Tiếp theo các bài toán về tìm giá trị của tham số để nghiệm của phương trình thỏa một đẳng thức, trong bài này ta xét trường hợp mà biểu thức nghiệm không chỉ là bậc nhất, hoặc không thể tính theo tham số một cách dễ dàng.
Ta xét ví dụ sau:
Ví dụ 1. Cho phương trình $x^2-(m+2)x+m+1 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.
Ta thấy trong bài toán trên, $\Delta=m^2$ có dạng là $A^2$ trong đó $A$ là một số hay một biểu thức. Khi đó ta có thể tính nghiệm theo $m$ và xét trường hợp nghiệm nào là $x_1$, nghiệm nào là $x_2$ để thế vào biểu thức nghiệm.
Tiếp theo ta xem thêm một ví dụ khác.
Ví dụ 2. (PTNK 2014) Cho phương trình $\dfrac{mx^2 + (m-3)x +2m-1}{x+3}=0$ (1)
a) Giải phương trình (1) khi $m=-1$.
b) Tìm m để phương trình (1) có 2 nghiệm phân biệt $x_1$, $x_2$ sao cho $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) = 58 $
Ta thấy trong bài toán trên, ta phải sử dụng $x_2$ là nghiệm của phương trình nên thỏa phương trình và từ đó ta mới tính được biểu thức chứa $x_2$ trong giả thiết. Mục đích là ta đưa về những dạng dễ hơn mà ta đã biết làm.
Ví dụ 3. (PTNK 2016) Cho phương trình $\dfrac{(x+1)(x^2+mx+2m+14)}{\sqrt{x}} = 0 (1)$.
Tìm $m$ để phương trình (1) có 2 nghiệm phân biệt $x_1,x_2$ sao cho: $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}$
Ví dụ 4: Tìm $a \geq 1$ để phương trình $ax^2 + (1-2a)x + 1-a=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_2^2 – ax_1 = a^2-a-1$.
Bài tập rèn luyện
Bài 1. Tìm $m$ để phương trình $(x-1+m)(x+2m-3) = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2 – 4x_2 =1$.\ ($m=-3\pm \sqrt{21},m=1$)
Bài 2. Cho phương trình $x^2-(m+2)x+m+1 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.\($m=1,m=-3$)
Bài 3. Cho phương trình $x^2 – (2m-1)x + 4 = 0$. Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2+(2m-1)x_2 + 8-17m = 0$. ($m= 5$)
Bài 4. Cho phương trình $x^2 – (2m-1)x + m^2 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $x_1^2 + (2m-1)x_2 = 8$.($m=-1$)
Bài 5. Cho phương trình ${x^2} – \left( {3m – 2} \right)x + 2{m^2} – 3m + 1 = 0$ (m là tham số)
a)Tìm m để phương trình có hai nghiệm phân biệt dương $x_1$, $x_2$ ($m>1$)
b) Tìm m để phương trình có hai nghiệm $x_1$, $x_2$ thỏa $x_1^2 + x_2 =5$ ($m=\dfrac{3+\sqrt{89}}{8},m=\sqrt{5}$)
Bài 6. Tìm $m$ để phương trình $\dfrac{x^2-mx +(2m-1)(1-m)}{x-2} = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2 + 2x_2 = 13$. ($m=\dfrac{5}{2},m=-1 \pm \sqrt{5}$)
Bài 7. Tìm $m$ để phương trình $\dfrac{x^2 – 2mx -2m-1}{\sqrt{x}} = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $\sqrt{x_1^2+2mx_2} + \sqrt{x_2^2+2mx_1} =2\sqrt{5}$. ($m=\dfrac{-1+\sqrt{7}}{4}$)
Bài 8. Cho phương trình $\dfrac{x^2-(m+1)x +m^2 – 6)}{\sqrt{x}-2} = 0$ (1).
a) Giải phương trình khi $m = 1$. ($ x= 1+\sqrt{6}$)
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa [ \sqrt{x_2^2-mx_2+m^2-5}+\sqrt{x_1+1} = 2+\sqrt{2}] \ ($m=3$)