Tính chất: Trục căn thức ở mẫu:
- $\dfrac{1}{\sqrt A}=\dfrac {\sqrt A}{A}$.
- $\dfrac {1}{\sqrt A-\sqrt B}=\dfrac {\sqrt A+\sqrt B}{A-B}$.
- $\dfrac {1}{\sqrt A+\sqrt B}=\dfrac {\sqrt A-\sqrt B}{A-B}$.
Ví dụ: Trục căn thức ở mẫu:
a) $\dfrac {12\sqrt 2}{5\sqrt 3}$.
b) $\dfrac {3}{\sqrt 5-\sqrt 2}$.
c) $\dfrac {3+\sqrt 3}{1+\sqrt 2}+\dfrac {2+\sqrt 2}{2-\sqrt 2}$.
Bài tập:
Bài 1: Trục căn thức ở mẫu:
a) $\dfrac{7}{\sqrt 3 }$; $\dfrac{3}{2\sqrt 5 }$; $\dfrac{5}{3\sqrt {12} }$; $\dfrac{2}{3\sqrt {20} }$.
b)$\dfrac{\sqrt 3 + 3}{5\sqrt 3 }$; $\dfrac{7 – \sqrt 7 }{\sqrt 7 – 1}$; $\dfrac{2}{\sqrt 5 + \sqrt 3 }$; $\dfrac{\sqrt 5 + 2}{\sqrt 5 – 2}$.
c) $\dfrac{y + a\sqrt y }{a\sqrt y }$; $\dfrac{b – \sqrt b }{\sqrt b – 1}$; $\dfrac{b}{5 + \sqrt b }$; $\dfrac{p}{2\sqrt p – 1}$.
Bài 2: Tính:
a) $\dfrac{1}{{2 – \sqrt 5 }} + \dfrac{1}{{2 + \sqrt 5 }}$.
b) $\dfrac{3}{2}\sqrt 6 + 2\sqrt {\dfrac{2}{3}} – 4\sqrt {\dfrac{3}{2}} $.
c) $\dfrac{{2 + \sqrt 3 }}{{2 – \sqrt 3 }} – \dfrac{{2 – \sqrt 3 }}{{2 + \sqrt 3 }}$.
d) $\dfrac{2}{{\sqrt 3 – 1}} + \dfrac{3}{{\sqrt 3 – 2}} + \dfrac{{12}}{{3 – \sqrt 3 }}$.
Bài 3: Rút gọn:
a) $\dfrac{{3 + 2\sqrt 3 }}{{\sqrt 3 }} – \dfrac{{2\sqrt 3 + \sqrt {15} }}{{\sqrt 5 + 2}}$.
b) $\dfrac{{5\sqrt 2 – 2\sqrt 5 }}{{\sqrt {10} }} – \dfrac{3}{{\sqrt 5 – \sqrt 2 }}$.
c) $\dfrac{{\sqrt {15} – \sqrt {12} }}{{\sqrt 5 – 2}} – \dfrac{1}{{2 – \sqrt 3 }}$.
d) $\dfrac{{\sqrt 2 }}{{\sqrt {\sqrt 2 + 1} – 1}} – \dfrac{{\sqrt 2 }}{{\sqrt {\sqrt 2 + 1} + 1}}$.