ĐỀ THI
Câu 1
Tìm 3 số tự nhiên đôi một khác nhau và lớn hơn 1 thỏa điều kiện: Tích hai số bất kì trong 3 số ấy cộng với 1 chia hết cho số thứ ba.
Câu 2
Cho $\mathrm{x}, \mathrm{y}, \mathrm{z} \in[1 ; 2]$.
Tìm giá trị lớn nhất của: $\mathrm{P}=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}\right)$
Câu 3
Tìm tất cả các nghiệm số thực của phương trình:
$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}$
Câu 4
Trên đường tròn $(\mathrm{O} ; \mathrm{R})$ cho năm điểm phân biệt $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ theo thứ tự đó, sao cho $\mathrm{AB}=\mathrm{BC}=\mathrm{DE}=\mathrm{R}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là trung điểm của $\mathrm{CD}$ và $\mathrm{AE}$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $\mathrm{BMN}$.
LỜI GIẢI
Câu 1
Tìm 3 số tự nhiên đôi một khác nhau và lớn hơn 1 thỏa điều kiện: Tích hai số bất kì trong 3 số ấy cộng với 1 chia hết cho số thứ ba.
Lời Giải
Giả sử $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ và $2 \leq \mathrm{a}<\mathrm{b}<\mathrm{c}$ thoả:
$\quad\quad\quad\quad\quad\quad\quad\quad a b+1 \vdots c ; a c+1 \vdots b ; b c+1 \vdots a$
$\quad\quad\quad\quad\quad\quad\quad \Rightarrow(a b+1)(a c+1)(b c+1) \vdots a b c \Rightarrow a b+b c+c a+1 \vdots a b c$
$\quad\quad\quad\quad\quad\quad\quad \Rightarrow a b+b c+c a+1 \geq a b c \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a b c} \geq 1$
Nếu $\mathrm{b} \geq 4$ thì $\mathrm{c} \geq 5$, khi đó
$\quad\quad\quad\quad\quad \frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}+\frac{1}{\mathrm{abc}} \leq \frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{40}=\frac{39}{40}<1 \text { (vô lí) }$
Vậy $3 \leq \mathrm{b}<4 \Rightarrow \mathrm{b}=3$, $a=2$
Từ $\mathrm{ab}+1=7 \vdots \mathrm{c} \Rightarrow \mathrm{c}=7$.
Thử lại $(\mathrm{a}, \mathrm{b}, \mathrm{c})=(2,3,7)$ thỏa điều kiện.
Câu 2
Cho $\mathrm{x}, \mathrm{y}, \mathrm{z} \in[1 ; 2]$.
Tìm giá trị lớn nhất của: $\mathrm{P}=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}\right)$
Lời Giải
Do vai trò $x, y, z$ như nhau nên giả sử: $1 \leq x \leq y \leq z \leq 2$
$\Rightarrow\left\{\begin{array}{l}\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right) \geq 0 \\ \left(1-\frac{y}{x}\right)\left(1-\frac{z}{y}\right) \geq 0\end{array} \Rightarrow\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{x}+\frac{z}{y}\right) \leq 2+\left(\frac{x}{z}+\frac{z}{x}\right)\right.$
$\Rightarrow P=\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{x}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+3 \leq 5+2\left(\frac{x}{z}+\frac{z}{x}\right)\quad\quad (1)$
Dấu “=” xảy ra $\Leftrightarrow\left[\begin{array}{l}x=y \ y=z\end{array}\right.$
Đặt $t=\frac{x}{z} \in\left[\frac{1}{2} ; 1\right] t_i$ ta có $(2-t)\left(\frac{1}{2}-t\right) \leq 0 \Leftrightarrow t+\frac{1}{t} \leq \frac{5}{2}\quad\quad\quad\quad (2)$
Dấu “=” của $(2)$ xảy ra $\Leftrightarrow t=\frac{1}{2}$
Từ (1) và $(2$ ) suy ra $\mathrm{P} \leq 5+5=10=\mathrm{const}$
Dấu “=” xảy ra $\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x=y=1 \\ z=2\end{array}\right. \\ \left\{\begin{array}{l}x=1 \\ y=z=2\end{array}\right.\end{array}\right.$
Vậy: $\max \mathrm{P}=10$
Câu 3
Tìm tất cả các nghiệm số thực của phương trình:
$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}$
Lời Giải
Tìm tất cả các nghiệm số thực của phương trình:
$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}\quad\quad (1)$
Ta có: $\quad \cos 3 \mathrm{a}=4 \cos ^3 \mathrm{a}-3 \cos \mathrm{a}$
$\quad\quad\quad\quad\quad\quad \Rightarrow\left\{\begin{array}{l}\cos 4 a=8 \cos ^4 a-8 \cos ^2 a+1 \\ \cos 5 a=16 \cos ^5 a-20 \cos ^3 a+5 \cos a \\ \cos 6 a=32 \cos ^6 a-48 \cos ^4 a+18 \cos ^2 a-1 \\ \cos 7 a=64 \cos ^7 a-112 \cos ^5 a+56 \cos ^3 a-7 \cos a\end{array}\right.$
Đặt $x=$ cost với $t \in[0 ; \pi],(1)$ trở thành:
$\quad\quad\quad\quad\quad\quad\quad 64 \cos ^6 t-112 \cos ^4 t+56 \cos ^2 t-7=2 \sqrt{1-\cos ^2 t} $
$\quad\quad\quad\quad\quad\quad \Leftrightarrow 64 \cos ^7 t-112 \cos ^5 t+56 \cos ^3 t-7 \cos t=2 \cos t \sin t$
(với cost $\neq 0$ )
$\quad\quad\quad\quad\quad\quad \Leftrightarrow \cos 7 \mathrm{t}=\sin 2 \mathrm{t}$
$\quad\quad\quad\quad\quad\quad \Leftrightarrow \cos 7 \mathrm{t}=\cos \left(\frac{\pi}{2}-2 \mathrm{t}\right) \Leftrightarrow\left[\begin{array}{l}\mathrm{t}=\frac{\pi}{18}+\mathrm{k} \frac{2 \pi}{9} \\ \mathrm{t}=-\frac{\pi}{10}+l \frac{2 \pi}{5}\end{array} \mathrm{k}, l \in \mathrm{Z}\right.$
$\quad\quad\quad \mathrm{t} \in[0 ; \pi]$
$\Rightarrow \mathrm{t}=\frac{\pi}{18} \vee \mathrm{t}=\frac{5 \pi}{18} \vee \mathrm{t}=\frac{9 \pi}{18} \vee \mathrm{t}=\frac{13 \pi}{19} \vee \mathrm{t}=\frac{17 \pi}{18} \vee \mathrm{t}=\frac{3 \pi}{10} \vee \mathrm{t}=\frac{7 \pi}{10}$
Vì cost $\neq 0$ nên $t \neq \frac{\pi}{2}$. Vậy phương trình (1) có 6 nghiệm thực là:
$\quad\quad\quad x=\cos \frac{\pi}{18} \vee x=\cos \frac{5 \pi}{18} \vee x=\cos \frac{9 \pi}{18} \vee x=\cos \frac{13 \pi}{19}$
$\quad\quad\quad\quad\quad\quad\quad\quad \vee x=\cos \frac{17 \pi}{18} \vee x=\cos \frac{3 \pi}{10} \vee x=\cos \frac{7 \pi}{10}$
Câu 4
Trên đường tròn $(\mathrm{O} ; \mathrm{R})$ cho năm điểm phân biệt $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ theo thứ tự đó, sao cho $\mathrm{AB}=\mathrm{BC}=\mathrm{DE}=\mathrm{R}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là trung điểm của $\mathrm{CD}$ và $\mathrm{AE}$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $\mathrm{BMN}$.
Lời Giải
Theo giả thiết các tam giác $\mathrm{OAB}, \mathrm{OBC}$ và ODE là các tam giác đều nên:
$\quad\quad\quad\quad\quad\quad\quad \widehat{\mathrm{AOE}}+\widehat{\mathrm{DOC}}=180^{\circ} $
$\quad\quad\quad \text { Mà } \quad\quad 2 \widehat{\mathrm{DCO}}+\widehat{\mathrm{DOC}}=180^{\circ} $
$\quad\quad\quad\quad\quad\quad \Rightarrow \widehat{\mathrm{AOE}}=2 \widehat{\mathrm{DCO}} $
$\quad\quad\quad\quad\quad\quad \Rightarrow \widehat{\mathrm{AON}}=\widehat{\mathrm{MCO}}$
Từ đó $\triangle \mathrm{NOA}=\Delta \mathrm{MCO} \Rightarrow \mathrm{ON}=\mathrm{CM}$
Dẫn đến: $\Delta \mathrm{ONB}=\Delta \mathrm{CMB}$ (c.g.c) $\Rightarrow\left\{\begin{array}{l}\mathrm{BN}=\mathrm{NM} \\ \widehat{\mathrm{OBN}}=\widehat{\mathrm{CBM}}\end{array}\right.$
Mà $\widehat{\mathrm{OBC}}=60^{\circ} \Rightarrow \widehat{\mathrm{NBM}}=60^{\circ}$, vậy $\triangle \mathrm{MBN}$ đều.
Đặt $\alpha=\widehat{\mathrm{AON}}\left(0<\alpha<90^0\right)$. Khi đó
$\quad\quad\quad \mathrm{BN}^2 =\mathrm{R}^2+\mathrm{R}^2 \cos ^2 \alpha-2 \mathrm{R}^2 \cdot \cos \alpha \cos \left(\alpha+60^{\circ}\right) $
$\quad\quad\quad\quad\quad =\mathrm{R}^2\left[1+\cos ^2 \alpha-2 \cos \alpha\left(\cos \alpha \cdot \cos 60^{\circ}-\sin \alpha \cdot \sin 60^{\circ}\right)\right]$
$\quad\quad\quad\quad\quad =\mathrm{R}^2\left(1+\frac{\sqrt{3}}{2} \sin 2 \alpha\right) $
$\quad\quad \Rightarrow \mathrm{BN}^2 \leq \mathrm{R}^2\left(1+\frac{\sqrt{3}}{2}\right)$
Dấu “=” xảy ra khi $\sin 2 \alpha=1$ hay $\alpha=45^{\circ}$.
Chu vi lớn nhất có thể có của tam giác $\mathrm{BMN}$ là: $\mathrm{P}=\frac{3 \mathrm{R}(1+\sqrt{3})}{2}$.