Tag Archives: Viete

Định lý Viete và áp dụng

Định lý 1. (Định lý Viete thuận) Cho phương trình bậc hai $a x^2+b x+c=0$ (a,b, c là các hệ số). Nếu phương trình có nghiệm $x_1, x_2$ thì
$$
S=x_1+x_2=\frac{-b}{a}, \text { và } P=x_1 x_2=\frac{c}{a}
$$
Định lý 2. (Định lý Viete đảo) Nếu có hai số $a, b$ thỏa $a+b=S, a b=P$ thì $a, b$ là nghiệm của phương trình
$$
x^2-S x+P=0
$$

Chú ý: Điều kiện để áp dụng định lý Viete là phương trình bậc hai phải có nghiệm, tức là $\Delta \geq 0$.

Ví dụ 1. Cho phương trình $x^2-2(m+1) x+m=0$
(a) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt $x_1, x_2$
(b) Tính giá trị các biểu thức sau theo $m$
$$
A=x_1^2+x_2^2+x_1+x_2
$$
(c) Tìm $m$ để $A=18$.
Lời giải. $a=1, b=-2(m+1), b^{\prime}=-(m+1), c=m$
a) Ta có $\Delta^{\prime}=b^{\prime 2}-a c=(-m-1)^2-1 \cdot m=m^2+m+1$.

$\Delta=m^2+m+1=m^2+2 \cdot m \cdot \frac{1}{2}+\frac{1}{4}+\frac{3}{4}=$ $\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0$ với mọi $m$. Vậy phương trình luôn có hai nghiệm phân biệt $x_1, x_2$.
b) Ta có $A=x_1^2+x_2^2+x_1+x_2$
$=\left(x_1+x_2\right)^2-2 x_1 x_2+x_1+x_2$
$=4(m+1)^2-2 m+2(m+1)$
$=4 m^2+8 m+6$.

c) $A=18 \Leftrightarrow 4 m^2+8 m-12=0 \Leftrightarrow m=$ $1, m=-3$.
Vậy $m$ cần tìm là 1 và -3 .

Ví dụ 2. Tìm $m$ để phương trình $x^2-2(m+1) x+m^2-3=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+x_2^2+x_1 x_2=$ $m+7$
Lời giải. $a=1, b=-2 m-2, c=m^2-3$.

Ta có $\Delta^{\prime}=b^2-a c=(m+1)^2-\left(m^2-3\right)=2 m+4$. Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta^{\prime}=2 m+4>0 \Leftrightarrow m>-2$.

Theo dịnh lý Viete ta có $x_1+x_2=2(m+1), x_1 x_2=$ $m^2-3$

$x_1^2+x_2^2+x_1 x_2=m+7 \Leftrightarrow\left(x_1+x_2\right)^2-x_1 x_2=m+7$ $\Leftrightarrow 4(m+1)^2-\left(m^2-3\right)=m+7 \Leftrightarrow 3 m^2+7 m=0 \Leftrightarrow$ $m=0(n), m=\frac{-7}{3}(l)$.

Vậy giá trị cần tìm của $m$ là $m=0$.

Ví dụ 3. Cho phương trình $x^2-4 m x+3 m^2+1=0$.
a) Tìm $m$ để phương trình có nghiệm.
b) Gọi $x_1, x_2$ là nghiệm của phương trình, tìm hệ thức độc lập $m$ liên hệ giữa $x_1$ và $x_2$.
Lời giải
a) Ta có $\Delta^{\prime}=4 m^2-\left(3 m^2+1\right)=m^2-1$. Phương trình có nghiệm khi và chỉ khi $\Delta^{\prime} \geq 0 \Leftrightarrow m^2-$ $1 \geq 0 \Leftrightarrow m \leq-1$ hoặc $m \geq 1$.
b) Với điều kiện của a) theo định lý Viete ta có $S=x_1+$ $x_2=4 m(1), P=x_1 x_2=3 m^2+1(2)$.
Từ (1), suy ra $m=\frac{1}{4} S$, thế vào (2) ta có $P=3 m^2+1=$ $\frac{3}{16} S^2+1$.
Hay $x_1 x_2=\frac{3}{16}\left(x_1+x_2\right)^2+1$ là hệ thực liên hệ giữa $x_1, x_2$ độc lập với $m$.

Ví dụ 4. Cho phương trình $x^2-2 m x-2 m-3=0$. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$ và tìm giá trị nhỏ nhất của biểu thức $A=x_1^2+x_2^2-$ $x_1 x_2$.
Lời giải

Ta có $\Delta^{\prime}=m^2+2 m+3$.
Vì $m^2+2 m+3=(m+1)^2+2>0 \forall m$ nên $\Delta^{\prime}>0 \forall m$. Vậy phương trình luôn có hai nghiệm phân biệt với mọi $m$.

Theo định lý Viete ta có $x_1+x_2=2 m, x_1 x_2=-2 m-3$. Khi đó $A=\left(x_1+x_2\right)^2-3 x_1 x_2=(2 m)^2-3(-2 m-3)=$ $4 m^2+6 m+9$.

$A=(2 m)^2+2.2 m \cdot \frac{3}{2}+\frac{9}{4}+\frac{27}{4}=\left(2 m+\frac{3}{2}\right)^2+\frac{27}{4} \geq \frac{27}{4}$. Đẳng thức xảy ra khi $m=\frac{-3}{4}$.

Vậy giá trị nhỏ nhất của $A$ là $\frac{27}{4}$ khi $m=\frac{-3}{4}$.

Bài tập rèn luyện

Bài 1. Cho phương trình $x^2-\sqrt{2} x-\sqrt{3}=0$.
(a) Không giải phương trình, chứng minh phương trình có hai nghiệm $x_1, x_2$.
(b) Tính giá trị của $A=x_1^2+x_2^2-3 x_1 x_2 .(A=2+5 \sqrt{3})$
(c) Tính giá trị của biểu thức $B=\frac{1}{x_1^3-4 x_1 x_2+x_2^3}$
Bài 2. Cho phương trình $x^2-2 m x-1=0$.
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi $m$
(b) Gọi $x_1, x_2$ là nghiệm của phương trình. Tính $A=$ $x_1^2-3 x_1 x_2+x_2^2$ theo $m$. $\left(A=4 m^2+5\right)$
(c) Tìm $m$ để $A=9 .(m= \pm 1)$
Bài 3. Cho phương trình $x^2-2(m-3) x-2 m+5=0$.
(a) Chứng minh rằng phương trình luôn có nghiệm $x_1, x_2$.
(b) Tìm $m$ để $x_1^2+x_2^2-3 x_1 x_2+x_1+x_2=17$. $\left(m=\frac{3 \pm \sqrt{21}}{2}\right)$

Bài 4. Cho phương trình $x^2-3(m+1) x+9 m^2+2=0$. Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+x_2^2-3\left(x_1+x_2\right)+1=0$.
(Không có giá trị $m$ nào thỏa mãn)
Bài 5. Cho phương trình $x^2-3 x-4 m=0$
(a) Tìm $m$ để phương trình có hai nghiệm phân biệt. $\left(m>\frac{-9}{16}\right)$
(b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1+x_2-x_1 x_2=13\left(m=\frac{5}{2}\right)$
(c) Tính giá trị biểu thức $A=x_1^2+x_2^2-4 x_1 x_2$ theo $\mathrm{m}$ và tìm $\mathrm{m}$ để $\mathrm{A}=14$. $\left(A=9+24 m, m=\frac{5}{24}\right)$
Bài 6. Cho phương trình $x^2-2(m-1) x-1=0$.
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$.
(b) Tìm $\mathrm{m}$ để $x_1^2+x_2^2=5\left(m=\frac{2 \pm \sqrt{3}}{2}\right)$
(c) Tìm giá trị nhỏ nhất của biểu thức $x_1^2+x_2^2+x_1 x_2$ (GTNN là 1 khi và chỉ khi $m=1$ )

Bài 7. Cho phương trình $x^2-2(m+1) x+m=0$
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$
(b) Tìm m để $x_1^2+x_2^2-3 x_1 x_2-x_1-x_2=7$
$$
\left(m=\frac{-5 \pm \sqrt{41}}{8}\right)
$$
(c) Tìm giá trị nhỏ nhất của biểu thức $B=x_1^2+x_2^2$ $\left(B_{\min }=\frac{7}{4}\right.$ khi và chỉ khi $\left.x=\frac{-3}{4}\right)$
Bài 8. Cho phương trình $x^2-2 m x-m-3=0$.
(a) Tìm $m$ dể phương trình có hai nghiệm $x_1, x_2$ thỏa
$$
\begin{aligned}
& \frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{2}=0 \
& \left(m=\frac{-3}{5}\right)
\end{aligned}
$$

(b) Tìm $m$ để phương trình có nghiệm thỏa $x_1^3-x_2^3=$ $10\left(x_1-x_2\right)$ $\left(m=\frac{-1 \pm \sqrt{113}}{8}\right)$
Bài 9. Cho phương trình $(m-1) x^2-2 x+1=0$.
(a) Tìm $m$ để phương trình có hai nghiệm phân biệt. $(m \neq 1, m>2)$
(b) Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2+x_2^2+x_1 x_2=3\left(m=\frac{-1}{3}\right)$
Bài 10. Cho phương trình $x^2+2(m+2) x+2 m=0$.
(a) Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2 x_2+x_2^2 x_1+x_1+x_2=4$
(không có giá trị $m$ thỏa mãn)
(b) Tìm giá trị lớn nhất của biểu thức $A=x_1 x_2-x_1^2-$ $x_2^2\left(A_{\max }=\frac{-63}{4}\right.$ khi và chỉ khi $\left.m=\frac{-1}{4}\right)$

Một số vấn đề về nghiệm của đa thức

Bài viết của thầy Vương Trung Dũng

(Giáo viên chuyên toán trường Phổ thông Năng khiếu)

Trong những kì thi học sinh giỏi các bài toán về đa thức thường xuyên xuất hiện. Tuy nhiên trong chương trình THCS các kiến thức về đa thức chủ yếu dừng lại ở các khái niệm và các phép toán. Do đó khi vừa mới lên lớp 10 các kĩ năng của các em học sinh còn chưa cao. Bài viết này nhằm trình bày một vấn đề nhỏ về nghiệm của đa thức mà nội dung chính là Định lý Bézout và Định lý Viète, đối tượng hướng đến là các em học sinh cuối năm lớp 9 và đầu năm lớp 10.

Trong bài viết này ta kí hiệu $\mathbb{R}[x]$ là tập tất cả các đa thức có hệ số thực.

Cơ sở lý thuyết

Định lý Bézout. Cho $f(x) \in \mathbb{R}[x]$ và $a \in \mathbb{R}$. Số dư khi chia đa thức $f(x)$ cho đa thức $x-a$ là $f(a)$.

Theo thuật toán chia Euclide, tồn tại đa thức $g(x) \in \mathbb{R}[x]$ và số thực $r$ sao cho $$f(x)=(x-a)g(x)+r.$$
Trong đẳng thức trên thay $x=a$ vào hai vế ta được $f(a)=r.$ Từ đó ta có điều phải chứng minh.

Hệ quả 1. Đa thức $f(x)$ có nghiệm $x=a$ khi và chỉ khi $f(x)$ chia hết cho $x-a.$

Hệ quả 2. Nếu $a_1,a_2,…,a_n$ là các nghiệm của $f(x)$ thì $(x-a_1)(x-a_2)…(x-a_n)|f(x)$. Đặc biệt nếu $\deg f=n$ thì $f(x)=c(x-a_1)(x-a_2)…(x-a_n), c\in \mathbb{R}$.

Định lý 2. Một đa thức bậc $n$ có nhiều nhất là $n$ nghiệm. Đặc biệt nếu $\deg f \le n$ có quá $n$ nghiệm thì $f(x) =0.$
Hệ quả 3. Nếu $\deg f<n, \deg g<n$ mà tồn tại $n$ giá trị phân biệt của biến $x$ sao cho $f(x)=g(x)$ thì $f(x)= g(x) .$

Các ví dụ áp dụng.

Ví dụ 1. Biết đa thức $P(x)=x^5+x^2+1$ có 5 nghiệm phân biệt $x_1,x_2,x_3,x_4,x_5$. Đặt $Q(x)=x^2-2$. Tính $Q(x_1)Q(x_2)Q(x_3)Q(x_4)Q(x_5)$.

Lời giải

$P(x)$ có dạng $P(x)=(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)$. \

Ta có $$ \prod_{i=1}^{5} Q(x_i)=\prod_{i=1}^{5} (x_i^2-2)=\prod_{i=1}^{5} (\sqrt{2}-x_i) \prod_{i=1}^{5} (-\sqrt{2}-x_i)=P(\sqrt{2})P(-\sqrt{2})=-23. $$

Ví dụ 2. Cho $P(x) \in \mathbb{Z}[x]$ sao cho $|P(a)|=|P(b)|=|P(c)|=1$, với $a,b,c$ là các số nguyên đôi một khác nhau. Chứng minh đa thức $P(x)$ không có nghiệm nguyên.

Lời giải

Giả sử $P(x)$ có nghiệm nguyên $x_0$. Theo định lý Bézout $$ P(x)=(x-x_0)Q(x), \ \ \ \ (1) $$ với $Q(x) \in \mathbb{Z}[x]$. Từ đó suy ra $$ 1=|P(a)|=|a-x_0||Q(a)|. \ \ \ \ (2) $$
Do đó $|a-x_0|=1$, lập luận tương tự ta được $|b-x_0|=|c-x_0|=1$. Như vậy $a-x_0, b-x_0, c-x_0 \in \{-1,1\}$. Theo nguyên lý Dirichlet tồn tại hai trong ba số này bằng nhau từ đó tồn tại hai trong ba số $a,b,c$ bằng nhau, mâu thuẫn. Vậy $P(x)$ không có nghiệm nguyên.

Định lý Viete thuận. Cho đa thức $f \in \mathbb{R}[x]$, trong đó $$f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0,$$
trong đó $a_i \in \mathbb{R}$ và $a_n \ne 0.$ Giả sử rằng $x_1, x_2,…,x_n$ là các nghiệm (không nhất thiết phân biệt) của $f(x)$. Khi đó ta có

$x_1+x_2+…+x_n=-\dfrac{a_{n-1}}{a_n}$
$x_1x_2+x_1x_3+…+x_{n-1}x_n=\dfrac{a_{n-2}}{a_n}$

$x_1x_2…x_n=(-1)^n \dfrac{a_0}{a_n}$

Chứng minh

Định lý Viète có một ứng dụng rất lớn trong các bài toán về nghiệm của đa thức nhưng chứng minh của nó thì không hề khó. Thật vậy, vì $x_1, x_2,…,x_n$ là các nghiệm của $f$ nên ta có thể viết lại đa thức này dưới dạng $$f(x)=a_n(x-x_1)(x-x_2)…(x-x_n).$$
Khai triển vế phải rồi nhóm về dạng chuẩn tắc, sau đó so sánh hệ số của các số mũ tương ứng ở hai vế ta được điều phải chứng minh.

Lưu ý là định lý Viète vẫn đúng trong trường hợp $f$ không đủ $n$ nghiệm thực, nhưng do đối tượng của bạn đọc nên nội dung bài viết không đề cập đến.

Ví dụ 3. Tìm tất cả các giá trị của $a$ để nghiệm $x_1,x_2,x_3$ của đa thức $x^3-6x^2+ax+a$ thỏa mãn $$(x_1-3)^3+(x_2-3)^3+(x_3-3)^3=0.$$

Lời giải

Đặt $y=x-3$, khi đó $y_1=x_1-3, y_2=x_2-3, y_3=x_3-3$ là nghiệm của đa thức $$ (y+3)^3-6(y+3)^2+a(y+3)+a=y^3+3y^2+(a-9)y+4a-27. $$

Theo định lý Viète $$ \sum_{i=1}^{3} y_i=-3, \sum_{1 \le i<j \le 3} y_iy_j=-9, \prod_{i=1}^{3} y_i=27-4a. $$

Mặt khác theo giả thiết $\sum_{i=1}^{3} y_i^3=0$. Mà $$ \sum_{i=1}^{3} y_i^3=\Big(\sum_{i=1}^{3} y_i\Big)^3-3 \Big(\sum_{1 \le i<j \le 3} y_iy_j\Big)\Big(\sum_{i=1}^{3} y_i \Big)+3 \prod_{i=1}^{3} y_i. $$
Dô đó điều kiện cần và đủ của $a$ là $$ 0=(-3)^3-3(a-9)(-3)+3(27-4a)=-27-3a \Leftrightarrow a=-9. $$

Ví dụ 4. Chứng minh đa thức $P(x)=x^n+2nx^{n-1}+2n^2x^{n-2}+…+2n^{n-1}x+2n$ không thể có đủ $n$ nghiệm thực.

Lời giải

Giả sử $P(x)$ có đủ $n$ nghiệm thực $x_1,x_2,…,x_n$. Theo định lý Viet $$ \sum_{i}x_i=-2n, \sum_{i<j}x_ix_j=2n^2. $$
Khi đó $$ \sum_{i<j}x_ix_j=\dfrac{1}{2}(\sum_{i}x_i)^2-\dfrac{1}{2}\sum_ix_i^2 \le \dfrac{n-1}{2n}(\sum_{i}x_{i})^2=2n(n-1) <2n^2,$$
vô lí. Vậy ta có điều phải chứng minh.

Ta ký hiệu $$\begin{aligned}
\sigma_1 & = \sum_{i=1}^nx_i=-\dfrac{a_{n-1}}{a_n}, \sigma_2=\sum_{1 \le i < j \le n}^nx_ix_j =\dfrac{a_{n-2}}{a_n},…, \
\sigma_k & =\sum_{1 \le i_1 <i_2<…<i_k \le n}x_{i_1}x_{i_2}…x_{i_k}=(-1)^k \dfrac{a_{n-k}}{a_n}
\end{aligned}$$
và gọi $\sigma_k$ là các đa thức đối xứng bậc $k$ của các số $x_1,x_2,…,x_n$.

Định lý Viete đảo. Cho $x_1,x_2,…,x_n \in \mathbb{R}$. Gọi $\sigma_k$ là các đa thức đối xứng bậc $k$ của $n$ số đã cho. Khi đó $x_1,x_2,…,x_n$ là nghiệm của phương trình $$ X^n-\sigma_1X^{n-1}+\sigma_2X^{n-2}+…+(-1)^{n-1}\sigma_{1}X+(-1)^n \sigma_n=0.$$

Ví dụ 5. Gọi $a<b<c$ là 3 nghiệm của phương trình
$$x^3-3x+1=0.$$

a) Tính $A=\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c};$
b) Tìm một đa thức bậc 3 nhận $a^2-2, b^2-2, c^2-2$ làm nghiệm;

Lời giải

a) Ta có
$$A+3=\dfrac{1-a}{1+a}+1+\dfrac{1-b}{1+b}+1+\dfrac{1-c}{1+c}+1=2\Big(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\Big).$$
Mặt khác, đặt $x=\dfrac{1}{1+a}$, khi đó $a=\dfrac{1}{x}-1.$ Vì $a^3-3a+1=0$ nên $$\Big(\dfrac{1}{x}-1\Big)^3-3\Big(\dfrac{1}{x}-1\Big)+1=0 \Leftrightarrow 3x^3-3x+1=0.$$
Từ đó suy ra $\dfrac{1}{1+a}, \dfrac{1}{1+b}, \dfrac{1}{1+c}$ là 3 nghiệm của phương trình trên, do đó $$\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=0.$$ Vậy $A=-3.$
b) Theo định lý Viète $a+b+c=0, ab+bc+ca=-3$ và $abc=-1.$ Đặt $P(x)=x^3-3x+1=(x-a)(x-b)(x-c),$
ta có
\begin{eqnarray*}
a^2-2+b^2-2+c^2-2=a^2+b^2+c^2-6=(a+b+c)^2-2(ab+ac+bc)-6=0.
\end{eqnarray*}
Lại có
\begin{eqnarray*}
&&(a^2-2)(b^2-2)+(b^2-2)(c^2-2)+(c^2-2)(a^2-2)\\&=& a^2b^2+b^2c^2+c^2a^2-4(a^2+b^2+c^2)+12\\&=& (ab+bc+ca)^2-2abc(a+b+c) -3.6+12\\ &=&-3.
\end{eqnarray*}
Cuối cùng
\begin{eqnarray*}
&&(a^2-2)(b^2-2)(c^2-2)\\
&=& (\sqrt{2}-a)(\sqrt{2}+a)(\sqrt{2}+c)(-\sqrt{2}-a)(-\sqrt{2}-b)(-\sqrt{2}-c) \\
&=&P(\sqrt{2})P(-\sqrt{2})\\&=&-1.
\end{eqnarray*}
Theo định lý Viète đảo ta có $a^2-2, b^2-2, c^2-2$ là nghiệm của đa thức $x^3-3x+1=0.$

Bài tập có lời giải
Bài 1.  Định $m$ sao cho $F=x^3+y^3+z^3+mxyz$ chia hết cho $x+y+z$.

Lời giải

Xem F là một đa thức theo biến $x.$ Theo giả thiết $F(x) \vdots [x-(-y-z)]$ suy ra $$F(-y-z)=0 \Leftrightarrow (-y-z)^3+y^3+z^3+m(-y-z)yz \Leftrightarrow -yz(y+z)(3+m)=0, $$ với mọi $y,z \in \mathbb{R}$. Từ đó $m=-3.$

 

Bài 2.  (Canada 2001) Cho $P(x)$ là tam thức bậc hai có các hệ số nguyên thỏa mãn đồng thời:
i) Cả hai nghiệm đều nguyên;
ii) Tổng các hệ số là một số nguyên tố;
iii) Tồn tại số nguyên $k$ sao cho $P(k)=55$.

Chứng minh rằng $P(x)$ có một nghiệm bằng 2 và hãy tìm nghiệm còn lại.

Lời giải

Gọi $r_1 \le r_2$ là hai nghiệm. Ta có $P(x)=ax^2+bx+c=a(x-r_1)(x-r_2)$, từ đó $P(1)=a+b+c=a(1-r_1)(1-r_2)=p$ nên $a \in \{\pm 1, \pm p\}$.\

Nếu $a=p$ thì $(1-r_1)(1-r_2)=1$ nên $r_1=r_2=0$ hoặc $r_1=r_2=2$ (mâu thuẫn với (c) ).\

Nếu $a=-p$ thì $(1-r_1)(1-r_2)=-1$ nên $r_1=0, r_2=2$ (cũng mâu thuẫn).\

Vì $P(k)=a(k-r_1)(k-r_2)=-5.11$ nên ta được

$$\begin{cases}
a=1&\\
k-r_1=55&\\
k-r_2=1&
\end{cases} hay \ \begin{cases}
a=1&\\
k-r_1=11&\\
k-r_2=5&
\end{cases}$$

Trong trường hợp đầu tiên ta được $r_2=r_1+54, b=-2r_1-54$ và $c=r_1(r_1+54)$ do đó $r_1^2+52r_1-(53+p)=0$ nên $$ r_1=\frac{-52 \pm \sqrt{52^2+4(53+p)}}{2}= -26 \pm \sqrt{26^2+53+p }=-26 \pm \sqrt{ 27^2+p}.$$

Đặt $h^2=27^2+p \Leftrightarrow p=(h+27)(h-27)$, vì $p$ là nguyên tố nên $h-27=1 \Rightarrow h=28$ nhưng khi dó $p=55$ không là số nguyên tố.\

Trong trường hợp thứ hai $r_2=r_1+6$ nên $b=-2r_1-6$ và $c=r_1(r_1+6)$, do đó $p=10(2r_1+6)+r_1^2+6r_1$ hoặc $$ r_1^2+4r_1-(5+p)=0 \Leftrightarrow r=-1\pm \sqrt{3^2+p}. $$

Đặt $i^2=3^2+p \Leftrightarrow p=(i+3)(i-3), $ vì $p$ là số nguyên tố nên $i=4$ và do đó $p=7 \Rightarrow r_1=2, r_2=8.$

 

Bài 3.  Cho $P(x)=x^n+a_{n-1}x^{n-1}+…+a_1x+a_0$, trong đó $a_k =\pm 1$. Biết $P(x)$ có $n$ nghiệm, chứng minh rằng $n \le 3$.

Lời giải

Giả sử $x_1,…,x_n$ là các nghiệm của $P(x)$. Ta có $\displaystyle \sum_{i=1}^{n} x_i^2=3$ và $\dfrac{1}{x_1}, …, \dfrac{1}{x_n}$ là nghiệm của đa thức $Q(x)=a_0x^n+…+a_{n-1}x+1.$ Ta có $\displaystyle \sum_{i=1}^{n} \dfrac{1}{x_i^2}=3$. Suy ra $$ 9=\Big(\sum_{i=1}^{n} x_i^2 \Big)\Big(\sum_{i=1}^{n} \dfrac{1}{x_i^2}\Big) \ge n^2. $$
Do đó $n \le 3.$

Bài 4.  Cho các số thực $a,b,c$ và phương trình $x^4+4x^3+ax^2+bx+c=0$ có 4 nghiệm thỏa mãn $x_1^{16}+x_2^{16}+x_3^{16}+x_4^{16}=4$. Tìm các nghiệm đó.

Lời giải

Theo định lý Viète ta có $x_1+x_2+x_3+x_4=-4$.\
Áp dụng liên tiếp bất đẳng thức Cauchy Schwarz, ta được
\begin{eqnarray*}16&=&(x_1+x_2+x_3+x_4)^2\\ &\le& 4(x_1^2+x_2^2+x_3^2+x_4^2)\\ &\le& 4\sqrt{4(x_1^4+x_2^4+x_3^4+x_4^4)}\\ &\le& 4 \sqrt{4\sqrt{4(x_1^8+x_2^8+x_3^8+x_4^8)}}\\ &\le& 4 \sqrt{4 \sqrt{4\sqrt{4(x_1^{16}+x_2^{16}+x_3^{16}+x_{4}^{16})}}}=16. \end{eqnarray*}

Dấu "=" xảy ra khi và chỉ khi $x_1=x_2=x_3=x_4=-1$.

Bài 5. (VMO 1991)  Giả sử đa thức $P(x)=x^{10}-10x^9+39x^8+a_7x^7+...+a_1x+a_0$ với các hệ số thực $a_7, ..., a_0$ sao cho đa thức $P(x)$ có 10 nghiệm phân biệt. Chứng minh rằng các nghiệm này thuộc đoạn $[-\frac{5}{2},\frac{9}{2}].$

Lời giải

Gọi $x_1, x_2,…, x_{10}$ là các nghiệm của $P(x)$. Theo định lý Viète ta có
$$ \sum_{i=1}^{10} x_i=10 \ \text{và} \
\sum_{1 \le i <j \le 10} x_ix_j=39.$$

Do đó $$ \Big(\sum_{i=1}^{10} x_i \Big)^2=\sum_{i=1}^{10} x_i^2+2 \sum_{1 \le i<j \le 10} x_ix_j \Rightarrow \sum_{i=1}^{10} x_{i}^2=100-2.39=22. $$

Hơn nữa $$ \sum_{i=1}^{10} (x_i-1)^2=\sum_{i=1}^{10} x_i^2-2 \sum_{i=1}^{10} x_i+10=12 \Rightarrow (x_i-1)^2 \le 12 <(3.5)^2 ,$$
với mọi $i=1,2,…,10.$
Từ đó suy ra điều phải chứng minh.

Bài 6.  Cho các số thực $a,b$ trong đó $a \ne 0.$ Chứng minh rằng tất cả các nghiệm của phương trình $$ax^4+bx^3+x^2+x+1=0$$ không đồng thời là nghiệm thực.

Lời giải

Gọi $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ lần lượt là các nghiệm của phương trình đã cho. Dễ thấy các nghiệm này đều khác 0 và có tích bằng $\dfrac{1}{a}.$ Khi đó nghiệm của phương trình $x^4+x^3+x^2+bx+a=0$ lần lượt là $$\beta_1=\dfrac{1}{\alpha_1}, \beta_2=\dfrac{1}{\alpha_2},\beta_3=\dfrac{1}{\alpha_3},\beta_4=\dfrac{1}{\alpha_4}.$$
Theo định lí Viète $$\sum_{j=1}^{4} \beta_j=-1, \sum_{1 \le j<k \le 4}\beta_j \beta_k=1.$$
Dẫn đến
$$\sum_{j=1}^{4}\beta_j^2=\Big(\sum_{j=1}^{4}\beta_j\Big)^2-2 \Big(\sum_{1 \le j<k \le 4}\beta_j \beta_k\Big)=1-2=-1.$$
Vô lí, bài toán được chứng minh xong.

Bài 7. Giả sử đa thức $ax^3-x^2+bx-1=0$ có 3 nghiệm dương phân biệt. Chứng minh rằng:

a) $0<3ab \le 1;$
b) $b \ge 9a;$
c) $b \ge \sqrt{3}.$

Lời giải

a) Gọi $x_1, x_2, x_3$ là 3 nghiệm của đa thức đã cho. Khi đó theo Định lý Viète, ta có $$x_1+x_2+x_3=\dfrac{1}{a}, x_1x_2+x_1x_3+x_2x_3=\dfrac{b}{a}, x_1x_2x_3=\dfrac{1}{a}.$$
Từ đó suy ra $a>0$ nên $b>0$, dẫn đến $ab>0.$ Từ bất đẳng thức $$(x_1+x_2+x_3)^2 \ge 3(x_1x_2+x_1x_3+x_2x_3)$$ ta được $\dfrac{1}{a^2} \ge 3.\dfrac{b}{a}$ dẫn đến $0 <3ab \le 1.$
b) Vì $(x_1+x_2+x_2)(x_1x_2+x_1x_3+x_2x_3) \ge 9x_1x_2x_3$ nên $\dfrac{b}{a^2} \ge \dfrac{9}{a},$ dẫn đến $b \ge 9a.$
c) Theo bất đẳng thức $(x_1x_2+x_1x_3+x_2x_3)^2 \ge 3x_1x_2x_3(x_1+x_2x+x_3)$ ta được $\dfrac{b^2}{a^2} \ge \dfrac{3}{a^2}$. Dẫn đến $b^2 \ge 3$ và vì $b \ge 0$ nên $b \ge \sqrt{3}.$

Bài 8.  Cho đa thức $x^3+\sqrt{3}(a-1)x^2-6ax+b=0$ có 3 nghiệm thực. Chứng minh rằng $$|b| \le |a+1|^3.$$

Lời giải

Gọi $x_1, x_2, x_3$ là 3 nghiệm của đa thức đã cho, theo định lý Viète $$x_1+x_2+x_3=-\sqrt{3}(a-1), x_1x_2+x_2x_3+x_1x_3=-6a, x_1x_2x_3=-b.$$
Ta có
\begin{eqnarray*}
\sqrt[3]{|b|}= \sqrt[3]{|x_1|.|x_2||x_3|} &\le& \sqrt{\dfrac{x_1^2+x_2^2+x_3^2}{3}} \\&=& \sqrt{\dfrac{(x_1+x_2+x_3)^2-2(x_1x_2+x_2x_3+x_1x_3)}{3}}\\&=& \sqrt{\dfrac{3(1-a)^2+12a}{3}}\\&=& |a+1|.
\end{eqnarray*}
Suy ra $|b| \le |a+1|^3,$ điều phải chứng minh.

 

Bài 9.  [Mathematical Reflections S455] Cho $a,b \in \mathbb{R}$ sao cho tất cả các nghiệm của đa thức
$$P(x)=x^4-x^3+ax+b$$ có 4 nghiệm thực.
a)  Chứng minh rằng $a+ b \ge 0;$
b) Chứng minh rằng $P \Big(-\dfrac{1}{2}\Big) \le \dfrac{3}{16}.$

Lời giải

a) Gọi $x_1, x_2, x_3, x_4$ là 4 nghiệm của đa thức đã cho. Theo định lý Viète ta có
\begin{eqnarray*}
&&x_1+x_2+x_3+x_4=1 \\&& x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4=0\\&&-x_1x_2x_3x_4\Big(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{1}{x_3}+\dfrac{1}{x_4}\Big)=a\\&&x_1x_2x_3x_4=b.
\end{eqnarray*}
Từ hai phương trình đầu ta được $$x_1^2+x_2^2+x_3^2+x_4^2=1.$$
Theo bất đẳng thức Cauchy-Schwarz
$$1=x_1^2+(x_2^2+x_3^2+x_4^2) \ge x_1^2+\dfrac{1}{3}(x_2+x_3+x_4)^2=x_1^2+(1-x_1)^2.$$
Từ đó ta có $$-\dfrac{1}{2} \le x_1 \le 1.$$
Hoàn toàn tương tự $-\dfrac{1}{2}\le x_2, x_3, x_4 \le 1.$ Khi đó vì $P(x)=(x-1x_1)(x-x_2)(x-x_3)(x-x_4)$ nên dễ thấy $$P(1) \ge 0 \Leftrightarrow a+b \ge 0.$$
b) Bây giờ ta cần chứng minh $$P\Big(-\dfrac{1}{2}\Big) \le \dfrac{3}{16} \Leftrightarrow a \ge 2b.$$
Nếu $b \le 0$ thì từ $a+b \ge 0$ ta suy ra $a \ge 0$ nên hiển nhiên nhiên $a \ge 2b.$ Giả sử $b >0,$ thế thì $x_1x_2x_3x_4 >0$ và do đó ta có
$$a \ge 2b \Leftrightarrow \dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{1}{x_3}+\dfrac{1}{x_4} \le -2. \ \ \ \ (1)$$
Trong trường hợp này phải có hai nghiệm là số dương và hai nghiệm là số âm. Không mất tổng quát giả sử $x_1, x_2>0$ và $x_3, x_4<0$. Vì $-\dfrac{1}{2} \le x_4 \le 1$ nên $2x_4+1 \ge 0, 1-x_4 \ge 0$ và $x_1x_2x_3 <0$. Dẫn đến
\begin{eqnarray*}
x_4^2(1-x_4) \ge x_1x_2x_3(2x_4+1) &\Leftrightarrow& x_4^2(x_1+x_2+x_3) -x_1x_2x_3 \ge 2x_1x_2x_3x_4\\
&\Leftrightarrow& \dfrac{x_4(x_1+x_2+x_3)}{x_1x_2x_3} -\dfrac{1}{x_4} \ge 2\\ &\Leftrightarrow& \dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{1}{x_3}+\dfrac{1}{x_4} \le -2.
\end{eqnarray*}
Bất đẳng thức (1) được chứng minh xong.

Bài 10. Cho số tự nhiên $k>0$ và hai số thực $a, b$ sao cho $x^k + ax + 1$ chia hết cho $x^2 + bx + 1$ và phương trình $x^2 + bx + 1 = 0$ có hai nghiệm. Chứng minh $a(a-b)=0$.

Lời giải

Theo giả thiết tồn tại đa thức $P(x) \in \mathbb{R}[x]$ sao cho $ x^k + ax + 1 = P(x)(x^2 + bx + 1) \ (1).$ Gọi $r_1, r_2$ là hai nghiệm của phương trình $x^2 + bx + 1 = 0$. Khi đó $$(x – r_1)(x – r_2) = x^2 + bx + 1.$$

Theo định lý Viète $\begin{cases}
r_1 + r_2 = -b&\\
r_1r_2 = 1.&
\end{cases}$
Thay vào (1) ta được $$0 = \sum_{i=1}^2 \Big( r_i^k + ar_i + 1 \Big) = r_1^k + r_2^k + a(r_1 + r_2) + 2,$$
suy ra $$r_1^k + r_2^k = -a(r_1 + r_2) – 2 = ab – 2$$ và do đó $$ r_1^k + r_2^k = -a(r_1 + r_2) – 2 = ab – 2.$$
Sử dụng (1) một lần nữa ta được $$a^2r_1r_2 = (r_1^k + 1)(r_2^k + 1) = (r_1r_2)^k + r_1^k + r_2^k + 1.$$
Suy ra $a^2 . 1 = 1^k + (ab – 2) + 1 = ab \Leftrightarrow a(a-b)=0.$

Bài 11.  Cho $P(x) $ là một đa thức hệ số nguyên thỏa mãn các phương trình $P(x)=1, P(x)=2, P(x)=3$ có ít nhất một nghiệm nguyên lần lượt là $x_1, x_2, x_3$.

a) Chứng minh $x_1, x_2, x_3$ là nghiệm nguyên duy nhất của các phương trình trên.
b) Chứng minh rằng phương trình $P(x)=5$ có tối đa một nghiệm nguyên.

Lời giải

a) Vì phương trình $P(x)=2$ nhận $x=x_2$ làm nghiệm nên $$ P(x)=(x-x_2)q(x)+2 \ \ \ \ (1). $$

Vì $P(x)$ là đa thức với hệ số nguyên mà $x_2$ nguyên nên $q(x) \in \mathbb{Z}[x]$. Trong (1) lân lượt thay $x$ bởi $x_1, x_3$ ta được $$ \begin{cases}
1=P(x_1)=(x_1-x_2)q(x_1)+2&\\
3=P(x_3)=(x_3-x_2)q(x_3)+2.&
\end{cases} \Leftrightarrow \begin{cases}
(x_1-x_2)q(x_1)=-1&\\
(x_3-x_2)q(x_3)=1&
\end{cases}.$$
Hơn nữa $x_1 \ne x_3$ nên $\begin{cases}
x_1-x_2=1&\\
x_3-x_2=-1&
\end{cases}$ hoặc $\begin{cases}
x_1-x_2=-1&\\
x_3-x_2=1.&
\end{cases}$\

Trong hai trường hợp ta đều có $x_2=\dfrac{x_1+x_3}{2}$. Giả sử phương trình $P(x)=2$ còn có nghiệm nguyên $x_2′ \ne x_2$ áp dụng lại lập luận trên ta lại có $x_2’=\dfrac{x_1+x_3}{2}=x_2,$ mâu thuẫn. Vậy phương trình này chỉ có một nghiệm nguyên duy nhất là $x_2.$\

Tương tự cho hai phương trình còn lại.

b) Xét phương trình $P(x)=5$.\

Nếu phương trình này không có nghiệm nguyên thì bài toán là hiển nhiên.\

Nếu phương trình này có một nghiệm nguyên $x_5$ thì từ (1) suy ra $$ 5=P(x_5)=(x_5-x_2)q(x_5)+2 \Rightarrow (x_5-x_2)q(x_5)=3. $$

Suy ra $x_5-x_2 \in \{\pm 1, \pm 3\}$.\

Nếu $x_5-x_2=\pm 1$ thì $x_5$ phải trùng với $x_1$ hoặc $x_3$, vô lý.\

Nếu $x_5-x_2= \pm 3$. Vì phương trình $P(x)=3$ nhận $x_3$ làm nghiệm nên $$P(x)=(x-x_3)r(x)+3 \Rightarrow 5=P(x_5)=(x_5-x_3)r(x_5)+3.$$
Để ý rằng $r(x) \in \mathbb{Z}[x]$ nên từ $(x_5-x_3)r(x_5)=2$ nên $x_5-x_3 \in \{\pm 1, \pm 2\}$. Xét hai khả năng:

Trường hợp 1. $\begin{cases}
x_1-x_2=1&\\
x_3-x_2=-1&
\end{cases} \Leftrightarrow \begin{cases}
x_1=1+x_2&\\
x_3=-1+x_2&
\end{cases}$\

– Nếu $x_5-x_2=3 \Rightarrow x_5-x_3=3=(3+x_2)-(-1+x_2)=4$, mâu thuẫn.\

– Nếu $x_5-x_2=-3 \Rightarrow x_5-x_3=(-3+x_2)-(-1+x_2)=-2$, thỏa mãn.\

Tóm lại nếu $\begin{cases}
x_1-x_2=-1&\\
x_3-x_2=1&
\end{cases} \Rightarrow x_5-x_2=-3 \Rightarrow x_5=x_2-3$. Như thế $x_5$ xác định theo $x_1, x_2, x_3$ là duy nhất.\

Trường hợp 2.

Tương tự nếu $$\begin{cases}
x_1-x_2=-1&\\
x_3-x_2=1&
\end{cases} \Rightarrow x_5-x_2=3 \Rightarrow x_5=x_2+3. $$

Như vậy nghiệm nguyên của phương trình này nếu có là duy nhất, bài toán được chứng minh xong.

 

Bài tập rèn luyện

  1. Giả sử đa thức $P(x), Q(x), R(x), S(x) \in \mathbb{R}[x]$ thỏa mãn dẳng thức $$ P(x^5)+xQ(x^5)+x^2R(x^5)=(x^4+x^3+x^2+x+1)S(x).$$
    Chứng minh rằng $P(x)$ chia hết cho $x-1$.
    a) Biết tích của hai trong bốn nghiệm của phương trình $x^4-18x^3+kx^2+200x-2016=0$ là $-32.$ Tìm $k$ .
    b) Biết đa thức $$P(x)=x^n-2nx^{n-1}+2n(n-1)x^{n-2}+...+a_0$$ có $n$ nghiệm thực. Tìm tất cả các nghiệm này.
  2. Giả sử đa thức $P(x)=ax^n-ax^{n-1}+c_2x^{n-2}+...+c_{n-2}x^2-n^2bx+b$ có đúng $n$ nghiệm dương. Chứng minh rằng tất cả các nghiệm này bằng nhau.
    a) Giả sử $x_1, x_2$ là hai trong bốn nghiệm của đa thức $P(x)=x^4+x^3-1$. Chứng minh rằng $x_1x_2$ là nghiệm của đa thức $Q(x)=x^6+x^4+x^3-x^2-1$.
    b) Tìm tất cả các cặp số thực $a,b$ sao cho các đa thức $$P(x)=x^4+2ax^2+4bx+a^2 \ \text{và} \ Q(x)=x^3+ax+b$$ có chung hai nghiệm thực phân biệt.
  3. Cho đa thức $f(x)=3x^3-5x^2+2x-6$ có các nghiệm là $\alpha, \beta, \gamma$. Tính $$T=\Big(\dfrac{1}{\alpha-2}\Big)^2+\Big(\dfrac{1}{\beta-2}\Big)^2+\Big(\dfrac{1}{\gamma-2}\Big)^2.$$
  4. Gọi $r_1, r_2,...,r_7$ là các nghiệm phân biệt của đa thức $P(x)=x^7-7$. Đặt $\displaystyle K=\prod_{1 \le i<j \le 7}(r_i+r_j)$. Tính $K^2.$

 

Tài liệu tham khảo

  1. Phan Huy Khải, Đa thức.
  2. Nguyễn Hữu Điển, Đa thức và ứng dụng.
  3. Titu Andresscu, Navid Safaei, Alessandro Ventullo, Polynomial Problems.
  4. Tạp chí Mathematical Reflections.

 

Định lý Viete và áp dụng nâng cao

1. Định lý Viete và áp dụng

Định lý Viete: Nếu phương trình $ax^2 + bx + c=0$ $(a\ne 0)$ có hai nghiệm $x_1$, $x_2$ $(\Delta \ge 0)$  thì $$S=x_1+x_2 =-\dfrac{b}{a},\ P=x_1x_2 = \dfrac{c}{a}$$

Ví dụ 1: Cho phương trình $x^3 -4x\sqrt{x} +m + 1=0$ $(1)$

a) Giải phương trình $(1)$ khi $m=-33$

b) Tìm $m$ để phương trình $(1)$ có đúng hai nghiệm phân biệt $x_1$, $x_2$ thỏa $x_1^6 +x_2^6=82$.

Giải

Đặt $t=x\sqrt{x} \ge 0$

a) Khi $m=-33$ ta có phương trình: $t^2 -4t -32=0  \Leftrightarrow t=-4 \ ( \text{loại})  \text{ hoặc } \ t=8  ( \text{nhận})$

Với $t = 8$ ta được $x = 4$.

b) Với $t=x\sqrt{x}$ thì phương trình $(1)$ tương đương $t^2-4t+m+1=0 \ \ \ (2)$

Để $(1)$ có hai nghiệm phân biệt thì $(2)$ phải có hai nghiệm phân biệt không âm $\Leftrightarrow \begin{cases} \Delta’>0 &\\\\ S>0 &\\\\ P\ge 0 \end{cases}$

Ta có $\Delta’ =3-m >0 \Leftrightarrow m<3 $ và $\left\{ \begin{array}{l} S=t_1 + t_2 =4 \\ P =t_1t_2=m+1 \end{array} \right. $

Khi đó $x_1^6 + x_2^6 = t_1^4 + t_2^4 $

$= \left( t_1^2 + t_2^2 \right) ^2 – 2t_1^2 t_2^2 $

$= \left[ S^2 -2P \right] ^2 -2P^2 $

$= (14-2m)^2 -2(m+1)^2 $

$= 2m^2 -60m +194 $

$x_1^6 + x_2^6 =82 \Leftrightarrow m^2 -30m +56 =0 \Leftrightarrow \left[ \begin{array}{l} m=2 \\ m=28 \end{array} \right.$

Chỉ có $m=2$ thoả các điều kiện. Vậy $m=2$ thoả yêu cầu đề bài.

Ví dụ 2: Cho phương trình $\dfrac{(x+1)(x^2+mx+2m+14)}{\sqrt{x}} = 0 \ (1)$.

a) Giải phương trình $(1)$ khi $m = -8$.

b) Tìm $m$ để phương trình $(1)$ có 2 nghiệm phân biệt $x_1,x_2$ sao cho: $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}$

Giải

a) Điều kiện $x > 0$.

Khi $m = -8$ ta có phương trình:

$\dfrac{(x+1)(x^2-8x-2)}{\sqrt{x}} = 0 \Leftrightarrow x^2-8x – 2 = 0$ (do $x+1 > 0$).

$\Leftrightarrow x = 4+3\sqrt{2} $ (n) hoặc  $x=4-3\sqrt{2} $ (l).

Vậy phương trình có một nghiệm $x = 4 +3\sqrt{2}$.

b) Phương trình $(1)$ tương đương $x^2+mx+2m+14 = 0$  $(2)$

Để $(1)$ có $2$ nghiệm phân biệt thì $(2)$ có hai nghiệm phân biệt dương, tương đương $\Delta = m^2-4(2m+14) > 0,  S = -m > 0,  P = 2m + 14 >0   (*)$

Khi đó $x_1 + x_2 = -m, x_1x_2 = 2m+14$ và $x_2$ là nghiệm nên $x_2^2+mx_2+2m+14 = 0$, suy ra $x_2^2+(m+1)x_2 +2m+14 = x_2$.

Do đó $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}$

$\Leftrightarrow \sqrt{x_1}+\sqrt{x_2}=3$

$\Leftrightarrow x_1 + x_2 +2\sqrt{x_1x_2}=9$

$\Leftrightarrow 2\sqrt{2m+14}=9+m $ (điều kiện $m\ge -9$)

$\Leftrightarrow 4(2m+14) = m^2+18m+81 $

$\Leftrightarrow m^2 +10m+25 = 0 $

$\Leftrightarrow m = -5 \,\, (n) $

Vậy $m = -5$ thoả yêu cầu đề bài.

Ví dụ 3: Gọi $a, b$ là hai nghiệm của phương trình $x^2 + px + 1 = 0$; $c, d$ là hai nghiệm của phương trình $y^2 + qy + 1 = 0$. Chứng minh rằng $$(a-c)(a-d)(b-c)(b-d) = (p-q)^2$$

Giải

Theo định lý Viete ta có $a+b=-p, ab = 1$ và $c+d = -q, cd = 1$.

Khi đó $(a-c)(a-d)(b-c)(b-d) = (a^2-a(c+d)+cd)(b^2-b(c+d)+cd)$

$= (a^2+aq+1)(b^2+bq+1)$

$= a^2b^2+abq^2+ab^2q + a^2bq + a^2+b^2+aq+bq+1$

$= 1+q^2+abq(a+b) + q(a+b)+1+(a+b)^2-2ab$

$= q^2-2pq+p^2 = (p-q)^2$.

Ví dụ 4: Cho phương trình $(m^2+5)x^2-2mx-6m=0$.

a) Tìm $m$ để phương trình có hai nghiệm phân biệt. Chứng minh rằng khi đó tổng hai nghiệm không thể là số nguyên.

b) Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thoả $(x_1x_2-\sqrt{x_1+x_2})^4=16.$

Giải

a) Phương trình có hai nghiêm phân biệt khi và chỉ khi:

$\begin{cases} m^2+5 \ne 0 &\\ \Delta’=m^2+6m(m^2+5)>0 \end{cases}$

$\Leftrightarrow m(6m^2+m+30)>0$

$\Leftrightarrow m[5m^2+(m+\dfrac{1}{2})^2+\dfrac{119}{4}] >0$

$\Leftrightarrow m>0.$

Khi đó theo định lý Viete ta có $x_1 + x_2 = \dfrac{2m}{m^2+5}$.

Vì $m^2+5-2m = (m-1)^2 + 4 > 0$, suy ra $m^2+5 >2m > 0$.

Do đó $0 < \dfrac{2m}{m^2+5} < 1$ nên tổng hai nghiệm của phương trình không thể là số nguyên.

b) Điều kiện để phương trình có hai nghiệm $\Delta’ \geq 0 \Leftrightarrow m \geq 0$. Khi đó

$\begin{cases} x_1+x_2=\dfrac{2m}{m^2+5}&\\ x_1x_2=-\dfrac{6m}{m^2+5}. \end{cases}$

Ta có $(x_1x_2-\sqrt{x_1+x_2})^4=16 \Leftrightarrow x_1x_2-\sqrt{x_1+x_2}=2$ hoặc $x_1x_2-\sqrt{x_1+x_2}=-2$

Trường hợp 1: $x_1x_2 – \sqrt {x_1 + x_2} = 2 \Leftrightarrow \dfrac{{ – 6m}}{{{m^2} + 5}} – \sqrt {\dfrac{{2m}}{{{m^2} + 5}}} = 2$ .

Đặt $t = \sqrt {\dfrac{{2m}}{{{m^2} + 5}}} $ , ta có phương trình: $ – 3{t^2} – t = 2\left( {VN} \right)$

Trường hợp 2:  ${x_1}{x_2} – \sqrt {{x_1} + {x_2}} = – 2 \Leftrightarrow \dfrac{{ – 6m}}{{{m^2} + 5}} – \sqrt {\dfrac{{2m}}{{{m^2} + 5}}} = – 2$ .

Đặt $t = \sqrt {\dfrac{{2m}}{{{m^2} + 5}}} $ ta có phương trình: $-3t^2 -t = -2 \Leftrightarrow t = -1 (l), t=\dfrac{2}{3}$.

Với $t = \dfrac{2}{3}$ ta có $\dfrac{2m}{m^2+5} = \dfrac{4}{9}$. Giải ra được $m = 2\ (n), m = \dfrac{5}{2}\ (n)$.

Ví dụ 5: Cho phương trình $x^2-px+p=0$ với $p$. Tồn tại hay không số nguyên dương $p$ sao cho phương trình đã cho có nghiệm nguyên?

Giải

Ta có $\Delta=p^2-4p$.

Để phương trình có nghiệm nguyên thì $\Delta $ phải là số chính phương. Suy ra tồn tại số nguyên dương $k$ để

$p^2-4p=k^2$

$\Leftrightarrow k^2-(p-2)^2=4$

$\Leftrightarrow (k+p-2)(k-p+2)=4.$

Vì $k+p-2+k-p+2=2k $ là một số chẵn nên cả hai số $k+p-2$ và $k-p+2$ đều là số chẵn.

Từ đó $k+p-2=k-p+2=2$ hoặc $k+p-2=k-p+2=-2$.

Suy ra $p=2$. Khi đó phương trình trở thành $$x^2-2x+2=0.$$

Phương trình trên vô nghiệm vậy không tồn tại số nguyên dương $p$ thoả yêu cầu đề bài.

Ví dụ 6: Giả sử phương trình $2x^2+2ax+1-b=0$ có hai nghiệm nguyên . Chứng minh rằng $a^2-b^2+2$ là số nguyên không chia hết cho 3.

Giải

Theo định lý Viete ta có $x_1 + x_2 = -a, x_1x_2 = \dfrac{1-b}{2}$.

Khi đó $$Q= a^2 – b^2 + 2 = (x_1+x_2)^2 – (2x_1x_2-1)^2 + 2 = x_1^2 + x_2^2 -4x_1^2x_2^2 + 6x_1x_2 + 1$$ là một số nguyên.

Ta sẽ chứng minh $Q$ không chia hết cho 3.

Ta có tính chất sau, với một số nguyên $m$ bất kì thì nếu $m$ chia hết cho 3 thì $m^2$ chia hết cho 3. Nếu $m$ chia 3 dư 1 hoặc 2 thì $m^2$ chia 3 dư 1.

Ta có $Q = x_1^2 +x_2^2 – x_1^2x_2^2 + 1 – 3x_1^2x_2^2 + 6x_1x_2$.

Ta cần chứng minh $Q’ = x_1^2 + x_2^2 – x_1^2x_2^2 + 1$ không chia hết cho 3. Xét xác trường hợp sau:

TH1: Nếu $x_1, x_2$ không chia hết cho 3 thì $x_1^2 , x_2^2$ chia 3 dư 1. Khi đó $Q’$ chia 3 dư 2.

TH2: Nếu $x_1$ chia hết cho 3, $x_2$ không chia hết cho 3, khi đó $Q’$ chia 3 dư 2.

TH3: $x_1, x_2$ chia hết cho 3. Khi đó $Q’$ chia 3 dư 1.

Vậy $Q’$ không chia hết cho 3.

Do đó $Q$ không chia hết cho 3.

Ví dụ 7: Cho hai phương trình $x^2+ax+6=0$ và $x^2+bx+12=0$ có một nghiệm chung. Tìm GTNN của $|a|+|b|$.

Giải

Gọi $x_0$ là nghiệm chung của hai phương trình. Khi đó ta có

$\begin{cases} x_0^2+ax_0+6=0 \ \ \ (1)&\\ x_0^2+bx_0+12=0 \ \ \ (2) \end{cases}.$

Cộng vế theo vế hai phương trình trên ta được $2x_0^2+(a+b)x_0+18=0 \ \ \ (3).$

Tồn tại $x_0 \Leftrightarrow $ phương trình (3) phải có nghiệm $\Leftrightarrow \Delta=(a+b)^2-144 \ge 0 \Leftrightarrow |a+b| \ge 12.$

Mặt khác $|a|+|b| \ge |a+b| \ge 12$. Dấu “=” xảy ra $\Leftrightarrow \begin{cases} ab \ge 0&\\|a+b|=12. \end{cases}$

Nếu $a+b=12$ thì từ (3) suy ra $ 2x_0^2+12x_0+18=0$

$\Leftrightarrow x_0^2+6x_0+9=0$

$\Leftrightarrow (x_0+3)^2=0$

$\Leftrightarrow x_0=-3.$

Thay vào (1) và (2) suy ra $a=5, b=7$.

Nếu $a+b=-12$ thì từ (3) suy ra $2x_0^2-12x_0+18=0 \Leftrightarrow x_0=3.$

Thay vào (1) và (2) suy ra $a=-5, b=-7.$

Vậy GTNN của $|a|+|b|$ bằng 12 khi $(a,b)=(5,7)$ hoặc (-5,-7).

Ví dụ 8: Giả sử phương trình $ax^2+bx+c=0$ có hai nghiệm thuộc $[0,3]$. Tìm GTLN, GTNN của biểu thức $A=\dfrac{18a^2-9ab+b^2}{9a^2-3ab+ac}.$

Giải

Vì phương trình đã cho có hai nghiệm nên $a \ne 0$.

Khi đó $A=\dfrac{18- 9 \dfrac{b}{a}+ \left( \dfrac{b}{a}\right) ^2}{9-3\dfrac{b}{a}+\dfrac{c}{a}}.$

Gọi $x_1, x_2$ là hai nghiệm của phương trình đã cho. Khi đó $\begin{cases} x_1+x_2=-\dfrac{b}{a}&\\x_1x_2=\dfrac{c}{a}. \end{cases}$

Biểu thức cần tính trở thành

$A=\dfrac{18- 9 \dfrac{b}{a}+ \left( \dfrac{b}{a}\right) 2}{9-3\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{18+9(x_1+x_2)+(x_1+x_2)^2}{9+3(x_1+x_2)+x_1x_2}$

Giả sử $0 \le x_1 \le x_2 \le 3 \Rightarrow \begin{cases} x_1^2 \le x_1x_2&\\ x_2^2 \le 9 \end{cases} \Rightarrow (x_1+x_2)^2 \le x_1^2+x_2^2+2x_1x_2 \le 9+3x_1x_2.$

Suy ra $Q=\dfrac{18- 9 \dfrac{b}{a}+ (\dfrac{b}{a})^2}{9-3\dfrac{b}{a}+\dfrac{c}{a}}$

$=\dfrac{18+9(x_1+x_2)+(x_1+x_2)^2}{9+3(x_1+x_2)+x_1x_2} $

$\le \dfrac{18+9(x_1+x_2)+9+3x_1x_2}{9+3(x_1+x_2)+x_1x_2}=3.$

Dấu “=” xảy ra khi và chỉ khi $x_1=x_2=3$ hoặc $x_1=0$ và $x_2=3.$

Nếu $x_1=x_2=3$ thì $\begin{cases} \dfrac{-b}{a}=6&\\ \dfrac{c}{a}=9 \end{cases} \Leftrightarrow \begin{cases} b=-6a&\\ c=9a. \end{cases}$

Nếu $x_1=0, x_2=3$ thì $\begin{cases} -\dfrac{b}{a}=3&\\ \dfrac{c}{a}=0 \end{cases} \Leftrightarrow \begin{cases} b=-3a&\\ c=0. \end{cases}$

Ta có $$A-2=\dfrac{3(x_1+x_2)+x_1^2+x_2^2}{9+3(x_1+x_2)+x_1x_2} \ge 0 \Rightarrow A \ge 2.$$

Dấu “=” xảy ra khi $x_1=x_2=0 \Leftrightarrow b=c=0.$

Vậy GTLN của A là 3 và GTNN của A là 2.

2. Bài tập rèn luyện

Bài 1: Tìm $m$ để phương trình $\dfrac{(x+1)[m(mx+1)x+1-x]}{\sqrt{x}}=0$ có nghiệm.

Bài 2: Cho phương trình $(x^2-4(m+1)x-2m^2-1)(\sqrt{x}+x-6)=0$.

a) Giải phương trình khi $m=1$.

b) Chứng minh phương trình không thể có 3 nghiệm phân biệt.

Bài 3: Cho phương trình $\sqrt{x}(x+1)[mx^2+2(m+2)x+m+3=0]$.

a) Giải phương trình khi $m=1$.

b) Chứng minh phương trình không thể có 3 nghiệm phân biệt.

Bài 4: Cho phương trình $\dfrac{\sqrt{x}(mx^2-3(m+1)x+2m+3)}{x-2}=0$.

a) Giải phương trình khi $m=2$.

b) Tìm $m$ để phương trình có 3 nghiệm phân biệt.

Bài 5: Cho phương trình $x^4+2mx^2+4=0$.

a) Giải phương trình với $m=3$.

b) Tìm $m$ để phương trình có 0,1,2,3,4 nghiệm

c) Tìm $m$ để phương trình có 4 nghiệm phân biệt thoả $x_1^4+x_2^4+x_3^4+x_4^4=32$.

Bài 6: Cho phương trình $x^2-2(m+1)|x-2|-4x+m=0$.

a) Giải phương trình khi $m$=1.

b) Tìm $m$ để phương trình có 0,1,2,3,4 nghiệm.

Bài 7: Tìm $m$ để phương trình $x^3+2(m-1)x^2+(m^2-4m+1)x-2(m^2+1)=0$ có ba nghiệm phân biệt nhỏ hơn 3.

Bài 8: Tìm $m$ để phương trình $x^3-2mx^2+(2m^2-1)x+m(1-m^2)=0$ có 3 nghiệm phân biệt lớn hơn 1.

Bài 9: Cho phương trình $x++2\sqrt{x-1}-m^2+6m-11=0.$

a) Giải phương trình khi $m=2$.

b) Chứng minh rằng phương trình có nghiệm với mọi $m$.

Bài 10: Cho phương trình $(x^2-mx-2m^2)\sqrt{x-3}=0$.

a) Giài phương trình khi $m=2$.

b) Tìm $m$ để phương trình có hai nghiệm thoả $x_1^2+2x_2^2=7m^2+2$.

c) Chứng minh rằng phương trình đã cho luôn có không quá hai nghiệm phân biệt.

Bài 11: Cho phương trình $\dfrac{mx^2+(m-3)x+2m-1}{x+3}=0$.

a) Giải phương trình khi $m=-1$.

b) Tìm $m$ để phương trình có hai nghiệm thoả $21x_1+7m(2+x_2+x_2^2)=58.$

Định lý Viete với các biểu thức nghiệm không đối xứng

Tiếp theo các bài toán về tìm giá trị của tham số để nghiệm của phương trình thỏa một đẳng thức, trong bài này ta xét trường hợp mà biểu thức nghiệm không chỉ là bậc nhất, hoặc không thể tính theo tham số một cách dễ dàng.

Ta xét ví dụ sau:

Ví dụ 1. Cho phương trình $x^2-(m+2)x+m+1 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.

Lời giải

  •  $\Delta = (m+2)^2 – 4(m+1) = m^2 \geq 0, \forall m$. Nên phương trình luôn có nghiệm,
    khi đó phương trình có nghiệm là $1$ và $m+1$.
  • $x_1 = 1, x_2 = m+1$ ta có $3x_1x_2 -4x_1 = 2 \Leftrightarrow 3(m+1) – 4 = 2 \Leftrightarrow m = 1$.
  • $x_1 = m+1, x_2 = 1$ ta có $3x_1x_2 – 4x_1 = 2 \Leftrightarrow 3(m+1) – 4(m+1) = 2 \Leftrightarrow m = -3$.
    Vậy có hai giá trị $m$ là $1$ và $-3$.

Ta thấy trong bài toán trên, $\Delta=m^2$ có dạng là $A^2$ trong đó $A$ là một số hay một biểu thức. Khi đó ta có thể tính nghiệm theo $m$ và xét trường hợp nghiệm nào là $x_1$, nghiệm nào là $x_2$ để thế vào biểu thức nghiệm.

Tiếp theo ta xem thêm một ví dụ khác.

Ví dụ 2. (PTNK 2014) Cho phương trình $\dfrac{mx^2 + (m-3)x +2m-1}{x+3}=0$ (1)
a) Giải phương trình (1) khi $m=-1$.
b) Tìm m để phương trình (1) có 2 nghiệm phân biệt $x_1$, $x_2$ sao cho $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) = 58 $

Lời giải

a) Khi m=-1 ta có phương trình:
$\dfrac{-x^2 -4x-3}{x+3}=0 \,\, (\text{đk: } x \ne 3) \\
\Leftrightarrow -x^2 -4x-3 =0 \Leftrightarrow \left[ \begin{array}{l}
x=-1 \,\,(n) \\\\
x=-3 \,\, (l)
\end{array} \right. $
Vậy $S=\left\{ -1 \right\} $

b)    $\dfrac{mx^2+(m-3)x+2m-1}{x+3}=0$ (1)

  • Điều kiện để phương trình có hai nghiệm phân biệt $x_1,x_2$ là phương trình $mx^2+(m-3)x+2m-1=0$ có hai nghiệm phân biệt khác $-3$
    $\left\{ \begin{array}{l}
    m \ne 0 \\\\
    \Delta = (m-3)^2 -4m(2m-1) >0 \\\\
    m(-3)^2+(m-3)(-3)+2m-1 \ne 0
    \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l}
    m \ne 0\\\\
    7m^2 +2m-9 <0 \\\\
    m \ne -1
    \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l}
    m\ne 0\\\\
    m \ne -1 \\\\
    -\dfrac{9}{7} < m < 1
    \end{array} \right. $
  • Ta có $mx_2^2 + (m-3) x_2 +2m-1 =0 \Leftrightarrow m \left( 2+x_2 + x_2^2 \right) =3x_2 +1$
  • Do đó $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) =58$
    $\Leftrightarrow 21x_1 + 7(3x_2 +1 ) =58$
    $\Leftrightarrow 21 \left( x_1 +x_2 \right) =51 \\ \Leftrightarrow x_1 + x_2 =\dfrac{17}{7} $
    $\Leftrightarrow \dfrac{3-m}{m} = \dfrac{17}{7}\\ \Leftrightarrow 21-7m =17m \Leftrightarrow m=\dfrac{7}{8} \,\, (n) $
    Vậy $m=\dfrac{7}{8}$

Ta thấy trong bài toán trên, ta phải sử dụng $x_2$ là nghiệm của phương trình nên thỏa phương trình và từ đó ta mới tính được biểu thức chứa $x_2$ trong giả thiết. Mục đích là ta đưa về những dạng dễ hơn mà ta đã biết làm.

Ví dụ 3. (PTNK 2016) Cho phương trình $\dfrac{(x+1)(x^2+mx+2m+14)}{\sqrt{x}} = 0 (1)$.
Tìm $m$ để phương trình (1) có 2 nghiệm phân biệt $x_1,x_2$ sao cho: $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}$

Lời giải

  • Điều kiện $x > 0$.
  • Phương trình (1) tương đương $x^2+mx+2m+14 = 0$ (2).
    Để (1) có 2 nghiệm phân biệt thì (2) có hai nghiệm phân biệt dương, tương đương $\Delta = m^2-4(2m+14) > 0, S = -m > 0, P = 2m + 14 >0 $ (*)
  • Khi đó $x_1 + x_2 = -m, x_1x_2 = 2m+14$ và $x_2$ là nghiệm nên $x_2^2+mx_2+2m+14 = 0$, suy ra $x_2^2+(m+1)x_2 +2m+14 = x_2$.
  • Do đó $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}\\ \Leftrightarrow \sqrt{x_1}+\sqrt{x_2}=3$
    • $\Leftrightarrow x_1 + x_2 +2\sqrt{x_1x_2}=9 \\\Leftrightarrow 2\sqrt{2m+14}=9+m $
    • $\Leftrightarrow 4(2m+14) = m^2+18m+81 \Leftrightarrow m^2 +10m+25 = 0 \Leftrightarrow m = -5 (n)$ vì thỏa (*).
      Kết luận $m = -5$.

Ví dụ 4: Tìm $a \geq 1$ để phương trình $ax^2 + (1-2a)x + 1-a=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_2^2 – ax_1 = a^2-a-1$.

Giải

Điều kiện để phương trình có hai nghiệm phân biệt $\Delta = (1-2a)^2-4a(1-a) = 8a^2-8a+1 > 0$.

Theo định lý Viete ta có $x_1 + x_2 = \dfrac{2a-1}{a}$, suy ra $ax_1 + ax_2 = 2a – 1$. Suy ra $ax_1 = 2a-1-ax_2$.

Kết hợp giả thiết ta có $x_2^2+ax_2-2a+1=a^2-a-1 \Leftrightarrow x_2^2+ax_2-a^2-a+2=0 \Leftrightarrow ax_2^2+a^2x_2-a^3-a^2+2a=0$ $(1)$.

Mà $x_2$ là nghiệm của phương trình nên ta có $ax_2^2+(1-2a)x_2+1-a = 0 (2)$.

Lấy $(1) – (2)$ ta có $(a^2+2a-1)x_2 = a^3+a^2-3a+1$, mà $a \geq 1$ nên $a^2 + 2a – 1 \neq 0$, suy ra $x_2 = a-1$.

Thế vào phương trình $(1)$ ta có $(a-1)^2+a(a-1)-a^2-a+2 = 0 \Leftrightarrow a=1, a=3$.

Thử lại ta nhận hai giá trị $a = 1, a=3$.

Bài tập rèn luyện

Bài 1. Tìm $m$ để phương trình $(x-1+m)(x+2m-3) = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2 – 4x_2 =1$.\ ($m=-3\pm \sqrt{21},m=1$)
Bài 2.  Cho phương trình $x^2-(m+2)x+m+1 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.\($m=1,m=-3$)
Bài 3. Cho phương trình $x^2 – (2m-1)x + 4 = 0$. Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2+(2m-1)x_2 + 8-17m = 0$. ($m= 5$)
Bài 4. Cho phương trình $x^2 – (2m-1)x + m^2 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $x_1^2 + (2m-1)x_2 = 8$.($m=-1$)
Bài 5. Cho phương trình ${x^2} – \left( {3m – 2} \right)x + 2{m^2} – 3m + 1 = 0$ (m là tham số)
a)Tìm m để phương trình có hai nghiệm phân biệt dương $x_1$, $x_2$ ($m>1$)
b) Tìm m để phương trình có hai nghiệm $x_1$, $x_2$ thỏa $x_1^2 + x_2 =5$ ($m=\dfrac{3+\sqrt{89}}{8},m=\sqrt{5}$)

Bài 6. Tìm $m$ để phương trình $\dfrac{x^2-mx +(2m-1)(1-m)}{x-2} = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2 + 2x_2 = 13$. ($m=\dfrac{5}{2},m=-1 \pm \sqrt{5}$)
Bài 7.  Tìm $m$ để phương trình $\dfrac{x^2 – 2mx -2m-1}{\sqrt{x}} = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $\sqrt{x_1^2+2mx_2} + \sqrt{x_2^2+2mx_1} =2\sqrt{5}$. ($m=\dfrac{-1+\sqrt{7}}{4}$)
Bài 8.  Cho phương trình $\dfrac{x^2-(m+1)x +m^2 – 6)}{\sqrt{x}-2} = 0$ (1).
a) Giải phương trình khi $m = 1$. ($ x= 1+\sqrt{6}$)
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa [ \sqrt{x_2^2-mx_2+m^2-5}+\sqrt{x_1+1} = 2+\sqrt{2}] \ ($m=3$)