Hệ thức lượng trong tam giác – Chứng minh đẳng thức

Dạng 2. Chứng minh đẳng thức hình học

Ví dụ 1. Cho hình thoi $ABCD$ có $\angle A = 120^\circ$. Tia $Ax$ tạo với $AB$ một góc $\angle BAx = 15^\circ$ và cắt cạnh $BC$ tại $M$, cắt đường thẳng $CD$ tại $N$.
Chứng minh rằng $$\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}$$
Lời giải.

Vẽ tia $Ay$ vuông góc với $AM$,$Ay$ cắt cạnh $CD$ tại $P$. Suy ra $\angle PAD= 15^\circ$.
Ta có $\triangle ADP=\triangle ABM$(g-c-g), suy ra $AP=AM$.
Vẽ đường cao $AH$ của tam giác $PAN$. Áp dụng hệ thức lượng trong tam giác vuông $PAN$:
$$\dfrac{1}{AP^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}$$
Khi đó $\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{1}{AP^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}$. (1)
Mặt khác trong tam giác vuông $ADH$:\
$\dfrac{AH}{AD}=\sin D\Rightarrow AH=AD\cdot \sin D=AB\cdot \sin60^\circ=\dfrac{\sqrt{3}}{2}AB.$ (2)
Từ (1) và (2) ta có được $\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}$.

Ví dụ 2. Qua điểm $D$ trên cạnh huyền $BC$ của tam giác vuông $ABC$ ta kẻ các đường vuông góc $DH$ và $DK$ lần lượt xuống các cạnh $AB$ và $AC$.\ Chứng minh hệ thức: $DB\cdot DC = HA\cdot HB + KA\cdot KC$.

Lời giải.

Ta có $AHDK$ là hình chữ nhật nên $AH = DK, AK = DH$.
Ta có $BC^2 = AB^2 + AC^2 \Leftrightarrow (DB + DC)^2 = (AH+BH)^2 + (AK + CK)^2 \Leftrightarrow DB^2 + DC^2 + 2DC \cdot DB = AH^2 + BH^2 + 2 AH \cdot BH + AK^2 + CK^2 + 2AK \cdot CK$. (1)
Mà $DB^2 = BH^2 + HD^2 = BH^2 + AK^2$ và $DC^2 = DK^2 + CK^2 = AH^2 + CK^2$. (2)
Từ (1) và (2) ta có $DB \cdot DC = AH \cdot HB + AK \cdot KC$.

Ví dụ 3. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $E, F$ lần lượt là hình chiếu vuông góc của $H$ trên $AB, AC$. Chứng minh rằng:

a) $AH^3 = BC\cdot BE\cdot CF$.
b) $\sqrt[3]{BE^2} + \sqrt[3]{CF^2} = \sqrt[3]{BC^2}$.
Lời giải.


a) Áp dụng hệ thức lượng trong tam giác vuông $BHA$ và $AHC$:
$$BH^2=BE\cdot AB \quad \text{và} \quad HC^2=CF\cdot AC$$
Nhân hai vế đẳng thức với nhau ta được:
$BH^2\cdot HC^2=BE\cdot CF\cdot AB\cdot AC
\Rightarrow \left(HB\cdot HC\right)^2=BE\cdot CF\cdot AB\cdot AC \quad (1)$.
Áp dụng hệ thức lượng trong tam giác vuông $ABC$:
$HB\cdot HC=AH^2 \quad \text{và} \quad AB\cdot AC=AH\cdot BC$.
Khi đó (1) trở thành:$AH^4=BE\cdot CF\cdot AH\cdot BC$ hay $AH^3=BE\cdot CF\cdot BC$(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông $ABH$ ta có $BE\cdot AB=HB^2$ hay $BE=\dfrac{BH^2}{AB}$, do đó:
$$\dfrac{BE^2}{BC^2}=\dfrac{BH^4}{AB^2\cdot BC^2}=\dfrac{BH^4}{\left(BH\cdot BC\right)\cdot BC^2}=\left(\frac{BH}{BC}\right)^3$$
Lấy căn bậc ba hai vế ta được $\sqrt[3]{\dfrac{BE^2}{BC^2}}=\dfrac{BH}{BC}\quad (1)$
Chứng minh tương tự ta được $\sqrt[3]{\dfrac{CF^2}{BC^2}}=\dfrac{CH}{BC}\quad (2)$
Lấy (1)+(2) ta được đpcm.\

Ví dụ 4. Cho tam giác $ABC$ nhọn và $H$ là trực tâm. Chứng minh rằng

$$AB^2 + CH^2 = AC^2 + BH^2 = AH^2 + BC^2$$

Lời giải.

Gọi $D$ là chân đường cao hạ từ $A$.
Ta có $AB^2 = BD^2 + AD^2$ và $CH^2 = CD^2 + DH^2$, suy ra $AB^2 +CH^2 = BD^2+AD^2+CD^2+DH^2$. (1)
tương tự thì $AC^2 = AD^2 + CD^2$, $BH^2 = BD^2+DH^2$, suy ra $AC^2+BH^2=AD^2+CD^2+BD^2+DH^2$. (2)
Từ (1) và (2) ta có $AB^2 + CH^2 = AC^2+BH^2$.
Chứng minh tương tự cho đẳng thức còn lại.

Ví dụ 5. Cho tam giác $ABC$ vuông tại $A$ có đường cao $AH$, đường trung tuyến $BM$, đường phân giác $CD$ đồng quy tại $O$.

a) Chứng minh rằng $BH = AC$.
b) Cho biết $BC = x$ . Tính độ dài $AB, AC$ theo $x$.
Lời giải. 


a) Gọi $E$ là điểm đối xứng của $O$ qua $M$. Khi đó tứ giác $AECO$ là hình bình hành nên $CE\parallel AO$.
Áp dụng định lí Ta-lét trong tam giác $BEC$ có $OH\parallel EC$:
$$\dfrac{BH}{BC}=\dfrac{OH}{CE}$$
$CO$ là đường phân giác của $\triangle ACH$ nên:
$$\dfrac{OH}{OA}=\dfrac{CH}{CA}$$
Từ hai đẳng thức trên và $CE=OA$(AECO là hình bình hành) ta có:
$$\dfrac{BH}{BC}=\dfrac{CH}{AC} \Leftrightarrow BH\cdot AC=CH\cdot BC$$
Áp dụng hệ thức lượng trong tam giác vuông $ABC$ ta được $AC^2=CH\cdot CB$
Từ đó suy ra $BH=AC$(đpcm)
b) Ta có $AC^2=CH\cdot CB=\left(CB-BH\right)\cdot CB=\left(x-AC\right)x$. Suy ra:
$$AC^2+2AC\cdot \dfrac{x}{2}+\dfrac{x^2}{4}=\dfrac{5x^2}{4} \Leftrightarrow \left(AC+\dfrac{x}{2}\right)^2=\left(\dfrac{x\sqrt{5}}{2}\right)^2$$
Vậy $ AC = \left(\dfrac{\sqrt{5} – 1}{2}\right)x $, $ AB = \sqrt{x^2 – AC^2} = x\sqrt{\dfrac{\sqrt{5} – 1}{2}}$

Ví dụ 6. Cho tam giác $ABC$ vuông cân tại $A$, đường trung tuyến $BM$. Gọi $D$ là hình chiếu vuông góc của $C$ trên $BM$, $H$ là hình chiếu vuông góc của $D$ trên $AC$. Chứng minh rằng $AH = 3HD$.

Lời giải.

Cách 1. Đặt $AM=x$, tính được $MC = AM = x$, $AC = 2x = AB$.
Áp dụng định lý Pythagoras trong tam giác vuông $BAM$:
$BM=\sqrt{AB^2+AM^2}=\sqrt{\left(2x\right)^2+\left(x\right)^2}=x\sqrt{5}$
$\triangle BAM \backsim \triangle CDM $(g-g) $\Rightarrow \dfrac{AB}{DC}=\dfrac{MA}{MD}=\dfrac{BM}{CM}=\dfrac{\sqrt{5}x}{x}=\sqrt{5}$
$\Rightarrow MD=\dfrac{AM}{\sqrt{5}}=\dfrac{x}{\sqrt{5}}$
Áp dụng hệ thức lượng trong tam giác vuông $MDC$:
$MD^2=MH\cdot MC \Rightarrow MH=\dfrac{MD^2}{MC}=\dfrac{\dfrac{x^2}{5}}{x}=\dfrac{x}{5}$.
Áp dụng định lí Pythagoras trong tam giác vuông $MHD$:
$HD=\sqrt{MD^2-MH^2}=\sqrt{\left(\dfrac{x}{\sqrt{5}}\right)^2-\left(\dfrac{x}{5}\right)^2}=\dfrac{2}{5}x$.
Mà $AH=AM+MH=x+\dfrac{x}{5}=\dfrac{6}{5}x$
Vậy $AH=3HD$(đpcm)
Cách 2. Gọi $I$ là trung điểm $BC$, $AI$ cắt $BM$ tại $G$ thì $G$ là trọng tâm tam giác $ABC$, suy ra $AI = 3GI = IB = IC$.
Ta có $\triangle MAB \backsim MDC$, suy $MA \cdot MC = MB \cdot MD$, suy ra $\triangle MAD \backsim \triangle MBC$, suy ra $\angle MAD = \angle MBC = \angle GBI$.
Khi đó $\triangle DAH \backsim \triangle GBI$, suy ra $\dfrac{AH}{DH} = \dfrac{IB}{GI} = 3$ hay $AH = 3DH$.

Ví dụ 7. Cho tam giác $ABC$ vuông tại $A$, $BM$ và $CN$ là các đường phân giác góc $B$ và $C$.

a)Cho $AB = 3, AC = 4$. Tính độ dài $BN, CM$ và $MN$.
b) Đặt $AB = c, AC = b$. Tính $CM, BN$ theo $b$ và $c$.
c) Chứng minh rằng $\dfrac{{AC}}{{MA}}\cdot \dfrac{{AB}}{{NA}} \ge 3 + 2\sqrt 2 $

Lời giải.

a) Áp dụng định lí Pythagoras trong tam giác vuông $ABC$:
$$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$$
Do $CN$ là phân giác của $\angle ACB$ nên $\dfrac{AN}{BN}=\dfrac{AC}{BC}=\dfrac{4}{5}$. Kết hợp với $NA+NB=3$ ta sẽ tính được $NA=\dfrac{4}{3}$ và $BN=\dfrac{5}{3}$
Tính tương tự ta được $AM=\dfrac{3}{2},MC=\dfrac{5}{2}$
Áp dụng định lí Pythagoras trong tam giác vuông $AMN$:
$$MN=\sqrt{AM^2+AN^2}=\sqrt{\left(\dfrac{4}{3}\right)^2+\left(\dfrac{3}{2}\right)^2}=\dfrac{\sqrt{145}}{6}$$
b) Áp dụng định lí Pythagoras trong tam giác vuông $ABC$:
$$BC=\sqrt{AB^2+AC^2}=\sqrt{c^2+b^2}$$
Do $CN$ là phân giác của $\angle ACB$ nên $\dfrac{AN}{BN}=\dfrac{AC}{BC}=\dfrac{b}{\sqrt{b^2+c^2}}$. Kết hợp với $NA+NB=c$ ta sẽ tính được $BN=\dfrac{c\sqrt{b^2+c^2}}{b+\sqrt{b^2+c^2}}$
Tính tương tự ta được $MC=\dfrac{b\sqrt{b^2+c^2}}{c+\sqrt{b^2+c^2}}$
c) Do $BM$ là tia phân giác của $\angle ABC$ nên $\dfrac{MC}{MA}=\dfrac{BC}{AB}$
Do $CN$ là tia phân giác của $\angle ACB$ nên $\dfrac{NB}{NA}=\dfrac{BC}{AC}$
$\dfrac{AC}{MA}.\dfrac{AB}{NA}=\left(1+\dfrac{MC}{MA}\right)\left(1+\dfrac{NB}{NA}\right)$
$=\left(1+\dfrac{BC}{AB}\right)\left(1+\dfrac{BC}{AC}\right)$
$=1+\dfrac{BC}{AC}+\dfrac{BC}{AB}+\dfrac{BC^2}{AB.AC} $
$\ge 1+2\sqrt{\dfrac{BC^2}{AB.AC}}+\dfrac{BC^2}{AB.AC}$

$=\left( \sqrt{\dfrac{BC^2}{AB.AC}}+1\right)^2$
Ta có $AB.AC\le \dfrac{AB^2+AC^2}{2}=\dfrac{BC^2}{2}$

$\Rightarrow \dfrac{BC^2}{AB.AC}\ge 2$
Vậy $\dfrac{AC}{MA}.\dfrac{AB}{NA}\geq \left( \sqrt{\dfrac{BC^2}{AB.AC}}+1\right)^2 \ge \left(\sqrt{2}+1\right)^2=3+2\sqrt{2}$

Bài tập rèn luyện

Bài 1. Cho hình thang vuông $ABCD$ có $\angle A = \angle D = 90^\circ, AB = AD = a, CD = 2a$.

a) Chứng minh $BC = a\sqrt{2}$.
b) Vẽ $DH$ vuông góc với $AC$. Chứng minh $AH \cdot AC = a^2$.
c) $BH$ cắt $CD$ tại $K$. Chứng minh $BK \cdot BH =2a^2$.

Bài 2. Cho tam giác $ABC$ khác tam giác tù. Gọi $G$ là trọng tâm tam giác. Chứng minh rằng nếu $$AG^2 = \dfrac{1}{9}(AB^2+AC^2) $$
thì tam giác $ABC$ vuông.

Bài 3. Cho tam giác $ABC$ có các đường cao $AD, BE, CF$. Chứng minh rằng nếu

$$ \dfrac{1}{AD^2} = \dfrac{1}{BE^2} + \dfrac{1}{CF^2}$$

thì tam giác $ABC$ vuông tại $A$.

Bài 4. Cho tam giác $\triangle A B C, \angle A=90$, đường phân giác $AD$. Chưmg minh rằng
$$
\dfrac{\sqrt{2}}{A D}=\dfrac{1}{A B}+\dfrac{1}{A C}
$$

Bài 5. Cho tam giác $ABC$ có $M$ là trung điểm $BC$.

a) Chứng minh rằng $BC^2 +4AM^2 = 2(AB^2 +AC^2)$.

b) Gọi $N$ là trung điểm $AC$. Chứng minh $AM$ vuông góc $BN$ khi và chỉ khi $AC^2+BC^2 = 5AB^2$.