Tag Archives: HSG

ĐỀ HỌC SINH GIỎI LỚP 7

Bài 1.

a. Tính: $\mathrm{A}=1 \frac{13}{15} \cdot(0,5)^2 \cdot 3+\left(\frac{8}{15}-1 \frac{19}{60}\right): 1 \frac{23}{24}$
b. So sánh: $16^{20}$ và $2^{100}$

Hướng dẫn giải

a. Biến đổi:

$$
\begin{aligned}
& A=\frac{7}{5}-\frac{47}{60}: \frac{47}{24} \
& =\frac{7}{5}-\frac{2}{5} \
& =1
\end{aligned}
$$

b. Biến đổi: $16^{20}=2^{4.20}=2^{80}$

$$\text { Có } 2^{80}<2^{100} \text { vì }(1<2 ; 80<100)$$

Vậy $16^{20}<2^{100}$

Bài 2.
a. Tìm $x$ biết: $|2 x-7|+\dfrac{1}{2}=1 \dfrac{1}{2}$
b. Tìm số tự nhiên n biết: $3^{-1} \cdot 3^n+4.3^n=13.3^5$

Hướng dẫn giải

a. $\text { Ta có }|2 x-7|+\dfrac{1}{2}=1 \frac{1}{2} \Rightarrow|2 x-7|=1$
$\Rightarrow 2 x-7=1 \text { hoặc } 2 x-7=-1$
$\Rightarrow x=4 \text { hoặc } x=3$
Vậy $x=4$ hoặc $x=3$.

b. $\text { Biến đổi được } 3^n \cdot\left(3^{-1}+4\right)=13 \cdot 3^5$
$\Rightarrow 3^n=3^6$
$\Rightarrow \mathrm{n}=6$

Bài 3.
a. Cho dãy tỉ số bằng nhau:
$\dfrac{2 a+b+c+d}{a}=\dfrac{a+2 b+c+d}{b}=\dfrac{a+b+2 c+d}{c}=\dfrac{a+b+c+2 d}{d}$
Tính giá trị biểu thức Q , biết $\mathrm{Q}=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}$

b. Cho biểu thức $M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}$ với $x, y, z$, t là các số tự nhiên khác 0 . Chứng minh $M^{10}<1025$.

Hướng dẫn giải

a. Biến đổi: $\dfrac{2 a+b+c+d}{a}=\dfrac{a+2 b+c+d}{b}=\dfrac{a+b+2 c+d}{c}=\dfrac{a+b+c+2 d}{d}$

$\dfrac{2 a+b+c+d}{a}-1=\dfrac{a+2 b+c+d}{b}-1=\dfrac{a+b+2 c+d}{c}-1=\dfrac{a+b+c+2 d}{d}-1$
$\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}$
$+ \text { Nếu } \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d} \neq 0 \text { thì } \mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{d}=>\mathrm{Q}=1+1+1+1=4$
$+ \text { Nếu } \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=0\text { thì } \mathrm{a}+\mathrm{b}=-(\mathrm{c}+\mathrm{d}) ;$ $\mathrm{b}+\mathrm{c}=-(\mathrm{d}+\mathrm{a}) ; \mathrm{c}+\mathrm{d}=-(\mathrm{a}+\mathrm{b}) ; \mathrm{d}+\mathrm{a}=-(\mathrm{b}+\mathrm{c})$
$\Rightarrow \mathrm{Q}=(-1)+(-1)+(-1)+(-1)=-4$
$\mathrm{KL}: \text { Vậy } \mathrm{Q}=4 \text { khi } a+b+c+d \neq 0$

$\text { b. Ta có: } \dfrac{x}{x+y+z}<\dfrac{x}{x+y}$
$\dfrac{y}{x+y+t}<\dfrac{y}{x+y} $
$\dfrac{z}{y+z+t}<\dfrac{z}{z+t} $
$\dfrac{t}{x+z+t}<\dfrac{t}{z+t}$
$\Rightarrow \mathrm{M}<\left(\dfrac{\mathrm{x}}{\mathrm{x}+\mathrm{y}}+\dfrac{\mathrm{y}}{\mathrm{x}+\mathrm{y}}\right)+\left(\dfrac{\mathrm{z}}{\mathrm{z}+\mathrm{t}}+\dfrac{\mathrm{t}}{\mathrm{z}+\mathrm{t}}\right) $
$\Rightarrow \mathrm{M}<2 $
$\text { Có }M^{10}<2^{10}(\text { Vì } M>0) \text { mà } 2^{10}=1024<1025$
$\text { Vậy } \mathrm{M}^{10}<1025$
KL: Vậy $\mathrm{n}=6$

Bài 4.
1) Cho tam giác ABC vuông cân tại A . Gọi $M$ là trung điểm $\mathrm{BC}, \mathrm{D}$ là điểm thuộc đoạn $\mathrm{BM}(\mathrm{D}$ khác B và M ). Kẻ các đường thẳng $\mathrm{BH}, \mathrm{CI}$ lần lượt vuông góc với đường thẳng AD tại H và I . Chứng minh rằng:
a. $\mathrm{BAM}=\mathrm{ACM}$ và $\mathrm{BH}=\mathrm{AI}$.
b. Tam giác MHI vuông cân.
2) Cho tam giác ABC có góc $\widehat{\mathrm{A}}=90^{\circ}$. Kẻ AH vuông góc với BC ( H thuộc BC ). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E . Chứng minh rằng $\mathrm{AB}+\mathrm{AC}=\mathrm{BC}+\mathrm{DE}$.

Hướng dẫn giải

$ \text { a. } \text { * Chứng minh: } B A M=A C M$
$+ \text { Chứng minh được: } \triangle \mathrm{ABM}=\triangle \mathrm{ACM}(\mathrm{c}-\mathrm{c}-\mathrm{c})$
$\text { + Lập luận được: } B A M=C A M=45^{\circ}$
$\text { + Tính ra được } A C M=45^{\circ}$
$\Rightarrow B A M=A C M$
$\text { * Chứng minh: } \mathrm{BH}=\mathrm{AI} \text {. }$
$\text { + Chỉ ra: } B A H=A C I \text { (cùng phụ } D A C)$
$\text { + Chứng minh được } \triangle \mathrm{AIC}=\Delta \mathrm{BHA}(\text { Cạnh huyên – góc nhọn) }$
$\Rightarrow \mathrm{BH}=\mathrm{AI}(2 \text { cạnh tương ứng) }$

b. Tam giác MHI vuông cân.

Chứng minh được $A M \perp B C$
Chứng minh được $\mathrm{AM}=\mathrm{MC}$
Chứng minh được $H A M=I C M$
Chứng minh được $\Delta \mathrm{HAM}=\Delta \mathrm{ICM}(\mathrm{c}-\mathrm{g}-\mathrm{c})$
$\Rightarrow \mathrm{HM}=\mathrm{MI}$ (1)
Do $\triangle \mathrm{HAM}=\triangle \mathrm{ICM} \Rightarrow H M A=I M C \Rightarrow H M B=I M A$ (do $A M B=A M C=90^{\circ}$
Lập luận được: $H M I=90^{\circ}$ (2)
Từ (1)(2)=>$\Delta$ MHI vuông cân $\left({ }^{ }\right)$
Từ (1) và (2)=>$\Delta \mathrm{MHI}$ vuông cân

$\text { + Chứng minh được : }$
$A E \mathrm{C}=A B C+B A E=H A D+D A C+B A E=E A H+H A D+D A C=E A C$
$\text { (Vì } B \text { và } H A C \text { cùng phụ với } B A H \text { ) }$
Suy ra tam giác AEC cân tại C $\Rightarrow\mathrm{AC}=\mathrm{CE}$ (1)
Tương tự chứng minh được $ \mathrm{AB}=\mathrm{BD}$ (2)
Từ (1) và (2) $\Rightarrow\mathrm{AB}+\mathrm{AC}=\mathrm{BD}+\mathrm{EC}=\mathrm{ED}+\mathrm{BC}$

Bài 5. Cho $\mathrm{x}, \mathrm{y}, \mathrm{z}$ là 3 số thực tùy ý thỏa mãn $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$ và $-1 \leq x \leq 1,-1 \leq y \leq 1$, $-1 \leq z \leq 1$. Chứng minh rằng đa thức $x^2+y^4+z^6$ có giá trị không lớn hơn 2 .

Hướng dẫn giải

+) Trong ba số $x, y, z$ có ít nhất hai số cùng dấu.
Giả sử $x ; y \geq 0$
$\Rightarrow \mathrm{z}=-\mathrm{x}-\mathrm{y} \leq 0$
$+\mathrm{Vì}-1 \leq x \leq 1,-1 \leq y \leq 1,-1 \leq z \leq 1=>x^2+y^4+z^6 \leq|x|+|y|+|z|$
$\Rightarrow x^2+y^4+z^6 \leq x+y-z$
$\Rightarrow x^2+y^4+z^6 \leq-2 z$
$+)-1 \leq z \leq 1 \text { và } \mathrm{z} \leq 0 \Rightarrow x^2+y^4+z^6 \leq 2$
KL: Vậy $x^2+y^4+z^6 \leq 2$













Giới thiệu sách: Đề thi học sinh giỏi các nước.

Gửi các bạn một số Booklet của các nước.

1/ Đề thi Trung Quốc. các năm 2010, 2011 – 2014 có sách bản quyền. Các năm về sau chưa thấy sách.

Mathematical_Olympiad_in_China-Problems_and_Solutions 2003 2006

mathematic-olympiad-in-china2007-2008-problems-and-solutions

2/ Đề thi Bulgari. 

Một số sách đề thi Bulgari có nhiều bài hay được lấy làm đề thi tuyển sinh vào 10, đề thi học sinh giỏi trong nước.

Bulgarian Mathematical Competitions 2003-2006

BulgarianMO1960_2008

3/Đề thi khu vực Balkan https://vi.wikipedia.org/wiki/Balkan

Balkan MO 2008-20 EN with solutions

(Còn nữa)