ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2004

ĐỀ THI

 

Câu 1

Cho $\mathrm{A}, \mathrm{B}, \mathrm{C}$ là ba góc của một tam giác. Hãy tìm giá trị nhỏ nhất của biểu thức:

$\quad\quad\quad\quad\quad\mathrm{T}=\sin ^6 \frac{\mathrm{A}}{2}+\sin ^6 \frac{\mathrm{B}}{2}+\sin ^6 \frac{\mathrm{C}}{2}$

Câu 2

Tìm nghiệm dương của phương trình:

$\quad\quad\quad\quad\quad 2 x+\frac{x-1}{x}=\sqrt{1-\frac{1}{x}}+3 \sqrt{x-\frac{1}{x}}$

Câu 3

Cho $a_1, a_2, \ldots, a_n$ là các số nguyên dương đôi một phân biệt $(\mathrm{n} \geq 2)$ thỏa mãn điều kiện:$\sum_{\mathrm{j}=1}^{\mathrm{n}} \frac{1}{\mathrm{a}_{\mathrm{j}}}=1$ và $Max(a_j)=2 p$ (với $p$ là số nguyên tố)

Tìm tất cả các số $a_1, a_2, \ldots, a_n$.

Câu 4

Cho tam giác $\mathrm{ABC}$ có $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$. Đường tròn nội tiếp tam giác $\mathrm{ABC}$ tiếp xúc với các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ lần lượt tại $\mathrm{A}_1, \mathrm{~B}_1$, $\mathrm{C}_1$.

Đặt $\mathrm{B}_1 \mathrm{C}_1=\mathrm{a}_1 ; \mathrm{C}_1 \mathrm{~A}_1=\mathrm{b}_1 ; \mathrm{A}_1 \mathrm{~B}_1=\mathrm{c}_1$.

Chứng minh rằng: $\left(\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2\right)\left(\frac{1}{\mathrm{a}_1^2}+\frac{1}{\mathrm{~b}_1^2}+\frac{1}{\mathrm{c}_1^2}\right) \geq 36$.

 

LỜI GIẢI

Câu 1

Cho $\mathrm{A}, \mathrm{B}, \mathrm{C}$ là ba góc của một tam giác. Hãy tìm giá trị nhỏ nhất của biểu thức:

$\quad\quad\quad\quad\quad\mathrm{T}=\sin ^6 \frac{\mathrm{A}}{2}+\sin ^6 \frac{\mathrm{B}}{2}+\sin ^6 \frac{\mathrm{C}}{2}$

Lời Giải

$\quad\quad\quad\quad\quad T=\sin ^6 \frac{\mathrm{A}}{2}+\sin ^6 \frac{\mathrm{B}}{2}+\sin ^6 \frac{\mathrm{C}}{2}$

Ta có: $\sin ^6 \frac{\mathrm{A}}{2}+\left(\frac{1}{2}\right)^6+\left(\frac{1}{2}\right)^6 \geq 3\left(\frac{1}{2}\right)^2\left(\frac{1}{2}\right)^2 \sin ^2 \frac{\mathrm{A}}{2}$

hay $\sin ^6 \frac{\mathrm{A}}{2}+\frac{2}{64} \geq \frac{3}{16} \sin ^2 \frac{\mathrm{A}}{2}$

Dấu “=” xảy ra khi $\mathrm{A}=\frac{\pi}{3}$

Tương tự như thế ta sẽ có:

$\quad\quad\quad\quad\quad T+\frac{6}{64} \geq \frac{3}{16}\left(\sin ^2 \frac{A}{2}+\sin ^2 \frac{B}{2}+\sin ^2 \frac{C}{2}\right)$

$\quad\quad\quad\quad =\frac{3}{16}\left(\frac{3}{2}-\frac{1}{2}(\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C})\right)$

$\quad\quad\quad\quad =\frac{3}{16}\left(\frac{1-\cos \mathrm{A}}{2}+\frac{1-\cos \mathrm{B}}{2}+\frac{1-\cos \mathrm{C}}{2}\right)$

$\quad\quad\quad\quad\geq \frac{3}{16}\left(\frac{3}{2}-\frac{1}{2} \cdot \frac{3}{2}\right)=\frac{9}{64}$

Vậy $\mathrm{T} \geq \frac{3}{64} \Rightarrow \mathrm{T}_{\min }=\frac{3}{64} \Leftrightarrow$ tam giác $\mathrm{ABC}$ là tam giác đều.

Câu 2

Tìm nghiệm dương của phương trình:

$\quad\quad\quad\quad\quad 2 x+\frac{x-1}{x}=\sqrt{1-\frac{1}{x}}+3 \sqrt{x-\frac{1}{x}}$

Lời Giải

Ta phải tìm nghiệm dương của phương trình: $2 x+\frac{x-1}{y}=\sqrt{1-\frac{1}{x}}+3 \sqrt{x}$

$+$ Điều kiện $x \geq 1$

$+$ Đặt $t=\sqrt{1-\frac{1}{x}} \geq 0$

Phương trình thành:

$\quad\quad\quad\quad\quad\mathrm{t}^2-(1+3 \sqrt{\mathrm{x}+1}) \mathrm{t}+2 \mathrm{x}=0$

$\quad\quad\quad\quad \Delta=(\sqrt{x+1}+3)^2$

$\operatorname{Nên}\left[\begin{array}{l}\mathrm{t}=2(\sqrt{\mathrm{x}+1}+1)\quad(1) \\ \mathrm{t}=\sqrt{\mathrm{x}+1}-\mathrm{x}\quad\quad(2)\end{array}\right.$

  • (1) cho: $\sqrt{1-\frac{1}{x}}=2(\sqrt{x+1}+1),(x \geq 1)$

Phương trình này vô nghiệm vì $\sqrt{1-\frac{1}{x}}<1<2(\sqrt{x+1}+1)$

  • (2) cho: $\sqrt{1-\frac{1}{x}}=\sqrt{x+1}-1,(x \geq 1) \Leftrightarrow \frac{x-1}{x}=x+2-2 \sqrt{x+1}$

$\quad\quad\quad\quad \Leftrightarrow 2 \sqrt{x+1}=x+1+\frac{1}{x} \Leftrightarrow(x-\sqrt{x+1})^2=0 \Leftrightarrow x=\sqrt{x+1}$

$\quad\quad\quad\quad \Leftrightarrow x=\frac{1 \pm \sqrt{5}}{2}$, nhận nghiệm $x=\frac{1+\sqrt{5}}{2} \geq 1$.

Câu 3

Cho $a_1, a_2, \ldots, a_n$ là các số nguyên dương đôi một phân biệt $(\mathrm{n} \geq 2)$ thỏa mãn điều kiện:$\sum_{\mathrm{j}=1}^{\mathrm{n}} \frac{1}{\mathrm{a}_{\mathrm{j}}}=1$ và $Max(a_j)=2 p$ (với $p$ là số nguyên tố)

Tìm tất cả các số $a_1, a_2, \ldots, a_n$.

Lời Giải

Không mất tính tổng quát, giả sử $a_1=\max(a_j)$ với $\mathrm{j}=1,2, \ldots, \mathrm{n}$.

Từ giả thiết: $\sum_{j=2}^n \frac{1}{a_j}=\frac{2 \cdot p-1}{2 \cdot p}$

$\Rightarrow 2 \cdot p \cdot B=(2 p-1) a_2 \cdot a_3 \cdot \ldots \cdot a_n$ với $B \in Z^{+}$.

$\Rightarrow(2 p-1) a_2 \cdot a_3 \ldots \cdot a_n$ chia hết cho $p$.

$\Rightarrow a_2 \cdot a_3 \ldots \ldots \cdot a_n$ chia hết cho $\mathrm{p}$ vì $(\mathrm{p}, 2 \mathrm{p}-1)=1$

$\Rightarrow \exists \mathrm{a}_1 \vdots \mathrm{p}$, vì p là số nguyên tố với $\mathrm{I}=2,3 \ldots \mathrm{n}$

Gọi $\mathrm{a}_2$ là số nói trên thì $\mathrm{a}_2=\mathrm{p}$ (do $\left.\mathrm{gt}\right)$

$\Rightarrow \sum_{j=3}^n \frac{1}{a_j}=\frac{2 \cdot p-3}{2 \cdot p} \Rightarrow 2 \cdot p \cdot M=(2 p-3) a_3 \cdot a_4 \ldots . a_n$ với $M \in Z^{+}$

Tương tự như trên: ta có $2 \mathrm{p}-3 \vdots \mathrm{p}$, từ đó $\mathrm{p}=3$

Vậy $a_1=6, a_2=3, a_3=2$.

Câu 4

Cho tam giác $\mathrm{ABC}$ có $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$. Đường tròn nội tiếp tam giác $\mathrm{ABC}$ tiếp xúc với các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ lần lượt tại $\mathrm{A}_1, \mathrm{~B}_1$, $\mathrm{C}_1$.

Đặt $\mathrm{B}_1 \mathrm{C}_1=\mathrm{a}_1 ; \mathrm{C}_1 \mathrm{~A}_1=\mathrm{b}_1 ; \mathrm{A}_1 \mathrm{~B}_1=\mathrm{c}_1$.

Chứng minh rằng: $\left(\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2\right)\left(\frac{1}{\mathrm{a}_1^2}+\frac{1}{\mathrm{~b}_1^2}+\frac{1}{\mathrm{c}_1^2}\right) \geq 36$.

Lời Giải

  • Gọi $\mathrm{p}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$ thì $\mathrm{AC}_1=\mathrm{p}-\mathrm{a}$

Suy ra: $a_1=2 A C_1 \cdot \sin \frac{A}{2}$

$\quad\quad\quad\quad  =(b+c-a) \sin \frac{A}{2}$

Do đó: $a_1^2=(b+c-a)^2 \cdot \sin ^2\left(\frac{A}{2}\right)$

$\quad\quad\quad\quad  =\frac{1}{2}(b+c-a)^2 \cdot(1-\cos A)$

$\quad\quad\quad\quad  =\frac{1}{2}(b+c-a)^2 \cdot\left(1-\frac{b^2+c^2-a^2}{2 b c}\right)$

$\quad\quad\quad\quad  =\frac{1}{4 b c}\left[b^2-(a-c)^2\right] \cdot\left[c^2-(a-b)^2\right] \leq \frac{b c}{4} \Rightarrow \frac{1}{a_1^2} \geq \frac{4}{b c}$

Tương tự: $\frac{1}{\mathrm{~b}_1^2} \geq \frac{4}{\mathrm{ac}}$ và $\frac{1}{\mathrm{c}_1^2} \geq \frac{4}{\mathrm{ab}}$

Vậy: $\frac{1}{\mathrm{a}_1^2}+\frac{1}{\mathrm{~b}_1^2}+\frac{1}{\mathrm{c}_1^2} \geq 4\left(\frac{1}{\mathrm{ab}}+\frac{1}{\mathrm{bc}}+\frac{1}{\mathrm{ac}}\right) \geq 4\left(\frac{9}{\mathrm{ab}+\mathrm{bc}+\mathrm{ac}}\right) \geq \frac{36}{\mathrm{a}^2+\mathrm{b}^2+\mathrm{c}^2}$

Suy ra: $\left(a^2+b^2+c^2\right),\left(\frac{1}{a_1^2}+\frac{1}{b_1^2}+\frac{1}{c_1^2}\right) \geq 36$

Dấu đẳng thức xảy ra khi và chỉ khi tam giác $\mathrm{ABC}$ đều.

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *