(Bài viết dành cho các em học sinh lớp 8, 9, 10)
Ví dụ 1. Tìm
Lời giải.
Ta thấy
Giả sử ngược lại, tồn tại 5 điểm, sao cho 3 điểm bất kì đều tạo thành tam giác vuông. Khi đó ta chọn hai điểm sao cho có độ dài lớn nhất. Khi đó các điểm còn lại đều nằm trên đường tròn đường kính là đoạn thẳng này. Khi đó 3 điểm thuộc 2 nửa đường tròn, khi đó có ít nhất 2 điểm cùng thuộc một nửa, từ đó tồn tại một tam giác khác vuông có đỉnh là 2 điểm này cùng một điểm thuộc đường kính. Do đó không thỏa đề bài.
Nhận xét. Đây là một bài toán cực trị dạng tìm số nhỏ nhất, lớn nhất của n để thỏa điều kiện nào đó. Những kiểu bài tập này thường ta cứ xét các trường hợp nhỏ và cố gắng xây dựng cấu hình thỏa, đối với bài này cấu hình rất dễ tìm, với trường hợp
Ví dụ 2. Trên một mặt bàn đặt một số các đồng xu với kích cỡ không giống nhau đôi một (các đồng xu không được đè lên nhau và phải nằm sấp hoặc ngửa trên bàn). Chứng minh rằng dù ta đặt như thế nào đi nữa, cũng luôn tồn tại một đồng xu chỉ tiếp xúc được với nhiều nhất 5 đồng xu khác.
Lời giải. Đồng xu càng to thì nhiều đồng xu có thể tiếp xúc với nó, còn ngược lại thì càng nhỏ, do đó để càng ít đường tròn tiếp xúc nó, ta chọn đồng xu nhỏ nhất.
Chọn đồng xu có bán kính nhỏ nhất, thì đồng xu này chỉ tiếp xúc không quá 5 đồng xu khác. Giả sử nó có thể tiếp xúc với 6 đồng xu khác. Khi đó
Ví dụ 3. Cho
Lời giải. Gọi
Thật vậy, nếu có điểm nào nằm ngoài tam giác
Do
Ví dụ 4. (Sylvester) Trong mặt phẳng cho
Lời giải. Giả sử không phải tất cả các điểm cùng thuộc một đường thẳng. Khi đó ta xét khoảng cách từ một điểm đến đường thẳng qua ít nhất 3 điểm, trong các khoảng cách này có khoảng cách nhỏ nhất. Giả sử
Gọi
Vậy tất cả các điểm cùng thuộc một đường thẳng.
Việc chọn phần tử lớn nhất, nhỏ nhất thể hiện ưu thế của của các phần tử đó so với các đối tượng khác, đó chưa chắc là cái thỏa, nhưng cũng cũng có ưu thế hơn, giống khi xét tuyển, các thí sinh có điểm trung bình cao chưa chắc là giỏi nhất, nhưng là những người có ưu thế hơn điểm thấp, khi chọn trong nhóm đó sẽ tìm được nhiều người giỏi hơn là chọn trong nhóm thấp điểm, do đó vượt trội một khía cạnh nào tính ra là một lợi thế để so sánh.
Ta tiếp tục với việc chứng minh các bài toán về tồn tại các đối tượng thỏa yêu cầu nào đó.
Ví dụ 5. Cho 3 trường, mỗi trường có
Lời giải. Giả sử 3 trường là
Ngược lại xét người quen
Ví dụ 6. Một bảng
Lời giải. Chọn
Thực vậy giả sử số ô được tô là ít hơn
Do đó
Vậy ta chỉ cần chọn
Ví dụ 7. Một bữa tiệc có 10 học sinh tham gia, biết rằng mỗi học sinh quen với ít nhất là 5 người. Chứng minh rằng có thể sắp xếp 10 học sinh ngồi vào một bàn tròn sao cho hai người kế nhau thì quen nhau.
Lời giải. Giả sử chuỗi người quen dài nhất có độ dài là
Nếu
Nếu
Nếu
Bài tập Bài tập nguyên lý cực biên
Tài liệu tham khảo.
- Problems – Solving Stretagies – Arthur Hegel
- Giải bài toàn bằng đại lượng cực biên – Nguyễn Hữu Điển