+2 $
Bài 5. Cho tam giác $ABC$ $(AB < AC) $ có ba góc nhọn. Đường trong tâm $O$ đường kính $BC$ cắt các cạnh $AC, AB$ lần lượt tại $D, E$.
Gọi $H$ là giao điểm của $BD$ và $CE$; $F$ là giao điểm của $AH$ và $BC$.
a) Chứng minh $AF \bot BC$ và $\angle AFD = \angle ACE$.
b) Gọi $M$ là trung điểm của $AH$. Chứng minh $BD \bot OD$ và 5 điểm $M, D, O, F, E$ cùng thuộc một đường tròn.
c) Gọi $K$ là giao điểm của $AH$ và $DE$. Chứng minh $MD^2 = MK.MF$ và $K$ là trực tâm của tam giác $MBC$.
d) Chứng minh $\dfrac{2}{FK} = \dfrac{1}{FH} + \dfrac{1}{FA}$.

II. ĐÁP ÁN

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2 – 2\sqrt{5}x + 5=0$
$\Delta ‘= 0
x_1=x_2 = \sqrt{5}$.
b) $4x^4 – 5x^2 -9 =0$
Đặt $t=x^2 \ge 0$
Phương trình trở thành: $4t^2 – 5t -9=0$
$a-b+c =0$.
$\Rightarrow t_1 =-1$ (loại) và $t_2 = \dfrac{9}{4}$ (nhận)
Với $t=\dfrac{9}{4} \Rightarrow x= \pm \dfrac{3}{2}$
c) $2x + 5y =-1 $ và $3x-2y=8$
$ \Leftrightarrow 4x+ 10y =-2 $ và $15x -10y =40 $
$ \Leftrightarrow x=2$ và $y=-1$.
d) $x(x+3) = 15 – (3x-1) $
$\Leftrightarrow x^2 + 6x -16 =0$
$\Leftrightarrow x_1 =2$; $x_2 = -8$.

Bài 2.
a) Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 2 ;-1)$, $\pm 4; -4 )$
$(D)$ đi qua $(2;-1)$, $(0;-2)$

Đồ thị:
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$-\dfrac{x^2}{4}= \dfrac{x}{2}-2 $
$\Leftrightarrow x^2 + 2x -8 =0 $
$\Leftrightarrow x=-4$ hoặc $x=2$

$y(-4) = -4$, $y(2) = -1$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-4;-4)$, $(2;-1)$.
Bài 3.
a) $A=\dfrac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}+ \dfrac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}} $
$= \dfrac{2-\sqrt{3}}{1+ \left( 1+ \sqrt{3} \right) } + \dfrac{2+\sqrt{3}}{1- \left( \sqrt{3}-1 \right) } $
$= \dfrac{\left( 2+ \sqrt{3} \right) ^2 + \left( 2- \sqrt{3} \right) ^2}{\left( 2+\sqrt{3} \right) \left( 2- \sqrt{3}\right) } $
$=14$

b) Gọi số tiền ban đầu ông Sáu gửi là: $x$ (đồng)
Số tiền vốn và lãi sau năm thứ nhất là: $x+x \cdot 6 \% = 1,06 x$
Số tiền vốn và lãi sau năm thứ hai là: $1,06x + 1,06x \cdot 6\% = 1,06^2 \cdot x$
Theo đề ta được phương trình:\ $1,06^2 \cdot x = 112.360.000 \Rightarrow x= 100.000.000$ (đồng)
Bài 4.

a) $x^2 -2mx +m-2 =0$
$\Delta ‘= m^2 -m+2 = \left( m- \dfrac{1}{2} \right) ^2 + \dfrac{7}{4} >0, \; \forall m$
Do đó phương trình luôn có hai nghiệm phân biệt.
b) Theo Viet, ta có:

$S= x_1+ x_2 = 2m $ và  $P = x_1 \cdot x_2 = m-2$

$\left( 1+ x_1 \right) \left( 2-x_2 \right) + \left( 1+ x_2 \right) \left( 2- x_1 \right) = x_1^2 + x_2^2 +2 $
$\Leftrightarrow 2+ x_1 + x_2 = \left( x_1 + x_2 \right) ^2 $
$\Leftrightarrow 2+ 2m = 4m^2 $
$\Leftrightarrow m=1 $ hoặc $m= \dfrac{-1}{2}$
Bài 5.


a)

  • $\angle BEC = \angle BDC = 90^\circ $
    $\Rightarrow $ $CE$ và $BD$ là hai đường cao của tam giác $ABC$
    $\Leftrightarrow $ $H$ là trực tâm của tam giác $ABC$
    $\Rightarrow $ $AH$ là đường cao của tam giác $ABC$
    $\Rightarrow AF \bot BC$.
  • Tứ giác $HFCD$ nội tiếp ($\angle HFC + \angle HDC = 180^\circ$)
    $\Rightarrow \angle AFD = \angle ACE$

b)

  • $\angle MAD = \angle MDA$ và $\angle ODC = \angle OCD $
    Mà $\angle FAC + \angle FCA = 90^\circ
    \Rightarrow \angle MDA + \angle ODC = 90^\circ
    \Rightarrow \angle MDO = 90^\circ \Rightarrow MD \bot OD $
  • Chứng minh tương tự: $ME \bot OE$
  •  3 điểm $E$, $F$, $D$ cùng nhìn $MO$ dưới 1 góc $90^\circ$
    $\Rightarrow $ 5 điểm $M$, $D$, $O$, $F$, $E$ cùng thuộc đường tròn đường kính $MO$

c)

  • $MD$ là tiếp tuyến của đường tròn tâm $O$
    $\Rightarrow \angle MDE = \angle DCE$
    mà $\angle AFD = \angle ACE$ nên $\angle MDK = \angle MFD$
    Vậy $\triangle MDK \backsim \triangle MFD \Rightarrow MD^2 = MK \cdot MF$
  •  $MC$ cắt $(O)$ tại $L$
  • $\triangle MDL \backsim \triangle MCD \Rightarrow MD^2 = ML \cdot MC
    \Rightarrow MK \cdot MF = ML \cdot MC
    \Rightarrow \triangle MLK \backsim \triangle MFC
    \Rightarrow \angle KLM = \angle MFC =90^\circ
    \Rightarrow KL \bot MC$
    Mà $BL \bot MC$ (góc nội tiếp chắn nửa đường tròn)
    $\Rightarrow $ $B$, $K$, $L$ thẳng hàng
    $\Rightarrow$ $K$ là trực tâm $\triangle MBC$.

d)

  • $FH \cdot FA = FB \cdot FC$ ($\triangle BFH \backsim \triangle AFC$)
  • $FK \cdot FM = FB \cdot FC$ ($\triangle BFK \backsim \triangle MFC$)
    $\Rightarrow FH \cdot FA = FK \cdot FM
    \Rightarrow 2FH \cdot FA = 2 FK \cdot FM = FK ( FA + FH )
    \Rightarrow \dfrac{2}{FK} = \dfrac{1}{FH} + \dfrac{1}{FA}$.

Đề thi: ôn vào lớp 10 chuyên toán

Bài 1. (2,5 điểm) 

1) Cho phương trình ${x^2} – 2\left( {{m^2} + m + 1} \right)x + {m^4} + {m^2} + 1 = 0$ ($m$ là tham số).
a) Tìm $m$ đề phương trình có nghiệm $x_1, x_2$. Tìm giá trị nhỏ nhất của biểu thức: $A = \left( {{x_1} + {x_2}} \right)\left( {1 + \dfrac{1}{{{x_1}{x_2}}}} \right)$
b) Tìm $m$ để $\dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{{4{x_1}{x_2}}}$ là một số tự nhiên.

2) Giải hệ phương trình $\left{ \begin{matrix} x(x+y+z)+yz = – 4 \hfill \cr y(x+y+z)+xz=1 \hfill \cr z(x+y+z) + xy = – 1 \end{matrix} \right.$

Bài 2. (1 điểm) Cho các số $a, b, c > 0$ thỏa $abc > 1$ và $a + b + c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}$.

Chứng minh rằng trong 3 số $a, b, c$ có đúng một số nhỏ hơn 1.

Bài 3. (2 điểm) Một số nguyên dương được gọi là số lập phương nếu tích các ước dương của nó bằng lập phương của số đó.
a) Chứng minh rằng 12 và 32 là các số lập phương

b) Tìm số tự nhiên $n$ để $2^n$ là số lập phương.
c) Tìm tất cả các số lập phương.
Bài 4. (3 điểm) Cho đường tròn tâm $O$ đường kính $AB = 2R$. Gọi $C$ là một điểm thay đổi trên tiếp tuyến tại $A$ của $(O)$,$BC$ cắt $(O)$ tại điểm $D$ khác $B$. $E$ là điểm đối xứng của $D$ qua $O$, $CE$ cắt $(O)$ tại $F$ và $BF$ cắt $AC$ tại $G$.
a) Tính $AC$ khi diện tích tứ giác $ADBE$ lớn nhất.
b) $DF$ cắt $AC$ tại $M$. Chứng minh $MA^2 = MG.MC$.
c) Chứng minh rằng các đường thẳng $AD, BF$ và $CO$ đồng quy.
Bài 5. (1, 5 điểm)Cho bảng vuông $3 \times 3$. Người ta điền vào các ô vuông các số không âm sao cho nếu tổng các số ở một dòng là $r$, tổng các số ở một cột là $c$ thì $|r-c|$ là bằng giá trị ô vuông giao giữa dòng và cột đó.
a) Chứng minh rằng với số ở mỗi ô vuông bằng tổng hoặc hiệu các số ở hai ô vuông khác.
b) Có tồn tại hay không một cách điền số mà các số đều là số dương?

Hết.

Đáp án -> Here

 

 

 

 

 

 

 

Đề ôn thi vào lớp 10 Chuyên Toán – Đề số 2

Bài 1. (2 điểm)
a) Cho các số $a$, $b$, $c$ thỏa $2a + 3b + 6c = 0$. Chứng minh rằng phương trình $ax^2 + bx + c = 0$ luôn có nghiệm.
b) Giải hệ phương trình: $\left{ \begin{array}{l}
\left( {{x^4} + 1} \right)\left( {{y^4} + 1} \right) = 4xy\
\sqrt[3]{{x – 1}} – \sqrt {y – 1} = 1 – {x^3}
\end{array} \right.$
Bài 2. (2 điểm) Cho các số $a$, $b$, $c$ thỏa $a^3 + b^3 + c^3 – 3abc = 1$.
a) Chứng minh rằng trong 3 số $a, b, c$ có ít nhất một số dương.
b) Tìm giá trị nhỏ nhất của biểu thức $a^2+b^2+c^2$.
Bài 3. (1,5 điểm) Cho $n$ là số nguyên dương và $d_1$, $d_2$, $d_3$, $d_4$ là các ước nguyên dương nhỏ nhất của $n$ thỏa: $n = d_1^2 + d_2^2 + d_3^2 + d_4^2$
a) Chứng minh rằng $n$ chia hết cho $2$ nhưng không chia hết cho $4$
b) Tìm $n$.
Bài 4. (3 điểm) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ cố định, $A, B$ cố định, $C$ thay đổi trên cung lớn $AB$. Gọi $K$ là trung điểm $AB$; $D$ và $E$ là hình chiếu của $K$ trên $CA, CB$.
a) Tìm vị trí của $C$ để $DE$ lớn nhất.
b) $DE$ cắt $AB$ và $CO$ tại $N, M$. Chứng minh rằng đường tròn ngoại tiếp tam giác $CMN$ đi qua một điểm cố định.
c) $(CDE)$ và $(O)$ cắt nhau tại $F$ khác $A$. $NF$ cắt $(CDE)$ tại $G$. Chứng minh $G$ thuộc một đường thẳng cố định.
Kí hiệu $(CDE)$ là bán kính đường tròn ngoại tiếp tam giác $CDE$.

Bài 5. (1,5 điểm) Cho hình thang cân, người ta tô màu 4 cạnh và 2 đường chéo của hình bằng hai màu đỏ và xanh, trong đó mỗi màu tô 3 đoạn. Chứng minh có 3 đoạn thẳng được tô cùng màu có thể lập được một tam giác.

 

Đáp án chi dành cho các bạn đã đăng kí website tiết tại Đây