Căn bậc hai – Tính chất cơ bản

Định lý 1. Với mọi $A$ ta có hằng đẳng thức $\sqrt{A^2} = |A|$

Tính chất 1. Cho $A, B$ là các số không âm. Khi đó ta có các đẳng thức sau:

a) $\sqrt{AB} = \sqrt{A} \sqrt{B}$.
b) $\sqrt{\dfrac{A}{B}} = \dfrac{\sqrt{A}}{\sqrt{B}}$ ($B > 0$)
c) $\sqrt{A^2B}= |A|\sqrt{B}$

Các ví dụ.

Ví dụ 1. Viết về dạng $A\sqrt{B}$ các biểu thức sau:
a) $3 \sqrt{8}- 4\sqrt{18} + 5\sqrt{32} – \sqrt{50}$
b) $\sqrt{125} – 2\sqrt{20} -3\sqrt{80} + 4\sqrt{45}$
c) $5\sqrt{48} – 4\sqrt{27} – 2\sqrt{75} + \sqrt{108}$

Giải

Ví dụ 2. Khai căn các biểu thức sau:
a)  $\sqrt{(\sqrt{2}-1)^2}$
b) $\sqrt{(\sqrt{3}-2)^2}$
c) $\sqrt{(\sqrt{9}-2\sqrt{2})^2}$

Ví dụ 3. Thực hiện các phép toán sau, đưa về dạng $A + B\sqrt{C}$
a)  $(1+\sqrt{2})^2$
b) $(3-\sqrt{2})^2 + (4+\sqrt{8})^2$.
c) $(1+\sqrt{3})(4-\sqrt{3})^2$.
d) $(2-\sqrt{3})^3(1+\sqrt{27})$

Ví dụ 4. Cho $x =1+ \sqrt{2}$.
a)  Tính $x^2 – 2x + 3$.
b) Tính $x^3 – 3x$.
c) Tính $(x^3-2x^2-x+2)^{2021}$.

Bài tập rèn luyện.

Bài 1. Rút gọn các biểu thức sau:
a)$2\sqrt{24} – 2\sqrt{54} + 3\sqrt{6}- \sqrt{150}$
b) $2\sqrt{28} + 2\sqrt{63} – 3\sqrt{175}+ \sqrt{112}$
c) $10\sqrt{28} + 2\sqrt{275} – 3\sqrt{343} – \dfrac{3}{2}\sqrt{396}$
d)$\dfrac{3}{2} \sqrt{6} + 2 \sqrt{\dfrac{2}{3}} -4\sqrt{\dfrac{3}{2}}$

Bài 2.  So sánh
a) $1+\sqrt{3}$ và $2\sqrt{2}$
b) $\sqrt{2016}+\sqrt{2018}$ và $2\sqrt{2017}$
c) $\sqrt{2015}-\sqrt{2014}$ và $\sqrt{2014} -\sqrt{2013}$
d) $\sqrt{1009}+\sqrt{1008}$ và $\sqrt{2017}$

Bài 3.  Thực hiện phép tính và rút gọn:
a) $(3-\sqrt{2})(7 +3\sqrt{8}) – 15\sqrt{2}$.
b) $(3-\sqrt{5})^2(3+\sqrt{5}) + (1+\sqrt{5})(1-\sqrt{5})$.
c) $(3-\sqrt{2})^3 + (5-\sqrt{2})(6+2\sqrt{2})$.
d) $(4+\sqrt{27})(2-\sqrt{3}) + (1+\sqrt{3})^3$.

Bài 4.  Cho $a = \sqrt{5} – 1$.
a)Tính $a^2 + 4a$.
b) Chứng minh $a^2 + 2a – 4 = 0$.
c) Tính giá trị của biểu thức $(a^3+2a^2-4a+2)^{10}$.
d) Chứng minh $1 < a < 2$.

Bài 5. Cho $x = \sqrt{3}+\sqrt{5}$.
a) Tính $x^3$.
b) Chứng minh $x^4-16x^2 + 4 = 0$.

Bài 6. Tìm $x$ biết $\sqrt{x}$ là số tự nhiên và $A = \dfrac{\sqrt{x}-4}{\sqrt{x}+1}$ là số nguyên.

Bài 7. Cho $x$ là số dương. Chứng minh rằng $$x-\sqrt{x}+1$$ là số dương.

Bài 8. Cho $a > 0$ và $4{a^2} + a\sqrt 2 – \sqrt 2 = 0$. \
Chứng minh rằng : $\dfrac{{a + 1}}{{\sqrt {{a^4} + a + 1} – {a^2}}} = \sqrt 2 $