Tag Archives: TamGiacDongDang

Chứng minh ba điểm thẳng hàng

Đề bài. Cho tam giác $OBA$ vuông tại $B$ đường cao $BH$. Gọi $C$, $D$ lần lượt là điểm đối xứng của $B$, $O$ qua $H$. Từ $B$ kẻ hai tiếp tuyến $BP$, $BQ$ đến đường tròn đường kính $AD$. Chứng minh ba điểm $C$, $P$, $Q$ thẳng hàng.

Cách 1 (sử dụng tam giác đồng dạng)

Gọi $I$ là trung điểm $AD$. Qua $C$ kẻ đường thằng vuông góc với $BI$, cắt $BI$ tại $J$ và cắt $OA$ tại $K$. Nếu chứng minh được

\[ IJ.IB = IQ^2 = IP^2 \qquad (*)\]

ta sẽ chứng minh được $QJ \bot BI$ và $PJ \bot BI$ nhờ các tam giác đồng dạng. Từ đó suy ra được $C, P, Q$ thẳng hàng (cùng nằm trên đường thẳng vuông góc với $BI$ tại $J$).

Vì $IJ.IB = IH.IK$ nên việc chứng minh (*) có thể đưa về chứng minh $IH.IK = IA^2$ (xem chứng minh ở đây).

Cách 2 (tứ giác nội tiếp, phương tích)

Do tứ giác $BOCD$ là hình thoi, nên $CD$ song song $OB$, tia kéo dài $CD$ sẽ vuông góc với $AB$ tại $E$. Tứ giác $HEAC$ nội tiếp có

\[BE.BA = BH.BC \]

Lại có $BP$, $BEA$ lần lượt là tiếp tuyến và cát tuyến của đường tròn đường kính $AD$ nên

\[ BE.BA = BP^2 \]

Suy ra được $BH.BC = BP^2$, suy ra tam giác $BPC$ và $BHP$ đồng dạng (c.g.c), ta có được $\angle BCP = \angle BPH$. Chứng minh tương tự với $\angle BCQ = \angle BQH$.

Mặt khác, năm điểm $B,Q,I,P,H$ cùng nằm trên đường tròn đường kính $BI$, nên $\angle BPH = \angle BQH$ (cùng chắn cung $AH$).

Vậy $\angle BCP = \angle BCQ$, suy ra ba điểm $C,P,Q$ thẳng hàng (đpcm).