Đề thi thử Tuyển sinh 10 TPHCM

ĐỀ THI THỬ TUYỂN SINH 10 LẦN 2

Môn: Toán (Không chuyên)

Thời gian: 120 phút

Bài 1. (1 điểm) Cho parabol $(P):y=kx^2$ $(k\in \mathbb{R})$ và đường thẳng $(d):y=ax-6$ $(a \in \mathbb{R})$

a) Tìm $k$ và $a$ biết $(P)$ và $(d)$ cùng đi qua điểm $A$ có tọa độ $(2;4)$.

Vẽ $(P)$ và $(d)$ trên cùng một hệ trục tọa độ.

b) Tìm tọa độ giao điểm $B$ còn lại của $(P)$ và $(d)$ bằng phép tính.

Bài 2. (1 điểm) Tính giá trị của các biểu thức sau:

a) $\left( 1+ \dfrac{3+\sqrt{3}}{\sqrt{3}+1} \right) \cdot \left( 1- \dfrac{3-\sqrt{3}}{\sqrt{3}-1} \right) $

b) $\dfrac{\sqrt{2+\sqrt{3}}}{2} : \left( \dfrac{\sqrt{2+\sqrt{3}}}{2} -\dfrac{2}{\sqrt{6}}+ \dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}} \right) $

Bài 3. (1 điểm) Cho phương trình $x^2-2(m+1)x+m^2+1 =0$ (1)

a) Tìm $m$ để phương trình $(1)$ có nghiệm kép. Tìm nghiệm của $(1)$ lúc đó.

b) Tìm $m$ để phương trình $(1)$ luôn có hai nghiệm phân biệt $x_1$, $x_2$.

Với $m=2$, không giải phương trình, tính giá trị biểu thức: $P=\dfrac{x_1}{x_2} + \dfrac{x_2}{x_1}$

Bài 4. (1 điểm) Công ty đồ chơi Superview Odoriko vừa cho ra đời một đồ chơi tàu điện điều khiển từ xa. Trong điều kiện phòng thí nghiệm, quãng đường $s$ (cm) đi được của đoàn tàu đồ chơi là một hàm số theo thời gian $t$ (giây), hàm số đó là $s=5t+11$. Trong điều kiện thực tế, hàm số biểu diễn $s$ theo $t$ là một hàm số bậc nhất và người ta thấy rằng nếu đồ chơi di chuyển được 15 cm thì mất 3 giây và có thể đi được quãng đường 64 cm trong 10 giây.

a) Trong điều kiện thí nghiệm, sau bao nhiêu giây thì tàu đồ chơi này di chuyển được quãng đường là $66 \, cm$?

b) Ba bé Bình mua đồ chơi này về cho bé chơi, ba ngồi cách bé $3 \,m$. Hỏi cần bao nhiêu giây đề chiếc tàu đồ chơi này di chuyển từ chỗ bé đến ba?

Bài 5. (1 điểm) Một bè $A$ ở giữa hồ nước, anh Phúc muốn ra chiếc bè này thì cần phải dùng hai chiếc thuyền $B$ hoặc $C$ đang ở bờ. Biết rằng 2 chiếc thuyền $B$ và $C$ cách nhau 450 mét. Biết rằng góc nhìn từ $B$ và $C$ đến chiếc bè $A$ theo thứ tự vào khoảng $40^\circ$ và $35^\circ$. Lượng dầu của thuyền $B$ chạy được khoảng 250 mét và lượng dầu của thuyền $C$ chạy được khoảng 300 mét. Vậy anh Phúc nên lấy thuyền nào để đến bè $A$?

Bài 6. (1 điểm) Một cửa hàng giày dép bán đồng giá 675 000 đồng/đôi. Nhưng vì ảnh hưởng của dịch cúm Covid 19 nên khách đã đến mua ít lại. Chủ cửa hàng đã giảm giá hai lần và mỗi lần là $x\%$ so với giá tại thời điểm giảm nên đã có giá mới là 546 750 đồng.

a) Hãy tìm $x$.

b) Biết rằng giá nhập về một đôi giày là 565 000 đồng và cửa hàng đã bán được 100 đôi sau khi giảm lần đầu và 150 đôi sau khi giảm lần thứ hai. Vậy cửa hàng này đã lời hay lỗ là bao nhiêu tiền?

Bài 7. (1 điểm) Để tạo một mô hình kim tự tháp có hình chóp tứ giác đều (là hình có đáy là hình vuông và các mặt bên là các tam giác cân có chung đỉnh), bạn An đã cắt tấm bìa ra thành hình bên và dán đỉnh lại. Hãy tính diện tích toàn phần của hình chóp và thể tích hình chóp được tạo thành. Biết rằng đáy hình vuông có cạnh là 5 cm, chiều cao của các tam giác cân hạ từ đỉnh cân là 6 cm, thể tích hình chóp là $V=\dfrac{1}{3}Sh$ với $S$ là diện tích đáy hình vuông và $h$ là khoảng cách từ đỉnh $S$ đến đáy $ABCD$ và bằng $SH$ với $H$ là giao điểm của $AC$ và $BD$.

Bài 8. (3 điểm) Cho tam giác $ABC$ nhọn có $AB<AC$ và nội tiếp đường tròn $\left( O;\, R\right) $. Vẽ đường kính $AD$. Tiếp tuyến tại $D$ của $(O)$ cắt $AC$ tại $E$ và $BC$ tại $F$.

a) Chứng minh $AC\cdot AE=4R^2$ và $FB\cdot FC=FD^2$.

b) Vẽ $DH\bot OF$ với $H$ thuộc $OF$. Chứng minh $OBCH$ nội tiếp và $\angle BHC=2\angle BAC$.

c) Chứng minh đường tròn ngoại tiếp các tam giác $AOH$ và $FEC$ cùng cắt nhau tại một điểm $P$ thuộc $(O)$ và $A$, $P$, $F$ thẳng hàng.

Leave a Reply

Your email address will not be published. Required fields are marked *