ĐỀ và ĐÁP ÁN THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU NĂM 2022

Bài 1. Cho hai phương trình: $x^2-2 a x+3 a=0 \quad$ (1) và $x^2-4 x+a=0$
a) Chứng minh ít nhất một trong hai phương trình trên có nghiệm.
b) Giả sử hai phương trình đều có hai nghiệm phân biệt. $T_1, T_2$ là tổng bình phương các nghiệm của (1) và $(2)$. Chứng minh $T_1+5 T_2>68$

Bài 2. Cho các số dương $a \geq b \geq c$ thỏa $a^2+b^2+c^2=1$. Chứng minh:
$$
\sqrt{4+(b+c)^2} \leq 2 a+b+c \leq \sqrt{4+4 a^2}
$$

Bài 3. Cho phương trình: $2^x+5^y=k^2\left(x ; y ; k \in \mathbb{N}^*\right)$
a) Chứng minh phương trình trên vô nghiệm khi $y$ là số chẵn.
b) Tìm $k$ để phương trình có nghiệm.

Bài 4. Cho tam giác $A B C$ có trực tâm $H, D$ đối xứng với $H$ qua $A$. $I$ là trung điểm của $C D$, đường tròn $(I)$ đường kính $C D$ cắt $A B$ tại $E, F(E$ thuộc tia $A B)$
a) Chứng minh $\angle E C D=\angle F C H$ và $A E=A F$.
b) Chứng minh $H$ là trực tâm của $\triangle C E F$.
c) $B H$ cắt $A C$ tại $K$. Chứng minh $E F K H$ nội tiếp và $E F$ là tiếp tuyến chung của $(C K E)$ và $(C K F)$.
d) Chứng minh tiếp tuyến tại $C$ của $(I)$ và tiếp tuyến tại $K$ của $(K E F)$ cắt nhau trên đường thẳng $A B$.

Bài 5. Cho dãy số nguyên $a_1 \geq a_2 \geq a_3 \geq \ldots \geq a_{21} \geq a_{22}$ thỏa mãn:
i) $\left|a_i\right| \leq 11$ và $a_i \neq 0 \forall i=1 ; 2 ; \ldots ; 22$
ii) $a_1+a_2+a_3+\ldots+a_{22}=1$
a) Chứng minh: $a_1 ; a_2>0$
b) Chứng minh có thể chọn $k \geq 1$ số từ $a_2 ; a_3 ; \ldots ; a_{22}$ để tổng $S$ của chúng thỏa $-10 \leq a_1+S \leq 0$.
c) Chứng minh từ dãy đã cho có thể chọn $n \geq 1$ số có tổng bằng 0 .

Leave a Reply

Your email address will not be published. Required fields are marked *