Số hữu tỉ – Vô tỉ

Số hữu tỉ – Số vô tỉ

(Bài viết dành cho các em trung học cơ sở)

Trong bài viết nhỏ này tôi xin giới thiệu một số bài toán liên quan đến các tập hợp số hữu tỉ và vô tỉ, một số trong đó đã xuất hiện trong các kì thi tuyển sinh vào 10 hay các kì thi học sinh giỏi.
Đầu tiên ta xem lại một số khái niệm và tính chất quan trọng.

Định nghĩa. Tập hợp các số có dạng $\dfrac{p}{q}$ trong đó $p, q$ là các số nguyên, $q \neq 0$ được gọi là số hữu tỉ. Kí hiệu là $\mathbb{Q}$. Tập số nguyên là tập con của tập các số hữu tỉ.
Tập hợp các số không phải là số vô tỉ được gọi là số vô tỉ, kí hiệu là $I$.

Tính chất 1. Ta có một số tính chất sau của số vô tỉ và hữu tỉ.

  • Tổng hiệu tích thương của hai số hữu tỉ là hữu tỉ.
  • Tổng, tích, thương của một số hữu tỉ và vô tỉ là một số vô tỉ

Việc chứng minh một số là số hữu tỉ hay vô tỉ chủ yếu dựa vào các định nghĩa trên, trong đó việc chứng minh một số là số vô tỉ hầu hết là sử dụng phương pháp chứng minh phản chứng.
Ta bắt đầu với bài toán cơ bản sau:
Ví dụ 1.
a) Chứng minh $\sqrt{2}$ là một số vô tỉ.
b) Chứng minh $\sqrt{2}+\sqrt{3}$ là một số vô tỉ.

Lời giải.

Ta sử dụng phương pháp chứng minh là phản chứng.

a) Giả sử $\sqrt{2}$ là số hữu tỉ, tức là tồn tại $\dfrac{p}{q}$ trong đó $p, q \in \mathbb{Z},(p,q) = 1, q \neq 0$ và $\sqrt{2}=\dfrac{p}{q}$.
Khi đó ta có $p^2 = 2q^2$, suy ra $p^2$ chia hết cho $2$ mà $2$ nguyên tố nên $p$ chia hết cho $2$, $p = 2k$.
Suy ra $q^2 = 2k^2$, lí luận tương tự thì $q$ chia hết cho $2$, do đó $(p, q) \neq 1$ (mâu thuẫn).
Vậy điều giả sử sai, $\sqrt{2}$ là số vô tỉ.
b) Giả sử $\sqrt{2}+\sqrt{3} = a$ hữu tỉ, suy ra $\sqrt{6} = \dfrac{a^2-5}{2}$ hữu tỉ. Chứng minh tương tự trên ta cũng suy ra điều vô lí.

Từ bài toán trên ta có thể chứng minh bài toán tổng quát sau:

Ví dụ 2. Cho $n$ là số tự nhiên nếu $\sqrt{n}$ không là số tự nhiên thì $\sqrt{n}$ là số vô tỉ.

Lời giải.

Giả sử $\sqrt{n}$ không phải vô tỉ và không phải số nguyên, suy ra $\sqrt{n} = \dfrac{p}{q}$ trong đó $(p,q) =1, q > 1$.
Tương tự ta có $p^2 = nq^2$. Do $q > 1$ nên có ước nguyên tố, giả sử $r$ là một ước nguyên tố của $q$, suy ra $p^2$ chia hết cho $r$, suy ra $p$ chia hết cho $r$, khi đó $(p,q) \neq 1$ (vô lí).
Vậy căn của một số nguyên là một số nguyên hoặc là một số vô tỉ.
\

Đặt $\sqrt{2} = x$, ta có $x^2 = 2 \Leftrightarrow x^2 – 2 = 0$, đến đây ta thấy $\sqrt{2}$ là một nghiệm của phương trình $x^2-2 = 0$. Ta có thể chứng minh phương trình $x^2 -2=0$ không có nghiệm hữu tỉ, từ đó suy ra $\sqrt{2}$ không là số hữu tỉ. Tất nhiên việc chứng minh này không khác mấy chứng minh trên. Tuy nhiên với các nhìn khác, ta có bài toán sau:

Ví dụ 3. Cho phương trình với các hệ số nguyên $a_0, a_1, \cdots, a_n$: $$a_nx^n + a_{n-1}x^{n-1}+\cdots+a_1x + a_0 = 0$$
Khi đó nếu $\dfrac{p}{q}$ với $(p,q)=1$ là một nghiệm hữu tỉ của phương trình thì $p|a_0, q|a_n$.Đặt biệt nếu $a_n=1$ thì nếu phương trình có nghiệm hữu tỉ thì nghiệm là số nguyên.

Lời giải

Thế $\dfrac{p}{q}$ vào phương trình và qui đồng, ta có $$a_np^n+a_{n-1}qp^{n-1}+\cdots+a_1q^{n-1}p + a_0q^n = 0$$
Khi đó $a_np^n$ chia hết cho $q$, suy ra $a_n$ chia hết cho $q$, tương tự thì $a_0$ chia hết cho $p$.

Cũng tương tự, ta có bài toán sau:
Ví dụ 4. Cho phương trình $ax^2 + bx + c = 0$, trong đó $a, b, c$ là các số tự nhiên lẻ. Chứng minh rằng phương trình không có nghiệm hữu tỉ.
Lời giải.

Giả sử $\dfrac{p}{q}, (p,q)=1$ là một nghiệm hữu tỉ của phương trình trên. Khi đó ta có $p|c, q|a$, suy ra $p, q$ đều lẻ. Mặt khác ta có $ap^2 + bpq+ cq^2 = 0$. Vế trái là một số lẻ nên vô lí. Vậy phương trình không có nghiệm hữu tỉ.

Sử dụng bài toàn 3 ta có thể chứng minh $\sqrt{2} + \sqrt{6}$ là số vô tỉ theo một các khác. Bằng cách chứng minh $a = \sqrt{2}+\sqrt{6}$ là nghiệm của phương trình bậc 4: $x^4 – 10x^2 – 1 = 0$, và dễ thấy phương trình trên không có nghiệm hữu tỉ nên $\sqrt{2}+\sqrt{6}$ là số vô tỉ.

Sau đây ta đi tới một số bài toán khác cũng liên quan đến số hữu tỉ và vô tỉ.
Ví dụ 5. Cho các số thực $x, y, z$ khác 0 thỏa $xy, yz, xz$ là các số hữu tỉ.
a) Chứng minh $x^2 + y^2 + z^2 $ là số hữu tỉ.
b) Giả sử $x^3+y^3+z^3$ cũng là số hữu tỉ. Chứng minh $x, y, z$ là các số hữu tỉ.
Lời giải.

a) Ta có $xy, yz \in \mathbb{Q}$, suy ra $\dfrac{x}{z} \in \mathbb{Q}$.
Mà $xz \in \mathbb{Q}$ suy ra $x^2 \in \mathbb{Q}$.
Tương tự ta cũng có $y^2, z^2 \in \mathbb{Q}$.
b) Ta có $x(x^3+y^3+z^3) = (x^2)^2 + (xy)y^2 + (xz)z^2 \in \mathbb{Q}$. Suy ra $x \in \mathbb{Q}$.
Tương tự ta cũng có $y, z \in \mathbb{Q}$.

Chú ý. Với cách giải trên ta chấp nhận không thể xảy ra $x^3+y^3+z^3 = 0$ vì phương trình này không có nghiệm nguyên hay nghiệm hữu tỷ.

Ví dụ 6. Tìm tất cả các số tự nhiên $a, b$ sao cho $$\dfrac{\sqrt{2}+\sqrt{a}}{\sqrt{3}+\sqrt{b}}
$$ là số hữu tỉ.
Lời giải.
Đặt $x = \dfrac{\sqrt{2}+\sqrt{a}}{\sqrt{3}+\sqrt{b}}$ là số nguyên.
Suy ra $\sqrt{a} – x\sqrt{b} = x\sqrt{3}-\sqrt{2}$
Bình phương hai vế ta có $a +x^2b -2x\sqrt{ab} = 3x^2+2-2x\sqrt{6} \Rightarrow a+x^2b-3x^2-2 = 2x(\sqrt{ab}-\sqrt{6})$.
Suy ra $\sqrt{ab}-\sqrt{6} = y \in \mathbb{Q}$.
Khi đó $ab = 6+y^2 – 2y\sqrt{6}$.
Vì $\sqrt{6}$ là số vô tỉ nên đẳng thức xảy ra khi và chỉ khi $y = 0$ và $ab=6$.
Ta xét các trường hợp sau:

  • $a = 1, b = 6 \Rightarrow x = \dfrac{1}{\sqrt{6}}$ vô tỉ.
  • $a = 2, b = 3 \Rightarrow x= \dfrac{\sqrt{2}}{\sqrt{3}}$.
  • $a = 3, b = 2 \Rightarrow x = 1$.
  • $a = 6, b = 1 \Rightarrow x = \sqrt{2}$ vô tỉ.

Vậy $a = 3, b = 2$ là số cần tìm.

Ví dụ 7. Tìm tất cả các bộ số hữu tỉ dương $(x, y, z)$ sao cho $x+\dfrac{1}{y}, y + \dfrac{1}{z}, z+\dfrac{1}{x}$ là các số nguyên.

Lời giải.
Đặt $a = x+\dfrac{1}{y} (1), b = y + \dfrac{1}{z} (2), c = z+\dfrac{1}{x} (3)$.
Từ (1) ta có $y = \dfrac{1}{a-x}, z = \dfrac{1}{b-y} = \dfrac{a-x}{ab-1-bx}$. Thế vào (3) ta có:
$\dfrac{a-x}{ab-1-bx}+\dfrac{1}{x} = c \Leftrightarrow (bc-1)x + (a-b+c-abc)x + ab – 1 = 0$ (4).
Nếu $bc = 1$ thì $b = 1, c = 1$ suy ra $a = 1$. Khi đó $3 = x + \dfrac{1}{x} + y +\dfrac{1}{y} + z + \dfrac{1}{z} \geq 6$ (vô lý)
Nếu $bc \neq 1$, khi đó ta xem (4) như phương trình bậc hai có nghiệm hữu tỷ $x$, khi đó $\Delta = (a-b+c-abc)^2 – 4(bc-1)(ab-1) = (abc-a-b-c)^2 – 4$ là số chính phương.
Đặt $t = abc-a-b-c$ ta có $t^2-4 = k^2$, giải ra được $ t = 2$ hoặc $t = -2$.

$0=abc-a-b-c +2 = a(bc-1) – b-c+2 \geq bc-b-c+1 = (b-1)(c-1)$. Suy ra $b = c=1$ (vô lý).
$0=abc-a-b-c-2 \geq (b-1)(c-1) – 4\Rightarrow (b-1)(c-1) \leq 4$.
Nếu $(b-1)(c-1) = 4$ thì $b = 2, c=5$; $b = 3, c=3$; $b=5, c=2$. Trong các trường hợp này thì $a=1$.
Nếu $ a= 1, b = 2, c = 5$ giải được $(x, y, z) = (\dfrac{1}{3}, \dfrac{3}{2},2)$.
Nếu $a = 1, b = 3, c = 3$ thì $(x, y, z) = (\dfrac{1}{2},2,1)$.
Nếu $a = 1, b = 5, c = 2$ thì $(x, y, z) = (\dfrac{2}{3}, 3,2)$.
Nếu $(b-1)(c-1) = 3 \Rightarrow bc= b+c +2 = abc-a = a(bc-1) \Rightarrow bc-1|bc \Rightarrow bc = 1, a = 1$. (loại)
Khi $(b-1)(c-1) =2 \Rightarrow a = b = c = 2$, giải ra được $(x, y, z) = (1, 1, 1)$.

Trên đây là một số bài toán liên quan đến số hữu tỉ, vô tỉ, hi vọng các em có thêm kinh nghiệm để làm bài trong các tình huống này. Sau đây là một số bài tập rèn luyện.

Bài 1.  Tìm một đa thức hệ số nguyên nhận $\alpha = 2 + \sqrt[3]{2} + \sqrt[3]{4}$ làm nghiệm. Chứng minh $\alpha$ là số vô tỷ.
Bài 2.  Cho các số $a, b$ sao cho $a – \sqrt{ab}$ và $b-\sqrt{ab}$ đều là các số hữu tỉ. Chứng minh rằng $a, b$ cũng là các số hữu tỉ.
Bài 3. Ta nói các căp số $(\mathrm{a}, \mathrm{b}) a \neq b$, là có tính chất $\mathrm{P}$ nếu $a^{2}+b \in Q$ và $b^{2}+a \in \mathbb{Q}$.
Chứng minh rằng:
a) Các số $a=\dfrac{1+\sqrt{2}}{2}, b=\dfrac{1-\sqrt{2}}{2}$ là các số yô tỷ có tính chất $\mathrm{P}$.
b) Nếu $(\mathrm{a}, \mathrm{b})$ có tính chất $\mathrm{P}$ và $a+b \in \mathbb{Q} \backslash{1}$ thì $a, b$ à các số hũu tỷ.
c) Nếu $(\mathrm{a}, \mathrm{b})$ có tính chất $\mathrm{P}$ và $\dfrac{a}{b} \in \mathbb{Q}$ thì $\mathrm{a}, \mathrm{b}$ là các số hũu tỷ.
Bài 4.  Với mỗi số hữu tỷ $q$ đặt $V_q = {x \in \mathbb{Q}|x^3-2015x =q}$.

a)Tìm $q$ sao cho $V_q$ có là tập rỗng và $V_q$ có đúng một phần tử.
b) Gọi $S(V_q)$ là số phần tử của $V_q$, tìm tất cả các giá trị của $S(V_q)$.
Bài 5.
a) Cho số thực $x$ thỏa $x^2+x$ và $x^3+2x$ là số hữu tỷ. Chứng minh $x$ cũng là số hữu tỷ.
b) Chứng minh rằng tồn tại số vô tỷ $x$ sao cho $x^2+x$ và $x^3-2x$ là hữu tỷ.

Hết