Phương trình nghiệm nguyên – Phương pháp đồng dư thức

1. Phương pháp đồng dư thức

Ví dụ 1: Giải phương trình $ x^3 +21y^3+5=0 $

Giải

Ta có với mọi $x$ thì $ x^3\equiv 0, 1, -1 \ (\mod 7) \Rightarrow x^3 +21y^2+5\equiv 5,6,4\ (\mod 7) $

Do đó phương trình vô nghiệm.

Ví dụ 2: Giải phương trình trong tập số tự nhiên: $6^x = y^2+y-2 $

Giải

Với mọi số nguyên $x$ thì $ 6^x \equiv 1\ (mod\ 5) $

Mặt khác, $ y^2+y-2 = (y-1)(y+2) \equiv 0,3,4\ (mod\ 5) \Rightarrow $ phương trình vô nghiệm.

Ví dụ 3: Tìm nghiệm nguyên dương của phương trình $7^x – 9^y = 4$

Giải

Ta có $9^y \equiv 1 (\mod 4)$ suy ra $7^x \equiv (-1)^x (\mod 4)$ suy ra $x$ chẵn. $x = 2k$.

Ta có $7^{2k} – 3^{2y} = 4 \Leftrightarrow (7^k-2)(7^k+2) = 3^{2y}$.

Dễ thấy $(7^k-2, 7^k+2) = 1$ suy ra $7^k-2 = 1, 7^k+2 = 3^{2y}$ vô nghiệm.

Ví dụ 4: Tìm $x, y, z$ nguyên dương và $z \geq 2$ thỏa $3^x + 5^x = y^z$

Giải

+ Nếu $x = 1$ ta có $y^z = 8$ thì $y = 2, z=3$.

+ Nếu $x$ chẵn. $3^x + 5^x \equiv 2( \mod 4)$, suy ra $y$ chẵn và $y^z \equiv 2(\mod 4)$, suy ra $z = 1$. (vô lý).

+ Nếu $x$ lẻ, $x > 1$. Khi đó $LHS=3^x + 5^x = (3+5)(3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1})$.

Ta có $3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1}$ có $x$ số hạng lẻ, nên tổng là lẻ.

Do đó $LHS$ chia hết cho 8, nhưng ko chia hết cho 16, kết hợp $z > 1$ ta được $z=3$.

Ta có: $5^6 \equiv 1 (\mod 9)$ suy ra $5^x \equiv 5\  (\mod 9)$ nếu $x \equiv 1\ (\mod 6)$;

 $5^x \equiv -1\  (\mod 9)$ khi $x \equiv 3 \ (\mod 6)$;

 $5^x \equiv 2 \ (\mod 9)$ khi $x \equiv 5\ (\mod 6)$.

Mặt khác $y^3 \equiv 0, 1, -1 (\mod 9)$. Do đó  $3^x + 5^x = y^3$ khi $ x \equiv 3 \ (\mod 6)$.

Lại có $3^x + 5^x \equiv 5 (\mod 7)$ khi $x \equiv 3 (\mod 6)$.

Do đó phương trình vô nghiệm.

Vậy nghiệm của phương trình là $(1,2,3)$.

2. Bài tập rèn luyện

Bài 1: Tìm nghiệm nguyên của các phương trình sau:

a) $2^x-3^y=1$;

b) $2^x-3^y=7$;

c) $2^x+3^y=z^2$;

d) $3^x+4^y=5^z$;

e) $3^x+4^y=7^z$.

Bài 2: (PTNK 2013) Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.

a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.

b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?

Bài 3: (PTNK 2009)

a) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho ${a^2} + a = {2010^{2009}}$

b) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho $a + {a^2} + {a^3} = {2009^{2010}}$

Leave a Reply

Your email address will not be published. Required fields are marked *