Tag Archives: Toán đố

Toán đố – P2

Tiếp theo phần 1, phần này tôi xin đưa ra những ví dụ phức tạp hơn, đòi hỏi cao hơn trong việc đưa ra phương trình, hoặc việc giải phương trình hệ phương trình ở mức khó hơn.

Ví dụ 1. Tổng kết học kì 2, trường trung học cơ sở N có 60 học sinh không đạt học sinh giỏi, trong đó có 6 em từng đạt học sinh giỏi học kì 1, số học sinh giỏi của học kì 2 bằng $\dfrac{40}{37}$ số học sinh giỏi của học kì 1 và có $8 \% $ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2. Tìm số học sinh giỏi học kì 2 của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Lời  giải. 

Nhận xét: Bài toán có sự thay đổi về số học sinh giỏi của học kì 2 so với học kì 1, đó là số học sinh mới được và số học sinh bị rớt danh hiệu.

Ta có lời giải như sau:

Gọi $x$ $(x>0)$ là số học sinh giỏi học kì $2$ của trường.

Tổng số học sinh của trường là: $x+60$ (học sinh).

Số học sinh giỏi học kì $1$ là: $\dfrac{37}{40}x$ (học sinh).

$8\%$ số học sinh toàn trường không đạt giỏi học kì $1$ nhưng đạt giỏi học kì $2$: $(x+60).8\%=\dfrac{2x}{25}+\dfrac{24}{5}$ (học sinh).

Theo đề bài ta có phương trình $x = \dfrac{37}{40} x + \dfrac{2x}{25} + \dfrac{24}{5} – 6$.

Giải ra được $x = 240$.
Vậy số học sinh giỏi học kì $2$ của trường là $240$ học sinh.

Ví dụ 2. Bạn An dự định trong khoảng thời gian từ ngày 1/3 đến ngày 30/4 mỗi ngày sẽ giải 3 bài toán. Thực hiện đúng kế hoạch một thời gian, vào khoảng cuối tháng 3 (tháng 3 có 31 ngày) thì A bị bệnh, phải nghỉ giải toán nhiều ngày liên tiếp. Khi hồi phục, trong tuần đầu An giải 16 bài toán; sau đó, A cố gắng giải 4 bài một ngày và đến 30/4 thì A cũng hoàn thành kế hoạch đã định. Hỏi bạn An đã nghỉ giải toán ít nhất bao nhiêu ngày?

Lời giải. 

Gọi $x$  là số ngày làm được 3 bài giai đoạn 1 ($x \leq 31)$ và $y$ là số ngày nghỉ.

Khi đó tổng số bài làm theo thực tế là: $3x + 16 + 4(61-x-y-7) = 232 -x-4y$.

Số bài thực tế bằng số bài dự định bằng $61 \times 3 = 183$.

Ta có phương trình $232-4y-x = 183 \Leftrightarrow 4y + x = 49 \Rightarrow y \geq \dfrac{18}{4} $.

Mà $y \in \mathbb{N}$ nên $y \geq 5$, giá trị nhỏ nhất của $y$ là 5, khi $x = 29$.

Ví dụ 3. Lớp $9A$ có 28 học sinh đăng ký dự thi vào các lớp chuyên Toán, Lý, Hóa của trường Phổ thông Năng khiếu. Trong đó: không có học sinh nào chỉ chọn thi vào lớp Lý hoặc chỉ chọn thi vào lớp Hóa; có ít nhất 3 học sinh chọn thi vào cả ba lớp Toán, Lý và Hóa; số học sinh chọn thi vào lớp Toán và Lý bằng số học sinh chỉ chọn thi vào lớp Toán; có 6 học sinh chọn thi vào lớp Toán và Hóa; số học sinh chọn thi vào lớp Lý và Hóa gấp 5 lần số học sinh chọn thi vào cả ba lớp Toán, Lý và Hóa. Hỏi số học sinh chọn thi vào từng lớp là bao nhiêu?

Lời giải.

Gọi $x$  là số ngày làm được 3 bài giai đoạn 1 ($x \leq 31)$ và $y$ là số ngày nghỉ.

Khi đó tổng số bài làm theo thực tế là: $3x + 16 + 4(61-x-y-7) = 232 -x-4y$.

Số bài thực tế bằng số bài dự định bằng $61 \times 3 = 183$.

Ta có phương trình $232-4y-x = 183 \Leftrightarrow 4y + x = 49 \Rightarrow y \geq \dfrac{18}{4} $.

Mà $y \in \mathbb{N}$ nên $y \geq 5$, giá trị nhỏ nhất của $y$ là 5, khi $x = 29$.

Bài tập rèn luyện.

Bài 1. Một khu đất hình chữ nhật $ABCD$ ($AB<AD$) có chu vi 240 mét được chia thành hai phần gồm khu đất hình chữ nhật $ABNM$ làm chuồng trại và phần còn lại làm vườn thả để nuôi gà ($M$, $N$ lần lượt thuộc các cạnh $AD$, $BC$). Theo quy hoạch trang trại nuôi được 2400 con gà, bình quân mỗi con gà cần một mét vuông của diện tích vườn thả và diện tích vườn thả gấp ba lần diện tích chuồng trại. Tính chu vi của khu đất làm vườn thả.

Bài 2. Nam kể với Bình rằng ông của Nam có một mảnh đất hình vuông $ABCD$ được chia thành bốn phần; hai phần (gồm các hình vuông $AMIQ$ và $INCP$ với $M$, $N$, $P$, $Q$ lần lượt thuộc $AB$, $BC$, $CD$, $DA$) để trồng các loại rau sạch, các phần còn lại trồng hoa. Diện tích phần trồng rau sạch là $1200 \; m^2$ và phần để trồng hoa là $1300 \; m^2$. Bình nói: “Chắc chắn bạn bị nhầm rồi!”. Nam: “Bạn nhanh thật! Mình đã nói nhầm phần diện tích. Chính xác là phần trồng rau sạch có diện tích $1300 \; m^2$, còn lại $1200 \; m^2 $ trồng hoa”. Hãy tính cạnh hình vuông $AMIQ$ (biết $AM < MB$) và giải thích vì sao Bình lại biết Nam bị nhầm ?

Bài 3. Một hồ nước được cung cấp nước bỏi ba vòi nước. Biết rằng nếu từng vòi nước cung cấp nước cho hồ thì vòi nước thứ nhất sẽ làm đầy hồ nhanh hơn vòi nước thứ hai $5$ giờ, vòi nước thứ ba lại làm đầy hồ nhanh hơn vòi nước thứ nhất $4$ giờ; còn nếu vòi nước thứ nhất và thứ hai cùng cung cấp nước cho hồ thì chúng làm đầy hồ bằng với thời gian vòi nước thứ ba làm đầy hồ. Hỏi nếu cả ba vòi nước cùng cung cấp nước cho hồ thì chúng sẽ làm đầy hồ trong bao lâu?

Bài 4. Hai thị trấn $A$ và $B$ cùng nằm trên một dòng sông, cách nhau $D$ $km$. Thị trấn $B$ có địa thế cao hơn nên dòng nước luôn chảy từ $B$ đến $A$ với vận tốc $d$ $(km/h)$ không đổi. Nếu nước không chảy, tàu \textit{Hi vọng} có vận tốc $x$ $(km/h)$ không đổi, tàu \textit{Tương lai} có vận tốc $y$ $(km/h)$ không đổi. Vào lúc 8 giờ sáng, tàu \textit{Hi vọng} xuất phát từ $A$ đi về hướng $B$ và tàu \textit{Tương lai} xuất phát từ $B$ đi về hướng $A$. Vào lúc 12 giờ trưa hai tàu gặp nhau lần đầu tiên tại một điểm cách $A$ một khoảng cách là $\dfrac{1}{3}D$. Khi đến $A$ tàu \textit{Tương lai} nghỉ nửa giờ rồi quay về $B$; tương tự khi đến $B$ tàu \textit{Hi vọng} cũng nghỉ nửa giờ rồi quay về $A$. Hai tàu gặp nhau lần thứ hai tại một điểm cách $B$ một khoảng cách là $\dfrac{5}{27}D$. Hãy tìm vận tốc của các tàu \textit{Hi vọng} và \textit{Tương lai} biết rằng nếu ngay từ đầu, mỗi tàu tăng vận tốc thêm $7,5km/h$ thì hai tàu sẽ gặp nhau lần đầu vào lúc 11 giờ trưa.

Toán đố – P1

Dạo này các bài toán thực tế xuất hiện nhiều trong trong đề thi và được nhiều học sinh quan tâm, tuy vậy đây không phải là các bài toán trong đời sống bắt các em phải giải mà chỉ là những bài toán đốnhiều chữ, các em đọc hiểu và sử dụng kiến thức toán để giải, chứ chẳng có mấy về ý nghĩa thực tế, mà dạng toán này đã xuất hiện rất nhiều trong chương trình toán của mình, và trong các kì thi, đặc biệt là kì thi vào trường Phổ thông Năng khiếu.

Những bài toán này thường là những bài toán như mối liên quan giữa số lượng, thời gian, năng suất, …để giải các bài toán dạng này ta chú ý:

  • Đọc kĩ đề bài, gạch dưới những cụm từ quan trọng.
  • Tìm các mối liên hệ giữa các đối tượng có trong bài toán.
  • Đặt ẩn phù hợp và thiết lập được phương trình, hệ phương trình.
  • Giải các pt, hpt này cho ra kết quả.

 

Ví dụ 1. Lớp 9T có 30 bạn, mỗi bạn dự định đóng góp mỗi tháng 70000 đồng và sau 3 tháng sẽ đủ tiền mua tặng cho mỗi em ở “Mái ấm tình thương X” ba gói quà (giá tiền các món quà đều như nhau). Khi các bạn đóng đủ số tiền như dự trù thì “Mái ấm tình thương X” đã nhận chăm sóc thêm 9 em và có giá tiền của mỗi món thêm $5\%$ nên chỉ tặng mỗi em hai gói quà. Hỏi có bao nhiêu em của “Mái ấm tình thương X” được nhận quà ?

Lời giải.

  • Gọi $x$ $(x>0)$ là số em ban đầu ở “Mái ấm tình thương X” và $t$ $(t>0)$ là giá tiền mỗi món quà.
  • Số tiền lớp 9T đóng được sau $3$ tháng là: $6300000$.
  • Mỗi em nhận được $3$ món quà ta có: $3tx=6300000$ (1).
  • Sau khi mái ấm có thêm $9$ em và giá mỗi món quà tăng thêm $5\%$ ta có: $2\left( t+5\% t\right) \left( x+9\right) =6300000$ (2).
  • Từ (1) và (2) ta có: $3tx=2.1,05t.\left( x+9\right) $
    $\Leftrightarrow x=21$.
  • Vậy có $30$ em ở “Mái ấm tình thương X nhận được quà.

Ví dụ 2. Có hai vòi nước A, B cùng cung cấp cho một hồ cạn nước và vòi C (đặt sát đáy hồ) lấy nước từ hồ để cung cấp cho hệ thống tưới cây. Đúng 6 giờ, hai vòi A, B được mở; đến 7 giờ vòi C được mở; đến 9 giờ thì đóng vòi B và vòi C; đến 10 giờ 45 phút thì hồ đầy nước. Người ta thấy rằng nếu đóng vòi B ngay từ đầu thì đến 13 giờ hồ mới đầy. Biết lưu lượng vòi B là trung bình cộng lưu lượng vòi A và C, hỏi một mình vòi C tháo cạn hồ nước đầy trong bao lâu?

Lời giải. 

$10$ giờ $45$ phút $=\dfrac{43}{4}$ giờ.
Gọi $x$, $y$, $z$ $(x,\ y,\ z>0)$ lần lượt là thời gian vòi A, vòi B một mình làm đầy hồ và vòi C tháo hết nước trong hồ.
Từ $6$ giờ đến $10$ giờ $45$ phút vòi A chảy được $\dfrac{19}{4x}$ hồ.
Từ $6$ giờ đến $9$ giờ vòi B chảy được $\dfrac{3}{y}$ hồ.
Từ $7$ giờ đến $9$ giờ vòi C tháo được $\dfrac{2}{z}$ hồ.
Từ $6$ giờ đến $13$ giờ vòi A chảy được $\dfrac{7}{x}$ hồ.
Theo đề bài ta có hệ phương trình:

$\left\{ \begin{array}{l}
\dfrac{19}{4x}+\dfrac{3}{y}-\dfrac{2}{z}=1\ (1)\\\\
\dfrac{7}{x}-\dfrac{2}{z}=1\ (2)\\\\
\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{2}{y}\ (3)
\end{array}\right. $.

Từ (2) ta có: $\dfrac{1}{x}=\dfrac{1}{7}+\dfrac{2}{7z}$.

Lấy (1) trừ (2) ta có: $-\dfrac{9}{4x}+\dfrac{3}{y}=0\Leftrightarrow \dfrac{1}{y}=\dfrac{3}{4x}=\dfrac{3}{28}+\dfrac{3}{14z}$.

Thay $\dfrac{1}{x}$, $\dfrac{1}{y}$ vào (3) ta có: $\dfrac{1}{7}+\dfrac{2}{7z}+\dfrac{1}{z}=\dfrac{3}{14}+\dfrac{3}{7z} \Leftrightarrow z=12$.

Vậy vòi C tháo cạn hồ nước đầy trong $12$ giờ.

Ví dụ 3. Một công ty may giao cho tổ $A$ may $16800$ sản phẩm, tổ $B$ may $16500$ sản phẩm và bắt đầu thực hiện công việc cùng lúc. Nếu sau $6$ ngày, tổ $A$ được hỗ trợ thêm $10$ công nhân may thì họ hoàn thành công việc cùng lúc với tổ $B$. Nếu tổ $A$ được hỗ trợ thêm $10$ công nhân may ngay từ đầu thì họ sẽ hoàn thành công việc sớm hơn tổ $B$ $1$ ngày. Hãy xác định số công nhân ban đầu của mỗi tổ. Biết rằng, mỗi công nhân may mỗi ngày được $20$ sản phẩm.

Lời giải.

Gọi số công nhân ban đầu của tổ $A$, $B$ lần lượt là $x$, $y$ (công nhân) ($x,y\in \mathbb{N}$).

Mỗi ngày tổ $A$ may được $20x$ sản phẩm, tổ $B$ may được $20y$ sản phẩm.

Sau $6$ ngày tổ $A$ may được $120x$ sản phẩm.

Số công nhân tổ $A$ sau khi được tăng $10$ công nhân là $x+10$ (công nhân).

Khi đó số sản phẩm tổ $A$ may được mỗi ngày là $20\left( x+10\right) $ (sản phẩm).

Thời gian tổ $A$ hoàn thành công việc là:
$6+\dfrac{16800-120x}{20\left( x+10\right) }$ (ngày).

Thời gian tổ $B$ hoàn thành công việc là: $\dfrac{16500}{20y}$ (ngày).

Tổ $A$, tổ $B$ hoàn thành công việc cùng lúc nên ta có phương trình:
$$6+\dfrac{16800-120x}{20\left( x+10\right) }=\dfrac{16500}{20y} \text { } (1).$$

Thời gian tổ $A$ hoàn thành công việc nếu được hỗ trợ thêm $10$ công nhân ngay từ đầu là: $$\dfrac{16800}{20\left( x+10\right) } \text{ (ngày)}.$$

Tổ $A$ hoàn thành công việc trước tổ $B$ $1$ ngày nên ta có phương trình:
$$\dfrac{16800}{20\left( x+10\right) }+1=\dfrac{16500}{20y} \text{ } (2).$$

Từ $(1)$ và $(2)$, ta có:

$6+\dfrac{16800-120x}{20\left( x+10\right) }=\dfrac{16800}{20\left( x+10\right) }+1$

$\Leftrightarrow \dfrac{6x}{x+10}=5$
$\Leftrightarrow x=50$.

Thay $x=50$ vào $(2)\Rightarrow y=55$.

Vậy số công nhân ban đầu của tổ $A$ là $50$ công nhân, số công nhân ban đầu của tổ $B$ là $55$ công nhân.

Bài tập rèn luyện.

Bài 1. Một tổ mua nguyên vật liệu để thuyết trình tại lớp hết 72.000 đồng, cho phí được chia đều cho mỗi thành viên của tổ. Nếu tổ giảm bớt 2 người thì mỗi người phải đóng thêm 3000 đồng. Hỏi số người của tổ?

Bài 2. Một nhóm học sinh định chia một số kẹo thành các phần quà cho các em nhỏ tại một đơn vị trẻ mồ côi. Nếu mỗi phần quà giảm đi 6 viên thì các em có thêm 5 phần quà, nếu giảm đi 10 viên thì các em có thêm 10 phần quà. Hỏi số kẹo mà nhóm học sinh này có.

Bài 3. Trong một cuộc đua môtô có ba xe khởi hành cùng lúc. Xe thứ nhì trong mỗi giờ chạy chậm hơn xe thứ nhất $10$km và nhanh hơn xe thứ ba $5$km, đến đích trễ hơn xe thứ nhất $10$ phút, sớm hơn xe thứ ba $6$ phút. Tính vận tốc mỗi xe, chiều dài quãng đường đua.

Bài 4. Tìm số gồm hai chữ số, biết rằng tổng của hai chữ số là $9$ và tổng lập phương của hai chữ số đó là $189$.

Bài 5. Một hồ nước được cung cấp nước bỏi ba vòi nước. Biết rằng nếu từng vòi nước cung cấp nước cho hồ thì vòi nước thứ nhất sẽ làm đầy hồ nhanh hơn vòi nước thứ hai $5$ giờ, vòi nước thứ ba lại làm đầy hồ nhanh hơn vòi nước thứ nhất $4$ giờ; còn nếu vòi nước thứ nhất và thứ hai cùng cung cấp nước cho hồ thì chúng làm đầy hồ bằng với thời gian vòi nước thứ ba làm đầy hồ. Hỏi nếu cả ba vòi nước cùng cung cấp nước cho hồ thì chúng sẽ làm đầy hồ trong bao lâu?