Tag Archives: Bùi Thị Xuân

Đề thi học kì 2 môn toán lớp 10 trường Bùi Thị Xuân năm 2020-2021

PHẦN ĐẠI SỐ (6 điểm)

Bài 1. Giải các bất phương trình sau:

a) $|2x+8| <x^2$

b) $1-2x-\sqrt{3x^2-4x+1} \ge 0$

Giải

a) $|2x+8| <x^2 \Leftrightarrow \left\{ \begin{array}{l} x^2 -2x -8>0\\ x^2 + 2x +8 >0 \end{array}\right. $ $\left[ \begin{array}{l} x<-2\\ x>4 \end{array}\right. $

b) $1-2x – \sqrt{3x^2 -4x +1} \ge 0 \Leftrightarrow \sqrt{3x^2 -4x +1} \le 1-2x$

$\Leftrightarrow \left\{ \begin{array}{l} 3x^2 -4x +1\ge 0\\ 1-2x \ge 0\\ x^2 +1\ge 0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x\le \dfrac{1}{3}\\ x\ge 1 \end{array} \right. \\ x\le \dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow x\le \dfrac{1}{3}$

Bài 2. Biết $\cos x = -\dfrac{3}{5}$ và $\dfrac{\pi}{2}<x<\pi$. Tính $\sin x$, $\sin 2x$, $\cos \left( x+\dfrac{2\pi}{3}\right) $.

Giải

Ta có: $\sin ^2 x = 1- \cos ^2 x = \dfrac{16}{25} \Rightarrow \sin x = \dfrac{4}{5}$ ($\dfrac{\pi}{2}<x<\pi$)

Ta có: $\sin 2x = 2\sin x \cos x = -\dfrac{24}{25}$

Ta có: $\cos \left( x+ \dfrac{2\pi}{3}\right) = \cos x \cdot \cos \dfrac{2\pi}{3} – \sin x \cdot \sin \dfrac{2\pi}{3} = \dfrac{3-4\sqrt{3}}{10}$

Bài 3. Cho $A$, $B$, $C$ là ba góc của tam giác. Chứng minh rằng

$$\tan \dfrac{A}{2} \cdot \tan \dfrac{B}{2} + \tan \dfrac{B}{2} \cdot \tan \dfrac{C}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2} =1$$

Giải

$VT = \tan \dfrac{A}{2} \cdot \tan \dfrac{B}{2} + \tan \dfrac{B}{2} \cdot \tan \dfrac{C}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=\tan \dfrac{B}{2} \cdot \left( \tan \dfrac{A}{2} + \tan \dfrac{C}{2}\right) + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=\tan \dfrac{B}{2} \cdot \tan \dfrac{A+C}{2} \cdot \left( 1-\tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}\right) + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=1-\tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}=1=VP$ (với $\tan \dfrac{A+C}{2} = \cot \dfrac{B}{2}$ )

Bài 4. Chứng minh biểu thức không phụ thuộc vào $x$:

$$A=\tan (\pi +x) \cdot \tan \left( \dfrac{\pi}{2} -x\right) – \cos ^2 x + \cos \left( x+ \dfrac{\pi}{6}\right) \cdot \cos \left( x-\dfrac{\pi}{6}\right) $$

Giải

$A=\tan (\pi +x) \cdot \tan \left( \dfrac{\pi}{2} -x\right) – \cos ^2 x + \cos \left( x+ \dfrac{\pi}{6}\right) \cdot \cos \left( x-\dfrac{\pi}{6}\right) $

$= \tan x \cdot \cot x – \cos ^2 x + \dfrac{1}{2} \left( \cos 2x + \cos \dfrac{pi}{3}\right) $

$= 1- \cos ^2 x + \cos ^2 x – \dfrac{1}{2} + \dfrac{1}{4} = \dfrac{3}{4}$

Bài 5. Chứng minh rằng

$$\left( \dfrac{\sin 2x – 2\sin x}{\sin 2x + 2\sin x}\right) \cdot \left( \dfrac{\sin ^4 x – \cos ^4 x + \cos ^2 x}{2\left( \cos x-1\right) }\right)= \sin ^2 \dfrac{x}{2}$$

Giải

$VT = \left( \dfrac{\sin 2x – 2\sin x}{\sin 2x + 2\sin x}\right) \cdot \left( \dfrac{\sin ^4 x – \cos ^4 x + \cos ^2 x}{2\left( \cos x-1\right) }\right)$

$=\dfrac{2\sin x \left( \cos x -1\right) }{2\sin x \left( \cos x +1\right) }\cdot \dfrac{\left( \sin ^2 x + \cos ^2 x\right) \left( \sin ^2 x – \cos ^2 x\right) + \cos ^2 x}{2\left( \cos x -1\right) }$

$=\dfrac{\sin ^2 x}{2\left( \cos x +1\right) }=\dfrac{\left( 1-\cos x\right) \left( 1+ \cos x\right) }{2\left( \cos x +1\right) }= \dfrac{1-\cos x}{2} = \sin ^2 \dfrac{x}{2} = VP$

PHẦN HÌNH HỌC (4 điểm)

Bài 6. Trong mặt phẳng với hệ tọa độ $Oxy$, cho tam giác $ABC$ có đỉnh $C(-5;-6)$ và đường cao $AH: x+2y +1=0$, đường trung tuyến $BM: 8x-y+4=0$. Tìm tọa độ các đỉnh $B$, $A$.

Giải

Ta có: $BC \bot AH \Rightarrow BC: 2x -y +c =0$

$C\in BC \Rightarrow c=4 \Rightarrow BC: 2x-y+4=0$

Ta có: $\left\{ \begin{array}{l} B\in BC\\ B\in BM \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 2x_B – y_B =-4\\ 8x_B – y_B =-4 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} x_B = 0\\ y_B =4 \end{array}\right. $ $\Rightarrow B(0;4)$

Ta có: $M\in BM \Rightarrow M(a;8a+4)$

$M$ là trung điểm $AC\Rightarrow A(2a+5; 16a+14)$

Ta có: $A\in AH \Rightarrow 2a+5 + 2(16a+14) + 2=0 \Leftrightarrow a=-1\Rightarrow A(3;-2)$

Bài 7. Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường tròn $(C): x^2 + y^2 +2x -2y +1=0$. Viết phương trình tiếp tuyến $\Delta $ của đường tròn $(C)$ biết rằng đường thẳng $\Delta$ vuông góc với đường thẳng $d: 2x+y+2=0$.

Giải

$(C): x^2 + y^2 + 2x -2y +1 =0 \Rightarrow $ Tâm $I(-1;1)$, bán kính $R=1$

Ta có: $\Delta \bot d \Rightarrow d: x-2y +c =0$

Ta có: $d_{(I,\Delta)}=1 \Leftrightarrow \dfrac{|c-3|}{\sqrt{5}} =1 \Leftrightarrow |c-3| =\sqrt{5} \Leftrightarrow \left[ \begin{array}{l} c=\sqrt{5}+3\\ c=-\sqrt{5}+3 \end{array}\right. $

Với $c=\sqrt{5}+3 \Rightarrow \Delta: x-2y + \sqrt{5}+3 =0$

Với $c=-\sqrt{5}+3 \Rightarrow \Delta: x-2y -\sqrt{5}+3=0$

Bài 8. Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường thẳng $d: 2x-y-5=0$ và hai điểm $A(1;2)$, $B(4;1)$. Viết phương trình đường tròn $(T)$ có tâm thuộc đường thẳng $d$ và đi qua $A$, $B$.

Giải

Gọi $I$ là tâm đường tròn $\Rightarrow I\in d \Rightarrow I(a;2a-5)$

Ta có: $AI^2 = BI^2 \Rightarrow (a-1)^2 + (2a-7)^2 = (a-4)^2 + (2a-6)^2 \Rightarrow a=1$

Suy ra $I(1;-3)$ nên $R=5$

Vậy $(T): (x-1)^2 + (y+3)^2 =25$

Bài 9. Trong mặt phẳng với hệ tọa độ $Oxy$, cho elip $(E): \dfrac{x^2}{25} + y^2 =1$. Tìm tọa độ tiêu điểm, tính tâm sai và độ dài các trục của $(E)$.

Giải

$(E): \dfrac{x^2}{25}+y^2 =1 \Rightarrow a=5$ và $b=1$

Khi đó: $c=\sqrt{a^2 -b^2} =2\sqrt{6}$

Tọa độ tiêu điểm: $F_1(-2\sqrt{6}; 0)$; $F_2(2\sqrt{6}; 0)$

Tâm sai: $e=\dfrac{c}{a} = \dfrac{2\sqrt{6}}{5}$

Độ dài trục lớn: $2a=10$

Độ dài trục bé: $2b=2$

— HẾT —