Hai phân thức bằng nhau

1.Định nghĩa: Hai phân thức $ \dfrac{A}{B} $ và $ \dfrac{C}{D} $ được gọi là bằng nhau nếu:

$ A\cdot D = B \cdot C. $

2.Ví dụ

Ví dụ 1:  Chứng minh:

$\dfrac{x+2}{(x+2)^2}=\dfrac{1}{x+2}$

Giải

Ta có:

$1.(x+2)^2=(x+2)^2$

$(x+2)(x+2)=(x+2)^2$

Vì $1.(x+2)^2=(x+2)(x+2)$ nên hai phân thức bằng nhau.

Ví dụ 2: Chứng minh:

$\dfrac{x}{2y}=\dfrac{2xy}{4y^2}$

Giải

Ta có:

$x(4y^2)=4xy^2$

$2y(2xy)=4xy^2$

Vì $x(4y^2)=2y(2xy)$ nên hai phân thức bằng nhau.

Ví dụ 3: Chứng minh:

$\dfrac{a-b}{a^2-b^2}=\dfrac{1}{a+b}$

Giải

Ta có:

$(a-b)(a+b)=a^2-b^2$

$1.(a^2-b^2)=a^2-b^2$

Vì $(a-b)(a+b)=1.(a^2-b^2)$ nên hai phân thức bằng nhau.

3. Bài tập

Bài 1. Hãy điền biểu thức thích hợp vào chỗ chấm:

a) $\dfrac{3y}{4}=\dfrac{…}{8x}$

b) $\dfrac{-3x^2}{2y}=\dfrac{…}{-2y}$

c) $\dfrac{3(x+2)}{2x}=\dfrac{6(x+2)}{…}$

d) $\dfrac{4(x-2)}{3(x+1)}=\dfrac{8(x-2)x}{…}$.

Bài 2. Hai phân thức sau đây có bằng nhau không? Vì sao?

$\dfrac{x+2}{x}$ và $\dfrac{x^2+3x+2}{x^2+x}$.

Bài 3. Hãy điền biểu thức thích hợp vào chỗ trống:

$\dfrac{…}{x^2-4}=\dfrac{x}{x+2}$.

Bài 4. Chứng minh các đẳng thức sau:

a) $\dfrac{2(x-y)}{3(y-x)}=\dfrac{-2}{3} (x \neq y)$

b) $\dfrac{2xy}{3a}=\dfrac{8xy^2}{12ay} (a \neq 0, y \neq 0)$

c) $\dfrac{1-x}{2-y}=\dfrac{x-1}{y-2} (y \neq 2)$

d) $\dfrac{2a}{-5b}=\dfrac{-2a}{5b} (b \neq 0)$.

Bài 5.  Với những giá trị nào của $x$ thì hai phân thức bằng nhau:

$\dfrac{x-2}{x^2-5x+6}$ và $\dfrac{1}{x-3}$.

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *