Định nghĩa phân thức đại số – Điều kiện để phân thức có nghĩa

Định nghĩa: Phân thức đại số là biểu thức có dạng $ \dfrac{A}{B} $ , trong đó $A$, $B$ là những đa thức và $B$ khác $0$. $A$ được gọi là tử, $B$ được gọi là mẫu.

Ví dụ: 

1.Tìm điều kiện để phân thức có nghĩa

a) $\dfrac{{{x^2} – 4}}{{9{x^2} – 16}}$
b) $\dfrac{{2x – 1}}{{{x^2} – 4x + 4}}$
c)  $\dfrac{x}{x^2-3y^2+2xy}$.

Giải

a) $\dfrac{{{x^2} – 4}}{{9{x^2} – 16}}$

Phân thức có nghĩa khi:

$9x^2-16 \neq 0$

$(3x-4)(3x+4)\neq 0$

$3x-4 \neq 0 $ và $3x+4 \neq 0$

$x \neq \dfrac{4}{3}$ và $x \neq \dfrac{-4}{3}$.
b) $\dfrac{{2x – 1}}{{{x^2} – 4x + 4}}$

Phân thức có nghĩa khi:

$x^2-4x+4 \neq 0$

$(x-2)^2\neq 0$

$x-2  \neq 0$

$x \neq 2$.

c)  $\dfrac{x}{x^2-3y^2+2xy}$.

Phân thức có nghĩa khi:

$x^2-3y^2+2xy \neq 0$

$x^2+2xy+y^2-4y^2\neq 0$

$(x+y)^2-4y^2  \neq 0$

$(x+y-2y)(x+y+2y) \neq 0$

$(x-y)(x+3y) \neq 0$

$x-y \neq 0$ và $x+3y \neq 0$

$x \neq y$ và $x \neq -3y$.

2.  Chứng minh các phân thức sau luôn có nghĩa với mọi giá trị của biến.

a) $\dfrac{{3x – 5}}{{{{(x – 1)}^2} + 2}}$
b)  $\dfrac{4x^2-y^2}{x^2-2x+1+y^2+4x+5}$

Giải

a) $\dfrac{{3x – 5}}{{{{(x – 1)}^2} + 2}}$

Phân thức có nghĩa khi

$(x-1)^2+2 \neq 0$

Vì $(x-1)^2 \geq 0$ với mọi $x$

Nên $(x-1)^2+2 > 0$ với mọi $x$.
b)  $\dfrac{4x^2-y^2}{x^2-2x+1+y^2+4x+5}$

Phân thức có nghĩa khi

$x^2-2x+1+y^2+4x+5 \neq 0$

$(x^2-2x+1)+(y^2+4x+4)+1 \neq 0$

$(x-1)^2+(y+2)^2+1 \neq 0$

Vì $(x-1)^2 \geq 0$ với mọi $x$ và $(y+2)^2  \geq 0$ với mọi $y$

Nên $(x-1)^2+(y+2)^2+1 > 0$ với mọi $x,y$.

Bài tập

Bài 1. Tìm điều kiện của biến để phân thức có nghĩa.

a) $\dfrac{{{x^2} – 4}}{{{x^2} – 1}}$
b)  $\dfrac{{5x – 3}}{{2{x^2} – x}}$
c)  $\dfrac{{{x^2} – 5{\rm{x}} + 6}}{{{x^2} – 1}}$
d)  $\dfrac{2}{{(x + 1)(x – 3)}}$
e) $\dfrac{{2{\rm{x}} + 1}}{{{x^2} – 5{\rm{x}} + 6}}$.

Bài 2. Tìm điều kiện của biến để phân thức có nghĩa.

a) $\dfrac{1}{{{x^2} + {y^2}}}$
b)  $\dfrac{{{x^2}y + 2x}}{{{x^2} – 2x + 1}}$
c) $\dfrac{{5x + y}}{{{x^2} + 6x + 10}}$
d) $\dfrac{{x + y}}{{{{(x + 3)}^2} + {{(y – 2)}^2}}}$.

Bài 3. Chứng minh các biểu thức sau luôn có nghĩa

a) $\dfrac{3}{{{x^2} + 1}}$
b)  $\dfrac{{5x + 1}}{{{x^2} + 2x + 4}}$
c)  $\dfrac{{{x^2} – 4}}{{ – {x^2} + 4{\rm{x}} – 5}}$
d) $\dfrac{{x + 5}}{{{x^2} + x + 7}}$.

 

Leave a Reply

Your email address will not be published. Required fields are marked *