Bài 1.
a. Tính: $\mathrm{A}=1 \frac{13}{15} \cdot(0,5)^2 \cdot 3+\left(\frac{8}{15}-1 \frac{19}{60}\right): 1 \frac{23}{24}$
b. So sánh: $16^{20}$ và $2^{100}$
Hướng dẫn giải
a. Biến đổi:
$$
\begin{aligned}
& A=\frac{7}{5}-\frac{47}{60}: \frac{47}{24} \
& =\frac{7}{5}-\frac{2}{5} \
& =1
\end{aligned}
$$
b. Biến đổi: $16^{20}=2^{4.20}=2^{80}$
$$\text { Có } 2^{80}<2^{100} \text { vì }(1<2 ; 80<100)$$
Vậy $16^{20}<2^{100}$
Bài 2.
a. Tìm $x$ biết: $|2 x-7|+\dfrac{1}{2}=1 \dfrac{1}{2}$
b. Tìm số tự nhiên n biết: $3^{-1} \cdot 3^n+4.3^n=13.3^5$
Hướng dẫn giải
a. $\text { Ta có }|2 x-7|+\dfrac{1}{2}=1 \frac{1}{2} \Rightarrow|2 x-7|=1$
$\Rightarrow 2 x-7=1 \text { hoặc } 2 x-7=-1$
$\Rightarrow x=4 \text { hoặc } x=3$
Vậy $x=4$ hoặc $x=3$.
b. $\text { Biến đổi được } 3^n \cdot\left(3^{-1}+4\right)=13 \cdot 3^5$
$\Rightarrow 3^n=3^6$
$\Rightarrow \mathrm{n}=6$
Bài 3.
a. Cho dãy tỉ số bằng nhau:
$\dfrac{2 a+b+c+d}{a}=\dfrac{a+2 b+c+d}{b}=\dfrac{a+b+2 c+d}{c}=\dfrac{a+b+c+2 d}{d}$
Tính giá trị biểu thức Q , biết $\mathrm{Q}=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}$
b. Cho biểu thức $M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}$ với $x, y, z$, t là các số tự nhiên khác 0 . Chứng minh $M^{10}<1025$.
Hướng dẫn giải
a. Biến đổi: $\dfrac{2 a+b+c+d}{a}=\dfrac{a+2 b+c+d}{b}=\dfrac{a+b+2 c+d}{c}=\dfrac{a+b+c+2 d}{d}$
$\dfrac{2 a+b+c+d}{a}-1=\dfrac{a+2 b+c+d}{b}-1=\dfrac{a+b+2 c+d}{c}-1=\dfrac{a+b+c+2 d}{d}-1$
$\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}$
$+ \text { Nếu } \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d} \neq 0 \text { thì } \mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{d}=>\mathrm{Q}=1+1+1+1=4$
$+ \text { Nếu } \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=0\text { thì } \mathrm{a}+\mathrm{b}=-(\mathrm{c}+\mathrm{d}) ;$ $\mathrm{b}+\mathrm{c}=-(\mathrm{d}+\mathrm{a}) ; \mathrm{c}+\mathrm{d}=-(\mathrm{a}+\mathrm{b}) ; \mathrm{d}+\mathrm{a}=-(\mathrm{b}+\mathrm{c})$
$\Rightarrow \mathrm{Q}=(-1)+(-1)+(-1)+(-1)=-4$
$\mathrm{KL}: \text { Vậy } \mathrm{Q}=4 \text { khi } a+b+c+d \neq 0$
$\text { b. Ta có: } \dfrac{x}{x+y+z}<\dfrac{x}{x+y}$
$\dfrac{y}{x+y+t}<\dfrac{y}{x+y} $
$\dfrac{z}{y+z+t}<\dfrac{z}{z+t} $
$\dfrac{t}{x+z+t}<\dfrac{t}{z+t}$
$\Rightarrow \mathrm{M}<\left(\dfrac{\mathrm{x}}{\mathrm{x}+\mathrm{y}}+\dfrac{\mathrm{y}}{\mathrm{x}+\mathrm{y}}\right)+\left(\dfrac{\mathrm{z}}{\mathrm{z}+\mathrm{t}}+\dfrac{\mathrm{t}}{\mathrm{z}+\mathrm{t}}\right) $
$\Rightarrow \mathrm{M}<2 $
$\text { Có }M^{10}<2^{10}(\text { Vì } M>0) \text { mà } 2^{10}=1024<1025$
$\text { Vậy } \mathrm{M}^{10}<1025$
KL: Vậy $\mathrm{n}=6$
Bài 4.
1) Cho tam giác ABC vuông cân tại A . Gọi $M$ là trung điểm $\mathrm{BC}, \mathrm{D}$ là điểm thuộc đoạn $\mathrm{BM}(\mathrm{D}$ khác B và M ). Kẻ các đường thẳng $\mathrm{BH}, \mathrm{CI}$ lần lượt vuông góc với đường thẳng AD tại H và I . Chứng minh rằng:
a. $\mathrm{BAM}=\mathrm{ACM}$ và $\mathrm{BH}=\mathrm{AI}$.
b. Tam giác MHI vuông cân.
2) Cho tam giác ABC có góc $\widehat{\mathrm{A}}=90^{\circ}$. Kẻ AH vuông góc với BC ( H thuộc BC ). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E . Chứng minh rằng $\mathrm{AB}+\mathrm{AC}=\mathrm{BC}+\mathrm{DE}$.
Hướng dẫn giải
$ \text { a. } \text { * Chứng minh: } B A M=A C M$
$+ \text { Chứng minh được: } \triangle \mathrm{ABM}=\triangle \mathrm{ACM}(\mathrm{c}-\mathrm{c}-\mathrm{c})$
$\text { + Lập luận được: } B A M=C A M=45^{\circ}$
$\text { + Tính ra được } A C M=45^{\circ}$
$\Rightarrow B A M=A C M$
$\text { * Chứng minh: } \mathrm{BH}=\mathrm{AI} \text {. }$
$\text { + Chỉ ra: } B A H=A C I \text { (cùng phụ } D A C)$
$\text { + Chứng minh được } \triangle \mathrm{AIC}=\Delta \mathrm{BHA}(\text { Cạnh huyên – góc nhọn) }$
$\Rightarrow \mathrm{BH}=\mathrm{AI}(2 \text { cạnh tương ứng) }$
b. Tam giác MHI vuông cân.
Chứng minh được $A M \perp B C$
Chứng minh được $\mathrm{AM}=\mathrm{MC}$
Chứng minh được $H A M=I C M$
Chứng minh được $\Delta \mathrm{HAM}=\Delta \mathrm{ICM}(\mathrm{c}-\mathrm{g}-\mathrm{c})$
$\Rightarrow \mathrm{HM}=\mathrm{MI}$ (1)
Do $\triangle \mathrm{HAM}=\triangle \mathrm{ICM} \Rightarrow H M A=I M C \Rightarrow H M B=I M A$ (do $A M B=A M C=90^{\circ}$
Lập luận được: $H M I=90^{\circ}$ (2)
Từ (1) và (2)=>$\Delta$ MHI vuông cân $\left({ }^{ }\right)$
Từ (1) và (2)=>$\Delta \mathrm{MHI}$ vuông cân
$\text { + Chứng minh được : }$
$A E \mathrm{C}=A B C+B A E=H A D+D A C+B A E=E A H+H A D+D A C=E A C$
$\text { (Vì } B \text { và } H A C \text { cùng phụ với } B A H \text { ) }$
Suy ra tam giác AEC cân tại C $\Rightarrow\mathrm{AC}=\mathrm{CE}$ (1)
Tương tự chứng minh được $ \mathrm{AB}=\mathrm{BD}$ (2)
Từ (1) và (2) $\Rightarrow\mathrm{AB}+\mathrm{AC}=\mathrm{BD}+\mathrm{EC}=\mathrm{ED}+\mathrm{BC}$
Bài 5. Cho $\mathrm{x}, \mathrm{y}, \mathrm{z}$ là 3 số thực tùy ý thỏa mãn $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$ và $-1 \leq x \leq 1,-1 \leq y \leq 1$, $-1 \leq z \leq 1$. Chứng minh rằng đa thức $x^2+y^4+z^6$ có giá trị không lớn hơn 2 .
Hướng dẫn giải
+) Trong ba số $x, y, z$ có ít nhất hai số cùng dấu.
Giả sử $x ; y \geq 0$
$\Rightarrow \mathrm{z}=-\mathrm{x}-\mathrm{y} \leq 0$
$+\mathrm{Vì}-1 \leq x \leq 1,-1 \leq y \leq 1,-1 \leq z \leq 1=>x^2+y^4+z^6 \leq|x|+|y|+|z|$
$\Rightarrow x^2+y^4+z^6 \leq x+y-z$
$\Rightarrow x^2+y^4+z^6 \leq-2 z$
$+)-1 \leq z \leq 1 \text { và } \mathrm{z} \leq 0 \Rightarrow x^2+y^4+z^6 \leq 2$
KL: Vậy $x^2+y^4+z^6 \leq 2$
Like this:
Like Loading...