Tag Archives: StarEdu

ĐỀ THI THỬ VÀO 10 PHỔ THÔNG NĂNG KHIẾU – TOÁN CHUNG

THỜI GIAN LÀM BÀI 120 PHÚT

PHẦN 1. TRẮC NGHIỆM (2 ĐIỂM)

Câu 1. Biểu thức $\sqrt{\frac{1}{1-2 x+x^2}}$ xác định khi và chỉ khi:
A. $x>1$
B. $x \geq 1$
C. $x \in R$
D. $x \neq 1$

Câu 2. Đường tròn tâm $O$ bán kính $R$ có $M A, M B$ là hai tiếp tuyến của $(\mathrm{O})(A, B$ là các tiếp điểm). Biết $\widehat{A O B}=90^{\circ}$, chu vi tam giác $M A B$ là:
A. $2 R$
B. $R \sqrt{2}+2$
C. $(2+\sqrt{2}) R$
D. $R \sqrt{2}$

Câu 3. Cho hai đường thẳng $\left(d_1\right): y=\left(2 m^2+3\right) x-3 m+1$ và $\left(d_2\right): y=5 x-2$. Hai đường thẳng trùng nhau khi:
A. $m=-1$
B. $m=1$
C. $m \neq 1$
D. $m \in{1 ;-1}$

Câu 4. Đường thẳng $\Delta: y=m x+n-2$ đi qua gốc tọa độ và điểm $A(-1 ; 3)$. Tính $m+2 n$.
A. 1
B. -2
C. -3
D. 2

Câu 5. Rút gọn biểu thức $T=\frac{\sqrt{x^4(x-y)^2}}{x^2-y^2}$ với $x<y<0$ bằng:
A. $\frac{x^2}{x-y}$
B. $\frac{-x^2}{x-y}$
C. $\frac{-x^2}{x+y}$
D. $\frac{x^2}{x+y}$

Câu 6. Câu nào sau đây đúng?
A. $|A|+|B|=0 \Leftrightarrow\left[\begin{array}{l}A=0 \\\ B=0\end{array}\right.$
C. $\sqrt{A}=|B| \Leftrightarrow\left\{\begin{array}{l}B \geq 0 \\\ A=B^2\end{array}\right.$
B. $(A-B)^2>0 \Leftrightarrow A \neq B$
D. $B, C$ đều đúng.

Câu 7. Cho đường tròn tâm $O$ có bán kính $2 R$ và một dây cung có độ dài bằng $2 R$. Khoảng cách từ tâm $O$ đến dây cung này là:
A. $R$
B. $\frac{R \sqrt{3}}{2}$
C. $R \sqrt{2}$
D. $R \sqrt{3}$

Câu 8. Gọi $\left(x_0, y_0\right)$ là nghiệm của hệ phương trình: $\left\{\begin{array}{l}2 x^2+y^2=5 \\\ x^2-y^2=1\end{array}\right.$. Tính $\frac{x_0}{y_0}$ biết $y_0<$ $0<x_0$.
A. -2
B. $\sqrt{2}$
C. $-\sqrt{2}$
D. 2

Câu 9. Tìm $m$ để parabol $(P): y=(m-2) x^2$ và đường thẳng $(D): y=2 x-3$ cắt nhau tại hai điểm phân biệt:
A. $m<\frac{7}{3}$ và $m \neq 2$

C. $m>\frac{7}{3}$ và $m \neq 2$
B. $m \geq \frac{7}{3}$ và $m \neq 2$
D. $m \leq \frac{7}{3}$ và $m \neq 2$

Câu 10. Cho tam giác $A B C$ có đường cao $A H$. Nếu $B C=2 A H$ và $\tan B=1$ thì tam giác $A B C$ là tam giác gì?
A. Tam giác nhọn
C. Tam giác vuông
B. Tam giác vuông cân
D. Tam giác cân

PHẦN TỰ LUẬN (8 ĐIỂM)

Bài 1. (1,5 điểm)
(a) Cho $M=\frac{3 \sqrt{x}-3}{4} \cdot\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) ; N=1-\frac{\sqrt{x}}{x-2}$ với $x \geq 0 ; x \neq$ $1 ; x \neq 2$.
Tìm $x$ biết $M \cdot N=6$.
(b) $\triangle A B C$ có $A D$ là đường phân giác của $\widehat{B A C}(D \in B C)$. Biết $A C=A B+B D$ và $\widehat{A B C}=60^{\circ}$. Lấy điểm $E$ trên đoạn thẳng $A C$ sao cho $A E=A B$. Đặt $\widehat{B A D}=x^{\circ}$ và $\widehat{A C B}=y^{\circ}$. Tìm $x, y$.

Bài 2. (2 diểm)
(a) Giải phương trình: $\left(-2 x^2+3 x+5\right) \cdot(\sqrt{1-2 x}-\sqrt{x+4}+1)=0$.
(b) Trong một ngày hội của trường, các lớp được yêu cầu tổ chức một gian hàng ẩm thực trong hai ngày. Lớp 10T dự định sẽ bán xiên thịt nướng, chi phí bỏ ra cho một xiên thịt nướng là 10000 đồng và số lượng xiên nướng chuẩn bị cho hai ngày là như nhau. Ngày thứ nhất, lớp bán hết số thịt đã chuẩn bị và lời 1000000 đồng. Sang ngày thứ hai, lớp tăng giá bán lên $20 \%$ và bán được $\frac{3}{4}$ số xiên thịt; với số xiên thịt còn lại lớp quyết định giảm về giá ban đầu, tuy nhiên khi còn 30 xiên thịt cuối lớp không bán mà để cho các bạn trong lớp tham gia bán hàng ăn. Biết số tiền lời ngày thứ hai bằng ngày thứ nhât, hỏi giá bán một xiên thịt ban đầu là bao nhiêu?

Bài 3. (1,5 điểm) Cho phương trình: $\frac{-3 x^2-2 m x+1-m}{x-1}=0$
(a) Phương trình (1) nhận $x=\frac{1}{3}$ là nghiệm. Tìm nghiệm còn lại của phương trình.
(b) Tìm $m$ để phương trình (1) có hai nghiệm phân biệt $x_1, x_2$ thỏa:
$$
3 x_1+6 x_2-3 x_1 x_2=m+2
$$
Bài 4. (3 diểm) Cho $\triangle A B C$ cân tại $A$ nội tiếp đường tròn tâm $O$ có $\widehat{B A C}=30^{\circ}$ và $B C=a$.
(a) Chứng minh tam giác $O B C$ đều, tính diện tích tam giác $O B C$.
(b) Gọi $M$ là trung điểm của $O B, C M$ cắt $(O)$ tại $K$ khác $C . O B$ cắt $A C$ tại $D$. Chứng minh tứ giác $O C B K$ là hình thoi và tính $\widehat{A D K}$.
(c) Trên đoạn $D C$ lấy điểm $E$ sao cho $A D=D E$. Chứng minh $A K \perp O E$ và $A C$ tiếp xúc với đường tròn ngoại tiếp tam giác $O E B$.

HẾT

Đề thi thử vào 10 chuyên toán năm 2023 – Star Education

Thời gian làm bài 150 phút

Đề bài.

Bài 1. (2,5 diểm)
(a) Giải phương trình $3 x^3+x+3+(8 x-3) \sqrt{2 x^2+1}=0$.
(b) Cho phương trinh $(\sqrt{x}+1)\left(x^2-3(m+1) x+2 m^2+5 m+2\right)=0(m$ là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn nghiệm này là bình phương nghiệm kia.
(c) n là số tự nhiên lớn hơn hoạc bằng 4, cho $n$ số thực $a_1 \leq a_2 \leq \cdots \leq a_n$ thỏa mãn $a_1+a_2+\cdots a_n=0$ và $\left|a_1\right|+\left|a_2\right|+\cdots\left|a_n\right|=A$. Chứng minh rằng
$$
a_n-a_1 \geq \frac{2 A}{n}
$$

Bài 2. (1,5 điểm) Xét các số $a, b, c$ khác 0 và đôi một phân biệt sao cho các phương trình sau đây có một nghiệm chung:
$$
a x^3+b x+c=0(1), b x^3+c x+a=0(2), c x^3+a x+b=0(3) .
$$
(a) Chứng minh $a+b+c=0$.
(b) Chứng minh rằng một trong các phương trình này có ba nghiệm (không nhất thiết phân biệt).

Bài 3. $(1,5$ điểm)
(a) Tìm số tự nhiên có hai chũ số sao cho nó bằng tổng bình phương các chũ số của nó.
(b) Tìm tất cả các số nguyên tố p, sao cho p có thể biểu diễn được dưới dạng $\sqrt{\frac{a^2-4}{b^2-1}}$, trong đó a,b là các số nguyên dương.

Bài 4. ( 3,5 điểm) Cho đường tròn $(O ; R)$ và dây cung $B C=R \sqrt{3}$ cố định, $A$ thay đổi trên cung lớn $B C$ sao cho tam giác $A B C$ nhọn. Các đường cao $B D, C E$ cắt nhau tại $H$. Phân giác trong góc $A$ cắt $D E$ và $B C$ lần lượt tại $K, L$.
(a) Tính $\angle B A C$ và $\angle O H C$.
(b) Chứng minh $\frac{A K}{A L}$ không đổi. Tìm vị trí của A để KL lớn nhât, tính giá trị đó theo $R$.
(c) Chứng minh đường thẳng d qua L vuông góc $O A$ tiếp xúc với một đường tròn cố định.
(d) Đường thẳng qua K vuông góc DE và đường thẳng qua L vuông góc $B C$ cắt nhau tại P. Chứng minh AP luôn đi qua một điểm cố định.

Bài 5. (1 điểm) Có 10 viên bi vàng và 10 viên bi xanh được xếp thành một hàng. Chúng minh rằng tồn tại 10 viên bi liên tiếp sao cho số viên bi vàng và xanh bằng nhau.

LỜI GIẢI

ĐỀ VÀ ĐÁP ÁN CHUYÊN ĐỀ TOÁN 9 – STAR EDUCATION

ĐỀ BÀI.


Bài 1.
a) Giải phương trình: $\sqrt{2 x^2+5 x-6}+\sqrt{2 x^2-x+3}=2 x+1$.
b) Giải hệ phương trình: $\left\{\begin{array}{l}3 x=x y z+y+1 \\\ 3 y=y z x+z+1 \\\ 3 z=z x y+x+1\end{array}\right.$.

Bài 2. Cho các số thực $x, y, z$ thỏa $x^2+y^2+z^2=1$. Tìm giá trị nhỏ nhất và lớn nhất của
$$
A=x^3+y^3+z^3-x^4-y^4-z^4 .
$$

Bài 3. Xét phương trình nghiệm nguyên $x^2+y^2+z^2=x y+k z$ theo ẩn $x, y, z$ và tham số nguyên $k$.
a) Giải phương trình khi $k=3$.
b) Chứng minh rằng khi $k=3^n$ với $n \geq 1$, phương trình có đúng 2 nghiệm.

Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn tâm $O$ và ngoại tiếp đường tròn tâm $I$. Phân giác ngoài của góc $\angle B A D$ và $\angle A B C$ cắt nhau tại $E$. Phân giác ngoài của góc $\angle A B C$ và $\angle B C D$ cắt nhau tại $F$. Phân giác ngoài của góc $\angle B C D$ và $\angle C D A$ cắt nhau tại $G$. Phân giác ngoài của góc $\angle C D A$ và $\angle D A B$ cắt nhau tại $H$.
a) Chứng minh tứ giác $E F G H$ nội tiếp.
b) Chứng minh $E, I, G$ thẳng hàng và $H, I, F$ cũng thẳng hàng.
c) Gọi $M, N, P, Q$ là các tiếp điểm của đường tròn nội tiếp $(I)$ tại $A B, B C, C D, D A$. Chứng minh rằng $E G$ là trung trực của $N Q$, và $F H$ là trung trực của $M P$.

Bài 5. Cho 9 điểm (khác nhau) nằm trong một hình vuông có cạnh là 1 .
a) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích không quá $\frac{1}{8}$.
b) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích nhỏ hơn $\frac{1}{8}$.

LỜI GIẢI

Bài 1.

a) Giải phương trình: $\sqrt{2 x^2+5 x-6}+\sqrt{2 x^2-x+3}=2 x+1$.
b) Giải hệ phương trình: $\left\{\begin{array}{l}3 x=x y z+y+1 \\\ 3 y=y z x+z+1 \\\ 3 z=z x y+x+1\end{array}\right.$.

Lời giải

a) Điều kiện: $x \geq-\dfrac{1}{2}$ và $2 x^2+5 x-6 \geq 0$, suy ra $x>0$. Phương trình đã cho tương đương
$$ \sqrt{2 x^2+5 x-6}-x+\sqrt{2 x^2-x+3}-x-1=0$$
$$\Leftrightarrow \dfrac{2 x^2+5 x-6-x^2}{\sqrt{2 x^2+5 x-6}+x}+\dfrac{2 x^2-x+3-x^2-2 x-1}{\sqrt{2 x^2-x+3}+x+1}=0$$
$$\Leftrightarrow \dfrac{x^2+5 x-6}{\sqrt{2 x^2+5 x-6}+x}+\dfrac{x^2-3 x+2}{\sqrt{2 x^2-x+3}+x+1}=0$$
Ta thấy $x=1$ là nghiệm. Xét $x \neq 1$, phương trình trên tương đương
$$\dfrac{x+6}{\sqrt{2 x^2+5 x-6}+x}+\dfrac{x-2}{\sqrt{2 x^2-x+3}+x+1}=0$$
Ta chứng minh $\dfrac{6}{\sqrt{2 x^2+5 x-6}+x}>\dfrac{2}{\sqrt{2 x^2-x+3}+x+1}$

hay $ 3 \sqrt{2 x^2-x+3}>\sqrt{2 x^2+5 x-6} \Leftrightarrow 16 x^2-14 x+21>0$
Bất đẳng thức cuối đúng.
Vậy tóm lại, phương trình đã cho có nghiệm duy nhất $x=1$.

Bài 2.

Cho các số thực $x, y, z$ thỏa $x^2+y^2+z^2=1$. Tìm giá trị nhỏ nhất và lớn nhất của
$$
A=x^3+y^3+z^3-x^4-y^4-z^4 .
$$

Lời giải

Từ giả thiết ta có $-1 \leq x, y, z \leq 1$.
Từ đó suy ra $x^3+y^3+z^3+x^2+y^2+z^2=x^2(x+1)+y^2(y+1)+z^2(z+1) \geq 0.$
Dẫn đến $x^3+y^3+z^3 \geq-\left(x^2+y^2+z^2\right)=-1$.
Lại có: $x^4+x^4+y^4-\left(x^2+y^2+z^2\right)=x^2\left(x^2-1\right)+y^2\left(y^2-1\right)+z^2\left(z^2-1\right) \leq 0.$
nên $x^4+x^4+y^4 \leq x^2+y^2+z^2=1$.
Do đó suy ra $A=x^3+y^3+z^3-\left(x^4+x^4+y^4\right) \geq-1-1=-2.$
Đẳng thức xảy ra khi $x=0, y=0, z=-1$ hoặc các hoán vị.
Áp dụng bất đẳng thức $a b \leq \dfrac{a^2+b^2}{2}$ với mọi số thực $a, b$, ta có:
$ x^3=\sqrt{3} \cdot \dfrac{1}{\sqrt{3}} x \cdot x^2 \leq \sqrt{3} \cdot \dfrac{x^2+x^4}{2}=\dfrac{x^2 \sqrt{3}}{6}+\dfrac{x^4 \sqrt{3}}{2}.$
Tương tự, $y^3 \leq \dfrac{y^2 \sqrt{3}}{6}+\dfrac{y^4 \sqrt{3}}{2}, z^3 \leq \dfrac{z^2 \sqrt{3}}{6}+\dfrac{z^4 \sqrt{3}}{2}$.
Từ đây suy ra $A =x^3+y^3+z^3-x^4-y^4-z^4\leq \dfrac{\sqrt{3}}{6}\left(x^2+y^2+z^2\right)+\dfrac{\sqrt{3}-2}{2} \left(x^4+y^4+z^4\right)$
$\leq \dfrac{\sqrt{3}}{6}+\dfrac{\sqrt{3}-2}{2} \cdot \dfrac{\left(x^2+y^2+z^2\right)^2}{3}$
$=\dfrac{\sqrt{3}}{6}+\dfrac{\sqrt{3}-2}{6}=\dfrac{\sqrt{3}-1}{3}.$
Đẳng thức xảy ra khi $x=y=z=\dfrac{1}{\sqrt{3}}$.

Bài 3. Xét phương trình nghiệm nguyên $x^2+y^2+z^2=x y+k z$ theo ẩn $x, y, z$ và tham số nguyên $k$.
a) Giải phương trình khi $k=3$.
b) Chứng minh rằng khi $k=3^n$ với $n \geq 1$, phương trình có đúng 2 nghiệm.

Lời giải

a) Khi $k=3$, ta có phương trình $x^2+y^2+z^2=x y+3 z \Leftrightarrow 3 z-z^2=x^2-x y+y^2 \geq 0 .$
Suy ra $0 \leq z \leq 3$.
Nếu $z=0$ hoặc $z=3$ thì $x=y=0$.
Nếu $z=1$ hoặc $z=2$ thì $x^2-x y+y^2=2$ hay $(x+y)^2=3 x y+2$. Điều này là vô lý vì số chính phương không thể chia cho 3 dư 2 .
Vậy tất cả nghiệm cần tìm là $(0,0,0),(0,0,3)$.

b) Ta chứng minh bằng cách quy nạp theo $n$. Khẳng định đúng với $n=1$. Giả sử khẳng định đúng đến $n \geq 1$, ta chứng minh khẳng định cũng đúng với $n+1$.
Khi $k=3^{n+1}$, phương trình đã cho tương đương: $(x+y)^2+z^2=3 x y+3^{n+1} z: 3$.
Đặt $a=x+y$.
Giả sử $a$ không chia hết cho 3 thì $z$ cũng không chia hết cho 3 , suy ra $
a^2-1, z^2-1 \vdots 3 \Rightarrow a^2+z^2-2 \vdots 3.$ Điều này là vô lý vì $a^2+z^2: 3.$ Vậy $x+y$ và $z$ chia hết cho .
Khi đó $(x+y)^2+z^2: 9$, dẫn đến $x y: 3$.
Kết hợp với $x+y: 3$ ta kết luận được $x, y$ đều là bội của 3 .
Đặt $x=3 x_0, y=3 y_0, z=3 z_0\left(x_0, y_0, z_0 \in \mathbb{Z}\right)$
Có: $x^2+y^2+z^2=x y+3^{n+1} z \Leftrightarrow x_0^2+y_0^2+z_0^2=x_0 y_0+3^n z_0 .$
Theo giả thiết quy nạp, phương trình trên có đúng hai nghiệm. Theo nguyên lý quy nạp, ta được phát biểu đúng với mọi $n \geq 1$.

Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn tâm $O$ và ngoại tiếp đường tròn tâm $I$. Phân giác ngoài của góc $\angle B A D$ và $\angle A B C$ cắt nhau tại $E$. Phân giác ngoài của góc $\angle A B C$ và $\angle B C D$ cắt nhau tại $F$. Phân giác ngoài của góc $\angle B C D$ và $\angle C D A$ cắt nhau tại $G$. Phân giác ngoài của góc $\angle C D A$ và $\angle D A B$ cắt nhau tại $H$.
a) Chứng minh tứ giác $E F G H$ nội tiếp.
b) Chứng minh $E, I, G$ thẳng hàng và $H, I, F$ cũng thẳng hàng.
c) Gọi $M, N, P, Q$ là các tiếp điểm của đường tròn nội tiếp $(I)$ tại $A B, B C, C D, D A$. Chứng minh rằng $E G$ là trung trực của $N Q$, và $F H$ là trung trực của $M P$.

Lời giải

a) Biến đổi góc: $$\angle A E B=180^{\circ}-\angle E A B-\angle E B A=\angle B A I+\angle A B I=\dfrac{1}{2}(\angle B A D+\angle A B C) .$$
Tương tự, $\angle D G C=\dfrac{1}{2}(\angle A D C+\angle B C D)$.
Suy ra $$\angle A E B+\angle D G C=\dfrac{1}{2}(\angle B A D+\angle A B C+\angle A D C+\angle B C D)=\dfrac{1}{2} \cdot 360^{\circ}=180^{\circ} .$$
Vậy tứ giác $E F G H$ nội tiếp.

b) Ta có các tứ giác $A E B I, G D I C$ là các tứ giác nội tiếp nên suy ra
$$\angle A I E+\angle A I D+\angle G I D =\angle A B E+\left(180^{\circ}-\angle I A D-\angle I D A\right)+\angle G C D $$
$$=90^{\circ}-\angle A B I+180^{\circ}-\angle I A D-\angle I D A+90^{\circ}-\angle D C I$$
$$=360^{\circ}-\dfrac{1}{2}(\angle B A D+\angle A B C+\angle A D C+\angle B C D)=180^{\circ} .$$
Vậy $E, I, G$ thẳng hàng. Tương tự, ta cũng có $H, I, F$ thẳng hàng.

c) Gọi $X, Y$ lần lượt là giao điểm của $I E, I B$ và $Q N$.
Biến đổi góc:$$\angle B Y N =180^{\circ}-\angle Y B N-\angle B N Q=180^{\circ}-\dfrac{1}{2} \angle A B C-\dfrac{360^{\circ}-\angle Q A B-\angle N B A}{2}$$
$$=-\dfrac{1}{2} \angle A B C+\dfrac{\angle D A B+\angle A B C}{2}$$
$$=\dfrac{1}{2} \angle D A B=\angle B A I=\angle B E I .$$

Suy ra tứ giác $E B Y X$ nội tiếp, dẫn đến $\angle I X Y=90^{\circ}$.
Mà $I Q=I N$ nên ta được $E I$ là đường trung trực của $Q N$, hay $E Q$ là đường trung trực của $Q N$.
Tương tự, $F N$ của là đường trung trực của $M P$.

Bài 5. Cho 9 điểm (khác nhau) nằm trong một hình vuông có cạnh là 1 .
a) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích không quá $\dfrac{1}{8}$.
b) Chứng minh rằng ta luôn có thể tìm một tam giác với các đỉnh từ 9 điểm trên sao cho nó có diện tích nhỏ hơn $\dfrac{1}{8}$.

Lời giải

Trước tiên ta chứng minh bài toán phụ: một tam giác có ba đỉnh nằm trên cạnh hoặc miền trong của một hình chữ nhật thì có diện tích không quá một nửa diện tích hình chữ nhật ấy.
Thật vậy, giả sử tam giác $M N P$ với $M, N, P$ thuộc cạnh hoặc miền trong hình chữ nhật $A B C$.
Xét trường hợp $M, N$ thuộc cạnh hình chữ nhật, không mất tính tổng quát, $M, N$ nằm trên cạnh $A B$.
Khi đó hạ đường cao $P H$ của tam giác $M N P$ thì $$S_{M N P}=\dfrac{1}{2} P H \cdot M N \leq \dfrac{1}{2} B C \cdot M N \leq \dfrac{1}{2} B C \cdot A B=\dfrac{1}{2} S_{A B C D} .$$
Xét trường hợp $M \in A B$. Kẻ đường thẳng qua $M$ song song với $B C$ cắt $C D$ tại $Q$ và cắt đường thẳng $N P$ tại $T$. Nếu $T$ nằm ngoài đoạn $N P$ thì $$
S_{M N P} \leq S_{M T P} \leq \dfrac{1}{2} S_{M Q C B} \leq \dfrac{1}{2} S_{A B C D} .$$
Nếu $T$ thuộc đoạn $N P$ thì $$S_{M N P}=S_{M T N}+S_{M T P} \leq \dfrac{1}{2} S_{M Q D A}+\dfrac{1}{2} S_{M Q C B}=\dfrac{1}{2} S_{A B C D} .$$


Cuối cùng, nếu $M, N, P$ dều không thuộc cạnh hình chữ nhật, không mất tính tổng quát, giả sử $M$ có khoảng cách gần với $A B$ nhất trong ba điểm $M, N, P$, kẻ đường thẳng qua $M$ song song với $A B$ cắt $A D, B C$ tại $R, S$.
Khi đó, $$S_{M N P} \leq \dfrac{1}{2} S_{R S C D} \leq \dfrac{1}{2} S_{A B C D} .$$
Vậy tóm lại, ta luôn có $S_{M N P} \leq \dfrac{1}{2} S_{A B C D}$. Đẳng thức xảy ra khi tam giác có một cạnh, giả sử $N P$ là cạnh của hình chữ nhật và $M$ nằm trên cạnh của hình chữ nhật đối diện với cạnh $N P$.
Trở lại bài toán, chia hình vuông thành bốn hình vuông nhỏ có diện tích là $\dfrac{1}{4}$ bởi hai đường trung bình.
Theo nguyên lý Dirichlet, tồn tại 3 diểm cùng thuộc một hình vuông nhỏ.
Diện tích tam giác tạo bởi 3 điểm này không quá $\dfrac{1}{2}$ diện tích hình vuông nhỏ, tức là không quá $\dfrac{1}{8}$ (nếu 3 điểm thẳng hàng thì ta coi như đó là tam giác có diện tích bằng 0 ).
Mà các điểm nằm bên trong hình vuông dẫn đến không có cạnh nào của tam giác này là cạnh của hình vuông, cho nên diện tích tam giác này phải bé hơn $\dfrac{1}{8}$.
Hoàn tất chứng minh.

ĐỀ THI THỬ VÀO LỚP 10 TOÁN CHUYÊN – TT STAR EDUCATION 2022

Bài 1. (2 điểm)

(a) Đặt $x=\sqrt{5}+\sqrt{7}$. Chứng minh $x$ là số vô tỉ và tính giá trị của biểu thức

$P(x)=\left(x^{4}-24 x^{2}+3\right)^{2023}$

(b) Cho hai số nguyên $a>b$ và hai nghiệm $\alpha, \beta$ của phương trình $3 x^{2}+3(a+b) x+4 a b=0$ thoả mãn hệ thức

$(\alpha+1) \alpha+(\beta+1) \beta=(\alpha+1)(\beta+1) .$

Tìm tất cả các giá trị có thể có của $(a, b)$.

Bài 2. (1 điểm) Cho hai số $x, y$ thỏa $4 x^{2}+9 y^{2}=36$. Tìm giá trị nhỏ nhất và lớn nhất của

$A=|x-3 y+1|$

Bài 3. (2 điểm)

(a) Tìm tất cả các số tự nhiên $n$ để $n^{2023}+n^{2}+1$ là số nguyên tố.

(b) Tìm tất cảc các số nguyên tố $p$ sao cho tồn tại các số tự nhiên $a, b, c$ thỏa $a^{2}+b^{2}+c^{2}=p$ và $a^{4}+b^{4}+c^{4}$ chia hết cho $p$

Bài 4. (3 điểm) Cho tam giác $A B C$ có $\angle A=45^{\circ}$ và $\angle B=15^{\circ}$. Đường tròn tâm $A$ bán kính $A C$ và đường tròn tâm $B$ bán kính $B C$ cắt nhau tại điểm thứ hai là $D$. Đường thẳng $d$ thay đổi qua $C$ cắt $(A)$ tại $M$ và cắt $(B)$ tại $N$; sao cho $C$ nằm giữa $M$ và $N$.

(a) Chứng minh tam giác $D M N$ và $A B C$ đồng dạng. Tìm vị trí của $d$ để $M N$ đạt giá trị lớn nhất.

(b) Tiếp tuyến tại $M$ của $(A)$ và tiếp tuyến tại $N$ của $(B)$ cắt nhau tại $P$. Gọi $K, H$ là hình chiếu của $D$ trên $P M, P N$. Đường thẳng $H K$ cắt $d$ tại $Q$, chứng minh $Q$ thuộc một đường tròn cố định.

(c) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $P M N$, chứng minh $D I < A B \sqrt{3}$.

Bài 5. (2 điểm) Cho một bảng vuông $9 \times 9$, trên các ô vuông có đặt một số con cào cào trên sao cho mỗi ô chỉ đặt nhiều nhất một con.

(a) Nếu không có hai con cào cào nào chung cạnh thì có thể đặt nhiều nhất là bao nhiêu con?

(b) Đặt 65 con cào cào trên bảng vuông, sau mỗi tiếng chuông tất cả các con cào cào nhảy sang ô bên cạnh và quay đầu một góc $90^{\circ}$ để chuẩn bị nhảy sang hướng đó. Chứng minh rằng sau một vài tiếng chuông thì sẽ có 2 con cào cào vào cùng một ô.

 

LỜI GIẢI

 

Bài 1 (a)

• Giả sử $\sqrt{5}+\sqrt{7}$ là số hữu tỉ, khi đó $\sqrt{5}+\sqrt{7}=\frac{p}{q}$, trong đó $p, q \in \mathbb{N}^{*}$ và $(p, q)=1$.

Suy ra $12+2 \sqrt{35}=\frac{p^{2}}{q^{2}} \Rightarrow\left(p^{2}-12 q^{2}\right)^{2}=140 q^{4}$.

Nếu $q=1$ thì $p=\sqrt{5}+\sqrt{7} \notin \mathbb{N}^{*}$ (Vô lí).

Do đó $q>1$, gọi $k$ là ước nguyên tố bất kì của $q$. Từ $(1)$ suy ra $\left(p^{2}-12 q^{2}\right)^{2} \vdots k \Rightarrow$ $p \vdots k$.

Điều này mâu thuẫn với $(p, q)=1$. Vậy $\sqrt{5}+\sqrt{7}$ là số vô tỉ.

  • $x=\sqrt{5}+\sqrt{7} \Rightarrow x^{2}=12-2 \sqrt{35} \Rightarrow\left(x^{2}-12\right)^{2}=140 \Rightarrow x^{4}-24 x^{2}=-4$.

Do đó $p(x)=\left(x^{4}-24 x^{2}+3\right)^{2023}=(-4+3)^{2023}=-1$.

b) Vì phương trình có hai nghiệm nên
$$
\Delta=9(a+b)^{2}-48 a b=3(a-3 b)(3 a-b) \geq 0 \Leftrightarrow\left[\left\{\begin{array} { l }
{ a – 3 b \geq 0 } \\
{ 3 a – b \geq 0 } \\
{ a – 3 b \leq 0 } \\
{ 3 a – b \leq 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a \geq 3 b \\
3 a \geq b \\
a \leq 3 b \\
3 a \leq b
\end{array}\right.\right.\right.
$$
Nếu $\left\{\begin{array}{l}a \leq 3 b \\ 3 a \leq b\end{array} \Rightarrow 4 a \leq 4 b \Rightarrow a \leq b\right.$ (Vô lí). Do đó $\left\{\begin{array}{l}a \geq 3 b \\ 3 a \geq b\end{array}\right.$.

Khi đó

Khi đó

$(\alpha+1) \beta+(\beta+1) \alpha=(\alpha+1)(\beta+1) \Leftrightarrow \alpha^{2}+\beta^{2}=\alpha \beta+1$

$\Leftrightarrow(\alpha+\beta)^{2}=3 \alpha \beta+1$

$\Leftrightarrow(a+b)^{2}=4 a b+1$

$\Leftrightarrow(a-b)^{2}=1$

$\Leftrightarrow a-b=1$ do  $a>b$ .\

Mà $\left\{\begin{array}{ l }{ a \geq 3 b } \\{ 3 a \geq b } \end{array} \right.$ nên

$\left\{\begin{array}{ l } b + 1 \geq 3 b  \\ 3 ( b + 1 ) \geq b  \end{array} \right.$

$\Leftrightarrow \left\{\begin{array}{l} b \leq \frac{1}{2} \\ b \geq-\frac{3}{2} \end{array} \right.$

$\Rightarrow b \in{0 ;-1}$

Vậy $(a, b)=\{(1 ; 0),(0 ;-1)\}$Thử lại thỏa.

Bài 2

  • Với $x=\frac{4 \sqrt{11}-1}{15}$ và $y=\frac{4+4 \sqrt{11}}{15}$ thì $4 x^{2}+9 y^{2}=36$ và $x=3 y-1$. Dẫn đến $A=0$, từ đây ta suy ra $\min A=0$.

  • Áp dụng bất đẳng thức Bunhiacopxki, ta có

$|x-3 y+1| \leq \sqrt{\left(\frac{1}{4}+1+\frac{1}{t}\right)\left(4 x^{2}+9 y^{2}+t\right)}=\sqrt{\left(\frac{5}{4}+t\right)(36+t),} \text { với } t>0$

Dấu “=” xảy ra khi $\left\{\begin{array}{l}\frac{2 x}{\frac{1}{2}}=\frac{-3 y}{1}=\frac{\sqrt{t}}{1} \\ \frac{1}{\sqrt{t}} \\ 4 x^{2}+9 y^{2}=36\end{array} \Rightarrow\left\{\begin{array}{l}x=\frac{t}{4} và y=-\frac{t}{3} \\ \frac{t^{2}}{4}+t^{2}=36\end{array}\right.\right.$

Từ đây, ta giải được $t^{2}=\frac{144}{5} \Rightarrow t=\frac{12 \sqrt{5}}{5}$.

Do đó, chọn $x=\frac{t}{4}=\frac{3 \sqrt{5}}{5}$ và $y=-\frac{t}{3}=-\frac{4 \sqrt{5}}{5}$. Khi đó $4 x^{2}+9 y^{2}=36$ và

$|x-3 y+1|=\sqrt{\left(\frac{5}{4}+t\right)(36+t)}=\sqrt{46+6 \sqrt{5}}=3 \sqrt{5}+1 .$

Như vậy, $\max A=3 \sqrt{5}+1$.

Bài 3 (a)

  • Với $n=0$ thì $n^{2023}+n^{2}+1=1$ không là số nguyên tố. (Loại)

  • Với $n=1$, ta có $n^{2023}+n^{2}+1=3$ là số nguyên tố. (Nhận)

  • Với $n \geq 2$, ta có $n^{2023}+n^{2}+1=n^{2023}-n+n^{2}+n+1$.

Mà $n^{2023}-n=n\left(n^{2022}-1\right) \vdots n^{3}-1 \vdots n^{2}+n+1$.

Do đó $n^{2023}+n^{2}+1 \vdots n^{2}+n+1$.

Hơn nữa, vì $n \geq 2$ nên $n^{2023}+n^{2}+1>n^{2}+n+1$ và $n^{2}+n+1>1$, suy ra $n^{2023}+n^{2}+1$ là hợp số.

Vậy giá trị cần tìm là $n=1$.

(b) Với $p=2$, khi đó chọn $a=b=1, c=0$ thì $a^{2}+b^{2}+c^{2}=2=p$ và $a^{4}+b^{4}+c^{4}=2 \vdots p$. Với $p>2$, giả sử tồn tại các số tự nhiên $a, b, c$ thỏa

$a^{2}+b^{2}+c^{2}-p \text { và } a^{4}+b^{4}+c^{4} \vdots p .$

Không mất tính tổng quát, ta giả sử $a \geq b \geq c \geq 0$.

Hơn nữa, $a^{2}+b^{2}+c^{2}=p>0$ nên $a>0$

Mặt khác,

$a^{4}+b^{4}+c^{4} =\left(a^{2}+b^{2}+c^{2}\right)^{2}-2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) $

$\quad\quad\quad\quad\quad =p^{2}-2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \vdots p$

$\Rightarrow 2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \vdots p \Rightarrow a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2} \vdots p$ (do $p$ lẻ) (1)

Ngoài ra,

$a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2} =a^{2}\left(b^{2}+c^{2}\right)+b^{2} c^{2} $

$\quad\quad\quad\quad\quad\quad\quad\quad =\left(p-b^{2}-c^{2}\right)\left(b^{2}+c^{2}\right)+b^{2} c^{2} \vdots p$

Kết hợp với $(1)$, suy ra $b^{2} c^{2}-\left(b^{2}+c^{2}\right)^{2}=-\left(b^{2}+c^{2}-b c\right)\left(b^{2}+c^{2}-b c\right) \vdots p \Rightarrow$

$\left[\begin{array}{c}b^{2}+c^{2}-b c \vdots p \\ b^{2}+c^{2}+b c \vdots p\end{array}\right.$. Nếu $b=c=0$ thì $a^{2}=p$ (Vô lí).

Do đó trong $b$ và $c$ luôn có một số lớn hơn 0 , suy ra $b^{2}-b c+c^{2}>0$ và $b^{2}+c^{2}+b c>0$.

Mà $b^{2}-b c+c^{2} \leq b^{2}+b c+c^{2} \leq b^{2}+a^{2}+c^{2}=p$, như vậy,

$\left[\begin{array} { l }{ b ^ { 2 } + c ^ { 2 } – b c \vdots p } \\{ b ^ { 2 } + c ^ { 2 } + b c \vdots p }\end{array} \Rightarrow \left[\begin{array}{l}b^{2}+c^{2}-b c=p \\b^{2}+c^{2}+b c=p\end{array}\right.\right.$

  • Nếu $b^{2}+c^{2}-b c=p$, suy ra $a^{2}=-b c$ (Vô lí).

  • Nếu $b^{2}+c^{2}+b c=p$, suy ra $b c=a^{2} \Rightarrow a=b=c$. (Do $a \geq b \geq c$ )

Khi đó $p=3 a^{2} \vdots 3 \Rightarrow p=3$.

Thử lại, với $p=3$, ta chọn $a=b=c=1$ thì $a^{2}+b^{2}+c^{2}=a^{4}+b^{4}+c^{4}=p$ (Nhận).

Vậy các giá trị cần tìm là $p=2$ và $p=3$.

Bài 4

(a)

  • Vì $C D$ là dây cung chung của $(A)$ và $(B)$ nên $A B$ là đường trung trực của $C D$. Khi đó $\widehat{C A D}=90^{\circ}$ và $\widehat{C B D}=30^{\circ}$.

Suy ra $\widehat{C M D}=\frac{1}{2} \widehat{C A D}=45^{\circ}=\widehat{C A B}$ và $\widehat{C N D}=\frac{1}{2} \widehat{C B D}=15^{\circ}=\widehat{C B A}$. Do đó $\triangle D M N \sim \triangle C A B$.

  • Từ $\triangle D M N \sim \triangle C A B$, dẫn đến $\frac{M N}{A B}=\frac{D M}{A C}$. $\Rightarrow M N=\frac{D M}{A C} \cdot A B \leq \frac{2 A C}{A C} \cdot A B=2 A B .$

Dấu “=” xảy ra khi $D M$ là đường kính của $(A)$.

Hơn nữa, do $D$ là điểm đối xứng với $C$ qua $A B$ nên $D$ là điểm cố định. Vậy giá trị lớn nhất của $M N$ là $2 A B$ khi $d$ đi qua $C L$ với $D L$ là đường kính của $(A)$.

(b) $\mathrm{Ta}$ có $\widehat{M P N}=180^{\circ}-\widehat{P M N}-\widehat{P N M}=180^{\circ}-\widehat{M D C}-\widehat{N D C}=180^{\circ}-\widehat{M D N}$. $\Rightarrow \widehat{M P N}+\widehat{M D N}=180^{\circ}$.

Do đó tứ giác $P M D N$ nội tiếp.

Mặt khác, ta có $D N \perp P N, D K \perp P M$ nên $H K$ là đường thẳng Simson của tam giác $P M N$, hơn nữa, $H K$ cắt $M N$ tại $Q$, ta suy ra $D Q \perp M N$.

Do đó $\widehat{C Q D}=90^{\circ}=\widehat{C A D} \Rightarrow$ Tứ giác $Q C D A$ nội tiếp hay $Q$ thuộc đường tròn ngoại tiếp tam giác $A C D$ cố định.

(c) Ta có $\widehat{M P N}=180^{\circ}-\widehat{M D N}=180^{\circ}-120^{\circ}=60^{\circ} \Rightarrow \widehat{M I N}=120^{\circ}$. Dựng $I S \perp M N(S \in M N)$, khi đó $I M=\frac{M S}{\sin 60^{\circ}}=\frac{M N}{2 \sin 60^{\circ}}=\frac{M N}{\sqrt{3}} \leq \frac{2 A B}{\sqrt{3}} < A B \sqrt{3}$.

Hơn nữa, tứ giác $P M D N$ nội tiếp nên $D I=I M<A B \sqrt{3}$.

Bài 5

(a) Ta thấy 2 ô vuông liên tiếp chỉ có nhiều nhất 1 con cào cào, do đó chi bảng vuông thành 40 hình vuông $1 \times 2$ và 1 ô vuông ở góc, trong mỗi hình domino thì có nhiều nhất 1 con cào cào nên số con cào cào nhiều nhất là 41 con, một cách đặt thỏa đề bài là đặt xen kẽ như bàn cờ.

(b) Tô bảng $9 \times 9$ bởi các màu đỏ, xanh, trắng xen kẽ lên bảng như hình bên dưới.

Ta chứng minh rằng khi đặt 65 con cào cào trên bảng vuông thì sẽ có thời điểm mà số con cào cào nằm trên các ô vuông được tô màu không nhỏ hơn 33 con.

Thật vậy, giả sử ban đầu số cào cào trên các ô vuông được tô màu nhỏ hơn 33 con, khi đó số cào cào trên các ô vuông trắng không ít hơn 33 con. Sau tiếng chuông đầu tiên, số cào cào ban đầu nằm trên các ô trắng thì đều nhảy sang các ô xanh hoặc đỏ và ngược lại. Như vậy, tổng số cào cào nằm trên các ô vuông xanh và đỏ không nhỏ hơn 33 con. Ta gọi thời điểm này là $A$.

Tại thời điểm $A$, có ít nhất 33 con cào cào nằm trên 20 ô vuông đỏ và 16 ô vuông xanh. Giả sử lúc này vẫn chưa có 2 con cào cào cào nằm trên cùng 1 ô. Như vậy, số cào cào trên các ô vuông xanh không vượt quá 16 và số cào cào trên các ô vuông đỏ không ít hơn $17 .$

Mặt khác, ta có nhận xét rằng cứ sau 2 tiếng chuông, nếu con cào cào ban đầu nằm trên ô đỏ thì sẽ nhảy vào ô xanh.

Như vậy, sau 2 tiếng chuông tính từ thời điểm $A$ thì sẽ có không ít hơn 17 con cào cào trên các ô đỏ đã nhảy hết vào 16 ô xanh. Khi đó chắc chắn có 1 ô xanh chứa 2 con cào cào. Hoàn tất chứng minh.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI THỬ VÀO LỚP 10 KHÔNG CHUYÊN – TT STAR EDUCATION 2022

Bài 1. (1,5 điểm) Cho $x=\sqrt{3}+\sqrt{2}$ và $y=\sqrt{2}-\sqrt{3}$.

a) Tính giá trị của biểu thức $A=x^{2}-y^{2}$.

b) Đặt $B=\left(x^{2}-5\right)^{2}+\left(y^{2}-5\right)^{2}$, rút gọn $\sqrt{19-2 \sqrt{B}}$.

Bài 2. (2,0 điểm)

a) Giải phương trình: $\sqrt{3 x^{2}-x-1}=2 x-1$.

b) Giải hệ phương trình: $\left\{\begin{array}{l}2022 x^{2}+2023 y^{2}=4045 \\ 2023 x^{2}-2022 y^{2}=1\end{array}\right.$.

Bài 3. (1,5 điểm) Cho parabol $(P): y=-x^{2}$ và đường thẳng $(d): y=-(2 m+1) x+3+m^{2}$.

a) Tìm $m$ để $(P)$ và $(d)$ cắt nhau.

b) Gọi $M\left(x_{1} ; y_{1}\right), N\left(x_{2} ; y_{2}\right)$ là giao điểm của $(P)$ và $(d)$.

Tìm $m$ dể $2 m x_{1}+x_{2}+y_{1}-2 y_{2}=-m^{2}+14 m+12$.

Bài 4. (2,0 điểm)

a) Hai lớp 10 Toán – Tin của trường PTNK có tổng cộng 80 học sinh. Hết học kì một, 3 học sinh lớp 10 Toán chuyển sang lớp 10 Tin nên số học sinh 10 Toán bằng $\frac{9}{7}$ số học sinh lớp 10 Tin. Hỏi lúc đầu mỗi lớp có bao nhiêu học sinh.

b) Trong một cuộc khảo sát về sở thích chơi bóng đá và tennis của một nhóm học sinh cho kết quả như sau: số học sinh chỉ thích chơi bóng đá gấp 3 lần số học sinh thích chơi tennis. Sau khi phỏng vấn thêm ba bạn và ba bạn đó thích chơi cả hai môn thì tổng số bạn được phỏng vấn gấp 3 lần số bạn thích cả hai môn. Hỏi ban đầu có bao nhiêu bạn chỉ thích chơi bóng đá, chỉ thích chơi tennis và thích chơi cả hai môn? Biết có ít nhất một bạn chỉ thích chơi tennis.

Bài 5. (3,0 điểm) Cho tam giác $A B C$ vuông cân tại $A$ và $A B=a, I$ là trung điểm $A C$, đường tròn tâm $O$ ngoại tiếp tam giác $A B C$.

a) Tính $B C, B I$ và bán kính của $(O)$ theo $a$.

b) Trên tia đối của $I B$ lấy điểm $D$ sao cho $I D=I B . B D$ cắt $(O)$ tại $E$ khác $B$. Tính $A D$ và chứng minh $A D$ là tiếp tuyến của $(O)$.

c) Vẽ $A H \perp B D$ với $H$ thuộc $B D$. Tứ giác $A H C E$ là hình gì? Tính $\angle C H D$.

 

LỜI GIẢI

 

Bài 1.

a) Với $x=\sqrt{3}+\sqrt{2}$ và $y=\sqrt{2}-\sqrt{3}$, ta có: $A=(\sqrt{3}+\sqrt{2})^{2}-(\sqrt{2}-\sqrt{3})^{2}=4 \sqrt{6}$.

b) Với $x=\sqrt{3}+\sqrt{2}$ và $y=\sqrt{2}-\sqrt{3}$, ta có:

$B=\left((\sqrt{3}+\sqrt{2})^{2}-5\right)^{2}+\left((\sqrt{2}-\sqrt{3})^{2}-5\right)^{2}=48  Suy ra  \sqrt{19-2 \sqrt{B}}=4-\sqrt{3} .$

Bài 2.

a)$\sqrt{3 x^{2}-x-1}=2 x-1 $

$\Leftrightarrow 3 x^{2}-x-1=(2 x-1)^{2}\left(Đ K: x \geq \frac{1}{2}\right)$

$\Leftrightarrow x^{2}-3 x+2=0 \Leftrightarrow\left[\begin{array}{l}x=1(n) \\ x=2(n)\end{array}\right.$

Vậy $S=(1 ; 2)$

b) $\left\{\begin{array}{l}2022 x^{2}+2023 y^{2}=4045 \\ 2023 x^{2}-2022 y^{2}=1\end{array} \Leftrightarrow\left\{\begin{array}{l}x^{2}=1 \\ y^{2}=1\end{array} \Leftrightarrow\left\{\begin{array}{l}x=1 \\ y=-1 \\ x=-1 \\ y=1 \\ x=-1 \\ y=-1\end{array}\right.\right.\right.$

Bài 3.

a) ĐK: $m \neq-\frac{1}{2}$

Phương trình hoành độ giao điểm của $(P)$ và $(d): x^{2}-(2 m+1) x+3+m^{2}=0 (1)$ $(P)$ và $(d)$ cắt nhau $\Leftrightarrow \Delta>0 \Leftrightarrow 4 m-11>0 \Leftrightarrow m>\frac{11}{4}$

Vậy $m>\frac{11}{4}$.

b) Với $m>\frac{11}{4}$ và $x_{1}, x_{2}$ là hai nghiệm của phương trình (1), ta có:

$S=x_{1}+x_{2}=2 m+1 ; P=x_{1} x_{2}=m^{2}+3 ; $

$y_{1}=-(2 m+1) x_{1}+3+m^{2} ; $

$y_{2}=-(2 m+1) x_{2}+3+m^{2}$

Ta có: $2 m x_{1}+x_{2}+y_{1}-2 y_{2}=-m^{2}+14 m+12$

$\Leftrightarrow 2 m x_{1}+x_{2}-(2 m+1) x_{1}+3+m^{2}+2(2 m+1) x_{2}-6-2 m^{2}=-m^{2}+14 m+12$

$\Leftrightarrow-x_{1}+(4 m+3) x_{2}=14 m+15 $

$\Leftrightarrow-\left(x_{1}+x_{2}\right)+4(m+1) x_{2}=14 m+15 $

$\Leftrightarrow-2 m-1+4(m+1) x_{2}=14 m+15 $

$\Leftrightarrow 4(m+1) x_{2}=16(m+1) \Leftrightarrow x_{2}=4$

Với $x_{2}=4$ thay vào $(1)$ ta được: $m^{2}-8 m+15=0 \Leftrightarrow\left[\begin{array}{ll}m=5  (n) \\ m=3  (n)\end{array}\right.$

Vậy $m=3$ hoặc $m=5$.

Bài 4.

a) Gọi $x, y$ (học sinh) lần lượt là số học sinh mỗi lớp lúc đầu.

Tổng số học sinh là 80 nên $x+y=80$

Hết học kì 1 , lớp toán có $x-3$ học sinh, lớp Tin có $y+3$

Số học sinh lớp Toán bằng $\frac{9}{7}$ số học sinh lớp Tin nên $x-3=\frac{9}{7}(y+3) \Leftrightarrow x-\frac{9}{7} y=\frac{48}{7}$

Ta có hệ phương trình: $\left\{\begin{array}{l}x+y=80 \\ x-\frac{9}{7} y=\frac{48}{7}\end{array} \Leftrightarrow\left\{\begin{array}{l}x=48 \\ y=32\end{array}\right.\right.$

Vậy ban đầu lớp Toán có 48 học sinh và lớp Tin có 32 học sinh.

b) Gọi $x$ là số bạn chỉ thích chơi tennis; $y$ là số bạn thích chơi cả hai môn. $(x, y \in \mathbb{N})$

Số bạn chỉ thích chơi bóng đá gấp 3 lần số bạn thích chơi tennis nên số bạn chỉ thích bóng đá là: $3(x+y)$.

Khi có thêm 3 bạn thích chơi cả hai môn thì tổng số bạn gấp 3 lần số bạn thích chơi cả hai môn nên: $3(x+y)+x+y+3=3(y+3) \Leftrightarrow 4 x+y=6$.

Vì có ít nhất một bạn chỉ thích chơi tennis nên $x \geq 1$ mà $4 x+y=6 \Rightarrow\left\{\begin{array}{l}x=1 \\ y=2\end{array}\right.$.

Vậy có 9 bạn chỉ thích chơi bóng đá, 1 bạn chỉ thích chơi tennis và 2 bạn thích chơi cả hai môn.

Bài 5.

a)  $\triangle A B C$ vuông cân tại $A$ nên $A B=A C=a \Rightarrow A I=\frac{a}{2}$ và $O$ là trung điểm của $B C$

$B C^{2}=A B^{2}+A C^{2}=2 a^{2} \Rightarrow B C=a \sqrt{2}$

  • Bán kính đường tròn tâm $O$ là $O B=O C=\frac{a \sqrt{2}}{2}$

  • $\triangle A B I$ vuông tại $A$ nên $B I^{2}=A B^{2}+A I^{2}=\frac{5 a^{2}}{4} \Rightarrow B I=\frac{a \sqrt{5}}{2}$

b)  Tứ giác $A B C D$ có $I$ là trung điểm của $A C$ và $B D$ $\Rightarrow A B C D$ là hình bình hành $\Rightarrow A D=B C=a \sqrt{2}$

  • $\triangle A B C$ vuông cân tại $A$ có $O$ là trung diểm $B C$

$\Rightarrow A O \perp B C$ mà $A D / / B C$ (do $A B C D$ là hình bình hành)

$\Rightarrow A O \perp A D \Rightarrow A D$ là tiếp tuyến của $(O)$.

c) $\angle B E C$ là góc nội tiếp chắn nửa đường tròn $\Rightarrow \angle B E C=90^{\circ}$

Ta có: $A H \perp B D$ và $C E \perp B D$ (do $\left.\angle B E C=90^{\circ}\right) \Rightarrow A H / / C E$. (1)

Tứ giác $A B C D$ là hình bình hành nên $A B=C D$ và $\angle C D B=\angle A B D$.

Xét $\triangle A H B$ và $\triangle C E D$ lần lượt vuông tại $H$ và $E$ có:

$A B=C D$ và $\angle A B H=\angle C D E(\mathrm{cmt})$

$\Rightarrow \triangle A H B=\triangle C E D$ (ch.gn) $\Rightarrow A H=C E$. (2)

Từ (1) và $(2)$ suy ra tứ giác $A H C E$ là hình bình hành.

  • Tứ giác $A H C E$ là hình bình hành suy ra $\angle C H D=\angle A E B=\angle A C B=45^{\circ}$.

 

 

 

 

 

 

 

 

 

 

ĐỀ THI THỬ VÀO LỚP 10 KHÔNG CHUYÊN LẦN 2 TT STAR EDUCATION 2020

Bài 1. (1,5 điểm)

a) Cho đường thẳng $(d): y=(1-2 m) x+m^{2}+m$ và parabol $(P): y=x^{2}$. Tìm $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại điểm có hoành độ là 1 .

b) Với $x, y$ dương và $x \neq 4 y$, cho biểu thức:

$P=\left(\frac{x \sqrt{x y}-2 x y+4 y \sqrt{x y}}{x \sqrt{x}+8 y \sqrt{y}}-\frac{3 x+2 y}{\sqrt{x}+2 \sqrt{y}}+3 \sqrt{y}\right) \cdot\left(\frac{\sqrt{x}+6 \sqrt{y}}{4 y-x}-\frac{1}{\sqrt{x}+2 \sqrt{y}}\right)$

Tính $\frac{x}{y}$ khi $P=5$.

Bài 2. (2,0 điểm)

a) Giải phương trình: $\sqrt{x+5}+\sqrt{2 x+1}=3 \sqrt{x}$.

b) Giải hệ phương trình: $\left\{\begin{array}{l}(x+y-4)\left(x^{2}+x y+y^{2}+x+y\right)=0 \\ \sqrt{2 x-y}+\sqrt{2 y-x}=2\end{array}\right.$.

Bài 3. (1,5 diểm) Cho phương trình: $(2 m-1) x^{4}-2 x^{2}-m+2=0$

a) Giải phương trình khi $m=\frac{3}{2}$.

b) Tìm $m$ để phương trình (1) có 4 nghiệm phân biệt $x_{1}, x_{2}, x_{3}, x_{4}$ thỏa:

$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=5 .$

Bài 4. a) (1,0 điểm) Một trang bán hàng online bán tủ lạnh với giá niêm yết. Vì bán không được hàng nên cửa hàng bắt đầu chương trình giảm giá như sau: Cứ mỗi ngày sẽ giảm thêm 200 000 đồng so với ngày trước đó cho đến khi bán được sản phầm đầu tiên. Biết đến ngày thứ 5 của chương trình thì cửa hàng bán được sản phầm đầu tiên. Từ ngày hôm sau, cửa hàng lại tăng dần giá, mỗi ngày tăng thêm 150 000 đồng so với ngày trước đó thì bán được sản phẩm thứ hai sau 4 ngày kể từ khi bán được sản phẩm đầu tiên. Biết giá bán sản phẩm thứ hai bằng $95 \%$ so với giá niêm yết. Hỏi giá bán tủ lạnh đầu tiên là bao nhiêu?

b) (1,0 điểm) Trong kỳ thi tuyển sinh vào 10 , các bạn học sinh của một lớp đăng ký thi các môn chuyên Toán, Lý và Anh. Trong đó, số bạn chỉ thi một môn chuyên gấp đôi số bạn thi cả ba môn chuyên. Số bạn thi chuyên Lý bằng số bạn chỉ thi chuyên Toán. Có 10 bạn chỉ đăng ký thi chuyên Anh, không có bạn nào chỉ thi hai môn Toán và Anh, có ít nhất một bạn chỉ thi đúng hai môn chuyên. Tính số học sinh thi cả ba môn chuyên, biết lớp có 48 học sinh và bạn nào cũng đăng ký thi ít nhất một môn chuyên.

Bài 5. (3,0 điểm) Cho $\triangle A B C$ vuông tại $A$, đường cao $A H, B H=a, C H=4 a$. Đường phân giác của góc $A H B$ cắt $A B$ taii $D$, đường phân giác của góc $A H C$ cắt $A C$ tại $E$.

a) Chứng minh tứ giác $A D H E$ nội tiếp. Tính $A H$ theo $a$ và tính góe $A D E S S$

b) Chứng minh $\angle H D E=\angle A B C$. Từ đó suy ra $D E$ là tiếp tuyến chung của đường tròn ngoại tiếp $\triangle B D H, \triangle C H E$.

c) Gọi $M, N$ là trung điểm của $D E, B C$. $A N$ cắt $D E$ tại $P$. Chứng minh các tứ giác $H N P M, B M P C$ nội tiếp.

LỜI GIẢI

 

Bài 1. a) Điều kiện $m \neq \frac{1}{2}$.

Phương trình hoành độ giao điểm của $(P)$ và $(d)$ là:

Vậy $m=0$ hoặc $m=1$.

b) $P=\left(\frac{x \sqrt{x y}-2 x y+4 y \sqrt{x y}}{x \sqrt{x}+8 y \sqrt{y}}-\frac{3 x+2 y}{\sqrt{x}+2 \sqrt{y}}+3 \sqrt{y}\right) \cdot\left(\frac{\sqrt{x}+6 \sqrt{y}}{4 y-x}-\frac{1}{\sqrt{x}+2 \sqrt{y}}\right)$

$=\left[\frac{\sqrt{x y}(x-2 \sqrt{x y}+4 y)}{(\sqrt{x}+2 \sqrt{y})(x-2 \sqrt{x y}+4 y)}-\frac{3 x+2 y}{\sqrt{x}+2 \sqrt{y}}+3 \sqrt{y}\right] \cdot\left[\frac{\sqrt{x}+6 \sqrt{y}-(2 \sqrt{y}-\sqrt{x})}{(2 \sqrt{y}-\sqrt{x})(\sqrt{x}+2 \sqrt{y})}\right] $

$=\frac{\sqrt{x y}-3 x-2 y+3 \sqrt{y}(\sqrt{x}+2 \sqrt{y})}{\sqrt{x}+2} \cdot \frac{\sqrt{x}+6 \sqrt{y}-2 \sqrt{y}+\sqrt{x}}{(2 \sqrt{y}-\sqrt{x})(\sqrt{x}+2 \sqrt{y})} $

$=\frac{-3 x+4 \sqrt{x y}+4 y}{\sqrt{x}+2 \sqrt{y}} \cdot \frac{2 \sqrt{x}+4 \sqrt{y}}{(2 \sqrt{y}-\sqrt{x})(\sqrt{x}+2 \sqrt{y})} $

$=\frac{(2 \sqrt{y}-\sqrt{x})(3 \sqrt{x}+2 \sqrt{y})}{\sqrt{x}+2 \sqrt{y}} \cdot \frac{2(\sqrt{x}+2 \sqrt{y})}{(2 \sqrt{y}-\sqrt{x})(\sqrt{x}+2 \sqrt{y})} $

$=\frac{6 \sqrt{x}+4 \sqrt{y}}{\sqrt{x}+2 \sqrt{y}}$

Với $P=5 \Rightarrow 6 \sqrt{x}+4 \sqrt{y}=5 \sqrt{x}+10 \sqrt{y} \Rightarrow \sqrt{x}=6 \sqrt{y} \Rightarrow \frac{x}{y}=36$ (nhận).

Vậy $\frac{x}{y}=36$.

Bài 2. a) $\sqrt{x+5}+\sqrt{2 x+1}=3 \sqrt{x}(*)$

Điều kiện xác định: $x \geq 0$

$(*) \Leftrightarrow x+5+2 x+1+2 \sqrt{(x+5)(2 x+1)}=9 x$

$\Leftrightarrow 2 \sqrt{2 x^{2}+11 x+5}=6 x-6 $

$\Leftrightarrow \sqrt{2 x^{2}+11 x+5}=3 x-3 \quad(x \geq 1) $

$\Leftrightarrow 2 x^{2}+11 x+5=(3 x-3)^{2} $

$\Leftrightarrow 7 x^{2}-29 x+4=0 $

$\Leftrightarrow\left[\begin{array}{ll}x=4\quad(n) \\x=\frac{1}{7} \quad(l)\end{array}\right.$

Vậy $S=[4]$.

Không loại nghiệm trừ 0.5. Học sinh sử dụng phép suy ra và thử lại đúng vẫn cho đủ điểm

b) $\left\{\begin{array}{l}(x+y-4)\left(x^{2}+x y+y^{2}+x+y\right)=0 \\ \sqrt{2 x-y}+\sqrt{2 y-x}=2\end{array}\right.$

Điều kiện xác định: $2 x \geq y$ và $2 y \geq x$.

$(1) \Leftrightarrow\left[\begin{array}{l}x=4-y \\ x^{2}+x y+y^{2}+x+y=0\quad(3)\end{array}\right.$

  • Thay $x=4-y$ vào phương trình $(2)$, ta có:

$\sqrt{8-3 y}+\sqrt{3 y-4}=2$

$\Leftrightarrow 8-3 y+3 y-4+2 \sqrt{(8-3 y)(3 y-4)}=4$

$\Leftrightarrow 2 \sqrt{(8-3 y)(3 y-4)}=0 \Leftrightarrow\left[\begin{array}{l}y=\frac{8}{3} \\ y=\frac{4}{3}\end{array}\right.$

Với $y=\frac{8}{3} \Rightarrow x=\frac{4}{3}$ (nhận)

Với $y=\frac{4}{3} \Rightarrow x=\frac{8}{3}$ (nhận)

  • Từ hai điều kiện $2 x \geq y$ và $2 y \geq x$ cộng vế theo vế, ta được

$2 x+2 y \geq x+y \Leftrightarrow x+y \geq 0$

$(3) \Leftrightarrow\left(x+\frac{y}{2}\right)^{2}+\frac{3 y^{2}}{4}+(x+y)=0 $

$\Leftrightarrow\left\{\begin{array} { l }{ x + \frac { y } { 2 } = 0 } \\{ y = 0 } \\{ x + y = 0 }\end{array} \Leftrightarrow \left\{\begin{array}{l}x=0 \\y=0\end{array}\right.\right.$

Thay $x=0$ và $y=0$ vào $(2)$, ta được: $0=2$ (vô lý)

Suy ra $x=0$ và $y=0$ không là nghiệm của hệ phương trình.

Vậy nghiệm của hệ phương trình là $\left(\frac{8}{3} ; \frac{4}{3}\right)$ hoặc $\left(\frac{4}{3} ; \frac{8}{3}\right)$.

Học sinh làm cách khác đúng vẫn cho đủ điểm

Bài 3. a) Khi $m=\frac{3}{2}$ phương trình (1) trở thành:

$2 x^{4}-2 x^{2}+\frac{1}{2}=0 \Leftrightarrow\left(2 x^{2}-1\right)^{2}=0 \Leftrightarrow x^{2}=\frac{1}{2}\Leftrightarrow\left[\begin{array}{l}x=\frac{\sqrt{2}}{2} \\x=-\frac{\sqrt{2}}{2}\end{array}\right.$

Vậy $S=(\frac{\sqrt{2}}{2} ;-\frac{\sqrt{2}}{2})$.

b) Đặt $t=x^{2}(t \geq 0)$

Phương trình $(1)$ trở thành $(2 m-1) t^{2}-2 t-m+2=0$ (2)

Phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có 2 nghiệm phân biệt, không âm khi và chỉ khi

$\left\{\begin{array}{l}2 m-1 \neq 0 \\ \Delta^{\prime}>0 \\ S \geq 0 \\ P \geq 0\end{array} \Leftrightarrow\left\{\begin{array}{l}m \neq \frac{1}{2} \\ 2 m^{2}-5 m+3>0 \\ \frac{2}{2 m-1}>0 \\ \frac{2-m}{2 m-1}>0\end{array} \Leftrightarrow\left\{\begin{array}{l}\frac{1}{2}<m<1 \\ \frac{3}{2}<m<2\end{array}\right.\right.\right.$

(Nếu thiếu đk S,P không âm thì trừ 0.25. Hệ điều kiện không cần giải ra đến bước 3 vẫn đủ điểm)

Không mất tính tổng quát, giả sử $t_{1}=x_{1}^{2}=x_{2}^{2}, t_{2}=x_{3}^{2}=x_{4}^{2}$

Khi đó: $2 t_{1}+2 t_{2}=5 \Leftrightarrow \frac{4}{2 m-1}=5 \Leftrightarrow m=\frac{9}{10}$ (nhận)

(Không đặt $t=x^{2}$ để đưa về phương trình bậc 2 mà đặt $\Delta$ làm ra kết quả đúng thì trừ $0.5$)

Bài 4. a) Gọi $x$ (đồng) là giá bán niêm yết của tủ lạnh. $(x>0)$ Giá bán tủ lạnh sau 5 ngày giảm giá là: $x-1000000$ đồng Giá bán sản phẩm sau 4 ngày tăng giá là: $x-400000$ đồng Theo đề bài ta có phương trình:

$x-400000=95 \% x \Rightarrow x=8000000 (đồng)$

Vậy giá bán tủ lạnh đầu tiên là 7 triệu đồng.

b)Gọi $x, y$ lần lượt là số học sinh chỉ thi Toán và Lý. $a, b$ lần lượt là số học sinh chỉ thi hai môn Toán – Lý và Lý – Anh.

$t$ là số học sinh thi cả ba môn.

Ta có hệ phương trình sau:

$\left\{\begin{array}{l}x+y+10=2 t \\ y+a+b+t=x \\ x+y+10+a+b+t=48\end{array}\right.$

với $a+b \geq 1$.

Từ $(2),(3) \Rightarrow x=19$, khi đó

(1) $\Leftrightarrow y+29=2 t \Rightarrow 2 t \geq 29 \Rightarrow t \geq 15$

Từ (1), (3) $\Rightarrow 3 t+a+b=48$

mà $a+b \geq 1$ nên $3 t \leq 47 \Rightarrow t \leq 15$

Suy ra $t=15$

Vậy có 15 học sinh thi cả ba môn chuyên.

Bài 5. a) • Ta có $\angle D H E=\angle D H A+\angle A H E=45^{\circ}+45^{\circ}=90^{\circ}$

Tứ giác $A D H E$ có: $\angle D A E+\angle D H E=90^{\circ}+90^{\circ}=180^{\circ}$

$\Rightarrow A D H E$ nội tiếp đường tròn đường kính $D E$.

  • $\triangle A B C$ vuông tại $A$ có $A H$ là đường cao nên $A H^{2}=B H \cdot C H \Rightarrow A H=2 a$.

  • Tứ giác $A D H E$ nội tiếp $\Rightarrow \angle A D E=\angle A H E=45^{\circ}$

b) $\angle H D E=\angle H A E$ ( $A D H E$ nội tiếp)

$\angle H A E=\angle A B C$ (cùng phụ $\angle B A H$ ).

Suy ra $\angle H D E=\angle A B C$

  • Gọi $I, J$ là tâm đường tròn ngoại tiếp $\triangle B D H, \triangle C H E$.

Ta có $\angle I D H=\frac{180^{\circ}-\angle D I H}{2}=90^{\circ}-\angle D B H=90^{\circ}-\angle H D E$

$\Rightarrow \angle I D E=90^{\circ} \Rightarrow D E$ là tiếp tiếp của đường tròn ngoại tiếp $\triangle B D H$.

Chứng minh tương tự ta cũng được $\angle D E H=\angle E C H$. Từ đó suy ra $D E$ là tiếp tuyến của đường tròn ngoại tiếp $\triangle H E C$

(Học sinh không được viết chứng minh tương tự, nếu viết chứng minh tương tự không cho điểm ý đó)

Vậy $D E$ là tiếp tuyến chung của đường tròn ngoại tiếp $\triangle B D H, \triangle C H E$.

c) – $\triangle A N B$ cân tại $N$ suy ra $\angle A N B=180^{\circ}-2 \angle N B A$

$\triangle H D M$ cân tại $M$ suy ra $\angle D M H=180^{\circ}-2 \angle M D H$

Mà $\angle N B A=\angle M D H$ (cmt)

$\Rightarrow \angle P N H=\angle D M H \Rightarrow H N P M$ nội tiếp (góc ngoài bằng góc đối trong).

  • Gọi $K$ là giao điểm của $D E$ và $B C$

$\triangle A D E$ vuông tại $A$ có $\angle A D E=45^{\circ} \Rightarrow \triangle A D E$ cân tại $A \Rightarrow A M \perp D E$

Tứ giác $K A M H$ có: $\angle A M K=\angle A H K=90^{\circ} \Rightarrow K A M H$ nội tiếp

$\Rightarrow \angle K A H=\angle K M H=\angle K N A \Rightarrow \angle K A N=90^{\circ}$

$\Rightarrow K A$ là tiếp tuyến của đường tròn ngoại tiếp $\triangle A B C$

$\triangle K A M \backsim \triangle K P A \Rightarrow K A^{2}=K M \cdot K P$

$\triangle K A B \backsim \triangle K C A \Rightarrow K A^{2}=K B \cdot K C$

$\Rightarrow K M \cdot K P=K B \cdot K C \Rightarrow \frac{K M}{K C}=\frac{K B}{K P}$

Xét $\triangle K M B$ và $\triangle K C P$ có: $\angle B K M$ chung, $\frac{K M}{K C}=\frac{K B}{K P}$

$\Rightarrow \triangle K M B \backsim \triangle K C P \Rightarrow \angle K M B=\angle K C P \Rightarrow B M P C$ nội tiếp.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI THỬ VÀO LỚP 10 TRUNG TÂM STAR EDUCATION TOÁN CHUYÊN – 2020

Bài 1. (1,5 điểm )

a) Cho $f(x)=x^{2}-a x+a^{2}-4$, trong đó $a$ là tham số. Tìm giá trị của $a$, sao cho phương trình $f(x)=0$ có hai nghiệm thực $x_{1}$ và $x_{2}$ sao cho $\left|x_{1}^{3}-x_{2}^{3}\right| \leq 4$.

b) Giải phương trình: $\frac{1+3 \sqrt{x}}{4 x+\sqrt{2+x}}-1=0$.

Bài 2. (1,5 điểm ) Cho $x, y>0$ thỏa mãn $2 y>x$ và $11(\sqrt{x}+\sqrt{y})+4 \sqrt{x y}=26$

a) Tìm giá trị nhỏ nhất của biểu thức: $T=11(x+y)+\frac{1}{x}+\frac{1}{y}+2021$

b) Chứng minh rằng: $\frac{1}{x^{3}(2 y-x)}+x^{2}+y^{2} \geq 3$

Bài 3. (1,0 điểm) Cho hàm số bậc hai $f(x)=a x^{2}+b x+c,(a \neq 0)$. Biết rằng phương trình $f(x)=x$ vô nghiệm. Chứng minh rằng phương trình $f(f(x))=x$ cũng vô nghiệm.

Bài 4. $\left(1,5\right.$ điểm) Cho $x, y \in N$ thỏa mãn: $3^{x}+171=y^{2}$.

a) Chứng minh rằng: $x: 2$.

b) Tìm các cặp số $x, y$ thỏa mãn phương trình.

Bài 5. (3,0 điểm) Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $P A, P B$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $A B$, tiếp tuyến tại $C$ cắt $P A, P B$ và $P O$ lần lượt tại $D, E, F$.

a) Gọi $H$ là giao điểm của đường tròn ngoại tiếp tam giác $P D E$ và $P O$, kéo dài $H C$ cắt đường tròn $P D E$ tại điểm $G$. Chứng minh rằng tứ giác $P F C G$ nội tiếp.

b) Gọi $I$ là tâm đường tròn nội tiếp tam giác $\triangle P D E$. Chứng minh rằng tứ giác $D O E I$ nội tiếp.

c) Chứng minh rằng $H$ là tâm đường tròn ngoại tiếp tam giác $\triangle D O E$.

d) Chứng minh rằng đường tròn ngoại tiếp các tam giác $P A B, P D E$ và $P C F$ cùng đi qua một điểm khác $P$.

Bài 6. (1,5 điểm) Trên mặt phẳng cho 17 điểm, trong đó không có ba điểm nào thẳng hàng. Qua hai điểm bất kì ta vẽ được một đoạn thẳng và trên đoạn thẳng đó ghi một số nguyên dương (các số ghi trên các đoạn thẳng khác nhau là các số nguyên dương khác nhau). Ta tô màu mỗi đoạn thẳng bằng một trong ba màu: đỏ, xanh và vàng.

a) Chứng minh rằng tồn tại một tam giác có ba cạnh cùng màu.

b) Chứng minh rằng tồn tại một tam giác có các cạnh là các đoạn thẳng đã vẽ và tổng các số ghi trên các cạnh của tam giác đó là hợp số.

LỜI GIẢI

 

Bài 1. a) Để phương trình có hai nghiệm thực $x_{1}$ và $x_{2}$ thì $\Delta=a^{2}-4\left(a^{2}-4\right)=16-3 a^{2} \geq 0$. Theo định lý Vietè ta có: $\left\{\begin{array}{l}x_{1}+x_{2}=a \\ x_{1} x_{2}=a^{2}-4\end{array}\right.$, do đó:

$\left|x_{1}^{3}-x_{2}^{3}\right|=\left|x_{1}-x_{2}\right|\left[\left(x_{1}+x_{2}\right)^{2}-x_{1} x_{2}\right]=\left|x_{1}-x_{2}\right|\left[a^{2}-a^{2}+4\right]=4\left|x_{1}-x_{2}\right| \leq 4$

Lại có:

$0 \leq\left|x_{1}-x_{2}\right|=\sqrt{\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}}=\sqrt{a^{2}-4\left(a^{2}-4\right)}=\sqrt{16-3 a^{2}} \leq 1$

Vì vậy, ta có: $a \in\left[-\frac{4 \sqrt{3}}{3},-\sqrt{5}\right] \cup\left[\sqrt{5} ; \frac{4 \sqrt{3}}{3}\right]$.

b) $Đ K: x \geq 0$. Phương trình đã cho tương đương:

$1+3 \sqrt{x}-4 x-\sqrt{2+x}=0 $

$\Leftrightarrow 3 \sqrt{x}-\sqrt{2+x}=4 x-1 $

$\Leftrightarrow(8 x-2)=(4 x-1)(3 \sqrt{x}+\sqrt{2+x}) $

$\Leftrightarrow(4 x-1)[(3 \sqrt{x}+\sqrt{2+x})-2]=0 $

$\Leftrightarrow\left[\begin{array}{l}4 x-1=0 \\3 \sqrt{x}+\sqrt{2+x}=2\end{array}\right.$

Từ đó ta tính được hai nghiệm của phương trình là: $S=[\frac{1}{4} ; \frac{7-3 \sqrt{5}}{8}]$.

Bài 2. Áp dụng bất đẳng thức Cauchy ta có:

$11\left(\frac{x+y+2}{2}\right)+2(x+y) \geq 11 \sqrt{2(x+y)}+2(x+y) \geq 11(\sqrt{x}+\sqrt{y})+4 \sqrt{x y}=26$

Do đó: $\frac{15}{2}(x+y) \geq 15 \Leftrightarrow x+y \geq 2$

a) Áp dụng bất đẳng thức Cauchy ta có:

$T=11(x+y)+\frac{1}{x}+\frac{1}{y}+2021 \geq 11(x+y)+\frac{4}{x+y}+2021 $

$=(x+y)+\frac{4}{x+y}+10(x+y)+2021 $

$\geq 2 \sqrt{(x+y) \cdot \frac{4}{(x+y)}}+10.2+2021=2045$

b) Áp dụng bất đẳng thức Cauchy ta có:

$\frac{1}{x^{3}(2 y-x)}+x^{2}+y^{2}=\frac{1}{x^{2}\left(2 x y-x^{2}\right)}+x^{2}+y^{2} \geq \frac{1}{x^{2}\left(2 x y-x^{2}\right)}+2 x y $

$=\frac{1}{x^{2}\left(2 x y-x^{2}\right)}+x^{2}+\left(2 x y-x^{2}\right) \geq 3 \sqrt[3]{\frac{1}{x^{2}\left(2 x y-x^{2}\right)} \cdot x^{2} \cdot\left(2 x y-x^{2}\right)}=3$

Bài 3. Do phương trình $f(x)=x \Leftrightarrow a x^{2}+b x+c=x \Leftrightarrow a x^{2}+(b-1) x+c=0,(a \neq 0)$ vô nghiệm nên ta có:

$\Delta=(b-1)^{2}-4 a c<0 \Leftrightarrow(b-1)^{2}<4 a c$

Giả sử phương trình: $f(f(x))=x$ có nghiệm, gọi nghiệm đó là $x_{0}$, ta có:

$f\left(f\left(x_{0}\right)\right)=x_{0} \Leftrightarrow f\left(f\left(x_{0}\right)\right)-f\left(x_{0}\right)+\left[f\left(x_{0}\right)-x_{0}\right]=0 $

$\Leftrightarrow a\left[f\left(x_{0}\right)\right]^{2}+b f\left(x_{0}\right)-a x_{0}^{2}-b x_{0}+\left[f\left(x_{0}\right)-x_{0}\right]=0 $

$\Leftrightarrow a\left[f\left(x_{0}\right)-x_{0}\right]\left[f\left(x_{0}\right)+x_{0}\right]+b\left[f\left(x_{0}\right)-x_{0}\right]+\left[f\left(x_{0}\right)-x_{0}\right]=0 $

$\Leftrightarrow\left[f\left(x_{0}\right)-x_{0}\right]\left[a\left(f\left(x_{0}\right)+x_{0}\right)+b+1\right]=0 $

$\Leftrightarrow a\left(f\left(x_{0}\right)+x_{0}\right)+b+1=0 $

$\Leftrightarrow a^{2} x_{0}^{2}+a(b+1) x_{0}+a c+b+1=0$

Do đó phương trình: $a^{2} x^{2}+a(b+1) x+a c+b+1=0$ có nghiệm nên ta có:

$\Delta=a^{2}(b+1)^{2}-4 a^{2}(a c+b+1) \geq 0$

Từ đó dẫn đến

$(b+1)^{2}-4(a c+b+1) \geq 0 \Leftrightarrow 4 a c \leq b^{2}-2 b-3$

Suy ra: $b^{2}-2 b-3>(b-1)^{2} \Leftrightarrow b^{2}-2 b-3>b^{2}-2 b+1 \Leftrightarrow-4>0$ (vô lí). Do đó ta có điều phải chứng minh.

Bài 4. a) Lần lượt xét $x=0,1,2,3$ đều không nhận được $x=1,2,3$ là nghiệm. Do đó ta xét $x \geq 4$ và $x, y$ là hai số nguyên dương.

Vế trái chia hết cho 9 nên vế phải chia hết cho 9 , đặt: $y=3 z,\left(z \in N^{*}\right)$, ta có phương trình: $3^{x-2}+19=z^{2}$.

Nhận xét: $3 \equiv-1(\bmod 4)$ nên $3^{n} \equiv 1(\bmod 4)$, nếu $n$ chẵn và $3^{n} \equiv-1(\bmod 4)$, nếu $n$ lẻ.

Giả sử: Nếu $x$ là số lẻ thì $3^{x-2}+19 \equiv 18 \equiv 2(\bmod 4)$. Do một số chính phương chia 4 chỉ dư 0 hoặc 1 (vô lí).

b) Do đó khi $x$ là số chẵn thì $3^{x-2}+19 \equiv 20 \equiv 0(\bmod 4)$, suy ra $z$ là số chẳn. Đặt: $x-2=2 k,\left(k \in N^{*}\right)$. Ta có phương trình:

$3^{2 k}+19=z^{2} \Leftrightarrow z^{2}-3^{2 k}=19 \Leftrightarrow\left(z-3^{k}\right)\left(z+3^{k}\right)=19 $

$\Leftrightarrow\left\{\begin{array}{l}z+3^{k}=19 \\ z-3^{k}=1\end{array} \Leftrightarrow\left\{\begin{array}{c}z=10 \\ 3^{k}=9\end{array} \Leftrightarrow\left\{\begin{array}{l}z=10 \\ k=2\end{array} \Leftrightarrow\left\{\begin{array}{l}x=6 \\ y=30\end{array}\right.\right.\right.\right.$

Thử lại với $x=6, y=30$ (nhận). Do đó nghiệm duy nhất của phương trình là $(x ; y)=(6 ; 30)$.

Bài 5. a) Ta có: $\angle D P H=\angle E P H$ (tính chất hai tiếp tuyến cắt nhau) nên $\angle D G H=\angle E G H$, do đó hai cung $H D$ và cung $H E$ bằng nhau. Từ đó:

$\angle H C F=\angle H G E+\angle D E G=\angle H P D+\angle D P G=\angle H P G $

Dẫn đến, tứ giác $C F P G$ nội tiếp.

b) Ta có: $\angle O D I+\angle O E I=90^{\circ}+90^{\circ}=180^{\circ}$ nên tứ giác $D O E I$ nội tiếp.

c) Xét đường tròn $(P D E)$, với $H$ là điểm chính giữa cung $D E$ và $I$ là tâm đường tròn nội tiếp tam giác $\triangle P D E$, tính chất quen thuộc $H D=H I=H E$, do đó ta có $H$ là tâm đường tròn ngoại tiếp tứ giác $D O E I$.

Từ đó, $H$ là tâm đường tròn ngoại tiếp tam giác $\triangle D O E$.

d) Từ câu c) ta có $H O=H D=H I-H E$, lại có $\triangle H D C \sim \triangle H G D(\mathrm{~g}-\mathrm{g})$ nên $H D^{2}=H C . H G$, do đó $H O^{2}=H C . H G$. Suy ra $\triangle H O C \backsim \triangle H G O(\mathrm{c}-\mathrm{g}-\mathrm{c})$ nên $\angle H G O=\angle H O C$.

Lại có, $\angle H G P=\angle H F C$ nên $\angle O G P=\angle H G O+\angle H G P=\angle H O C+\angle H F C=90^{\circ}$, suy ra $A, G, P, B, O$ cùng thuộc một đường tròn.

Bài 6. a) Gọi $A$ là một điểm đã cho, nối $A$ với 16 điểm còn lại được 16 đoạn thẳng và chúng được tô bởi ba màu, Theo nguyên lý Dirichlet tồn tại ít nhất 6 đoạn thẳng có cùng một màu. Giả sử đó là các đoạn thẳng $A B, A C, A D, A E, A F, A G$ có cùng màu đỏ. Xét các đoạn thẳng nối từng cặp điểm trong 6 điểm $B, C, D, E, F, G$. Xảy ra các trường hợp sau:

– Trường hợp 1. Tồn tại một đoạn thẳng có màu đỏ, chẳng hạn $B C$, thì tam giác $\triangle A B C$ có ba cạnh cùng là màu đỏ, khẳng định đúng.

– Trường hợp 2. Tất cả các đoạn thẳng nối $B, C, D, E, F, G$ chỉ có màu xanh hoặc vàng. Ta xét 5 đoạn $B C, B D, B E, B F, B G$ được tô bởi hai màu thì theo nguyên lý Dirichlet tồn tại ít nhất 3 đoạn thẳng có cùng một màu. Giả sử là $B C, B D, B E$ cùng có màu xanh.

  • Nếu trong ba đoạn thẳng $C D, C E, D E$ có một đoạn tô màu xanh, chẳng hạn là $C D$ thì tam giác $\triangle B C D$ có ba cạnh cùng màu xanh, khẳng định đúng.

  • Nếu trong ba đoạn thẳng $C D, C E, D E$ không có một đoạn nào màu xanh, thì tam giác $\triangle C D E$ có ba cạnh cùng màu vàng, khẳng định đúng.

Vậy tồn tại tam giác có ba cạnh cùng một màu.

b) Chia mỗi số nguyên dương ghi trên các đoạn thẳng cho 3 ta được các số dư là $0,1,2$. Ta tô màu đoạn thẳng ghi số dư $0,1,2$ theo thứ tự úng với màu đỏ, xanh, vàng. Theo kết quả trên tồn tại một tam giác có ba cạnh cùng một màu, tức là ba số đó có cùng số dư $r$, chẳng hạn là $3 k+r, 3 h+r, 3 m+r$. Lúc đó tổng ba số trên ba cạnh của tam giác đó bằng:

$3 k+r+3 h+r+3 m+r=3(k+h+m+r) \vdots 3$

mà $3 k+r+3 h+r+3 m+r>3$ do đó $3 k+r+3 h+r+3 m+r$ là hợp số.