Một số bài toán số học ôn thi vào 10 – P1

Bài 1. Tìm tất cả các số nguyên tố $p$ sao cho tổng các ước dương của $p^4$ là một số chính phương.

Lời giải

  • Theo đề ta có phương trình $1+p+p^2+p^3+p^4 = x^2$.
  • Ta có $(2p^2+p)^2< 4x^2 < (2p^2+p+2)$.
  • Do đó $4x^2 = (2p^2+p+1) = 4p^2+4p^3+4p^2+4p+4$
  • $p^2 -2p – 3 = 0 \Leftrightarrow p=3$.

Bài 2.  Cho $m,n$ là các số nguyên dương thỏa $m+m+1$ là một ước nguyên tố của $2(m^2+n^2)-1$. Chứng minh rằng $m.n$ là một số chính phương.

Lời giải

Ta có $2m^2+2n^2 -1 = (m+n)^2+(m-n)^2 -1 = (m+n-1)(m+n+1) + (m-n)^2$ chia hết cho $m+n-1$,

suy ra $(m-n)^2$ chia hết cho $m+n+1$.

Mà $m+n+1$ nguyên tố, suy ra $(|m-n|,m+n+1) = 1$, do đó $m=n$, suy ra $mn = m^2$ là số chính phương.

Bài 3.  Chứng minh rằng nếu tích của hai số nguyên tố cùng nhau là một số chính phương thì mỗi số cũng là số chính phương.

Lời giải

Cho $ab = x^2$, trong đó $(a,b)=1$.\
Đặt $d = (a,x), a=a’d, x=x’d$ ta có $a’b = x’^2d$. \
Do $(a’,x’^2)=1$ nên $b$ chia hết cho $x’^2$. \
Mặt khác do $(a,b) = 1$ nên $(b,d) = 1$, suy ra $x’^2$ chia hết cho $b$.\
Do đó $b=x’^2$, $a’=d$. Từ đó ta có $a=a’^2, b= x’^2$ là các số chính phương.\
\textbf{Nhận xét} Tương tự nếu $(a,b) = 1$ và $ab = x^k$ thì $a, b$ là lũy thừa bậc $k$ của một số nguyên.\
Đây là một bổ đề rất hay sử dụng.

Bài 4. Cho các số nguyên dương $a, b$ thỏa $2{a^2} + a = 3{b^2} + b$.
a) Tìm $a, b$ biết $a$ và $b$ là hai số nguyên tố cùng nhau.
b) Chứng minh $a-b$ và $2a + 2b + 1$ là các số chính phương.

Lời giải

a) $a(2a+1) = b(3b+1)$. Ta có $3b +1$ chia hết cho $a$ và $2a+1$ chia hết cho $b$.
Đặt $2a + 1 = kb$, suy ra $3b+1 = ka$. Suy ra $6ab + 2a+3b+1 = k^2ab$, suy ra $k = 1, 2$.
Nếu $k = 1$ ta có $2a+1 = b, 3b+1 = a$ (Vô nghiệm).
Nếu $k = 2$ ta có $2a+1 = 2b, 3b+1 = 2a$. (Vô nghiệm).
Phương trình vô nghiệm.
b) Ta có $(a-b)(2a+2b+1) = b^2$.
Giả sử $p$ là ước nguyên tố của $a-b, 2a+2b+1$, suy ra $p|b^2 \Rightarrow p|b$, suy ra $p|a$, suy ra $p|1$ (vô lý).\
Do đó $(a-b,2a+2b+1) = 1$.
Từ đó ta có $a-b, 2a+2b+1$ là các số chính phương.

Bài 5. Tìm tất cả số tự nhiên $a$ để tồn tại các số nguyên tố $p, q, r$ thỏa $$a=\dfrac{p+q}{r}+
\dfrac{q+r}{p}+ \dfrac{p+r}{q}$$.

Lời giải

  •  Nếu trong 3 số có đúng 2 số bằng nhau, giả sử $p = q \neq r$. Khi đó ta có $a = 2(\dfrac{p}{r}+\dfrac{r}{p}) + 2$. Suy ra $\dfrac{2(p^2+r^2)}{pr} = a-2$.

Suy ra $pr|2(p^2+r^2)$, mà $(p,r) = 1$, suy ra $p|2$, suy ra $p=2$. Vô lý.

  • Nếu 3 số đều khác nhau. Ta có $apqr = pq(p+q) + qr(q+r) + pr(p+r)$. Suy ra $p|qr(q+r)$, suy ra $p|p+q+r$.
    Tương tự ta có $q|p+q+r, r|p+q+r$. Suy ra $pqr|p+q+r$.
    Ta có $pqr > 4r$, suy ra $3pqr > 4(p+q+r) > 4pqr$. Vô lý.
  • 3 số bằng nhau, thì $a = 6$.

Bài tập

Bài 1. Cho $m,n$ và $d$ là các số nguyên dương. Chứng minh rằng nếu $mn^2 + 1$ và $m^2n+1$ cùng chia hết cho $d$ thì $m^3+1$ và $n^3+1$ cũng chia hết cho $d$.

Bài 2. Cho $n \geq 3$ là số tự nhiên sao cho $3n+1$ là số chính phương. Chứng minh rằng có thể tìm được các số nguyên dương $a,b, c$ sao cho $$x = \sqrt{1+\dfrac{3n+3}{a^2+b^2+c^2}} $$
là một số nguyên.

Bài 3. Tìm tất cả các số nguyên $n$ sao cho $n = q(q^2-q-1) = r(2r+1)$ với $p, r$ là các số nguyên tố.