Một số định lý, mô hình hình học quan trọng hình học 9

Bài 1. (Đường thẳng Euler, Đường tròn Euler) Cho tam giác $ABC$, các đường cao $AD, BE, CF$ cắt nhau tại $H$, trung điểm các cạnh là $M, N, P$, các đường thẳng $AM, BN, CP$ cắt nhau tại $G$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

a) Chứng minh $AH = 2OM$.

b) Chứng minh $H, G, O$ thẳng hàng và $HG = 2OG$. (Đường thẳng qua $O, H, G$ là đường thẳng Euler)

c) Gọi $X, Y, Z$ là trung điểm của $HA, HB, HC$. Chứng minh 9 điểm $D, E, F, M, N, P, X, Y, Z$ cùng thuộc một đường tròn và tâm là trung điểm $OH$. (Đường tròn Euler – Đường tròn 9 điểm).

d) Lấy một điểm $T$ thuộc (O), chứng minh trung điểm của $HT$ thuộc đường tròn Euler.

Hướng dẫn

a) Vẽ đường kính $AK$, ta có $BHCK$ là hình bình hành, trung điểm $M$ của $BC$ cũng là trung điểm $HK$, tam giác $AHK$ thì $OM$ là đường trung bình nên $AH = 2OM$.

b) Tam giác $AHK$ có $AM$ là trung tuyến và $GA =2GM$ nên $G$ cũng là trọng tâm, do đó $H, G, O$ thẳng hàng và $HG = 2GO$.

c) Ta có $\angle XEH = \angle XHE, \angle MEH = \angle MBE$, suy ra $\angle MEX = \angle XEH + \angle MEH = \angle XHE + \angle MBE = 90^\circ$, suy ra $E$ thuộc đường tròn đường kính $XM$ tâm $J$.

$XN||CH, MN||AB$, suy ra $MN \bot NX$, suy ra $N$ thuộc $(J)$.

$MZ||BH, XZ ||AC$ suy ra $\angle MZX = 90^\circ$, suy ra $Z \in (J)$.

Từ đó chứng minh được các điểm cùng thuộc đường tròn đường kính $MX$.

$HXMO$ là hình bình hành nên $J$ là trung điểm $OH$.

d) Tam giác $MNP$ và $ABC$ đồng dạng, tỉ số 1/2 nên đường tròn Euler có bán kính bằng 1/2 bán kính đường tròn ngoại tiếp tam giác $ABC$.

Xét tam giác $HOT$ có $JL$ là đường trung bình nên $JL= \dfrac{1}{2}OT$, suy ra $L$ thuộc $(J)$.

Bài 2. (Đường thẳng Simson – Đường thẳng Steiner) Cho tam giác $ABC$ nội tiếp đường tròn $w$, $P$ là một điểm thuộc $(w)$. Gọi $D, E, F$ là hình chiếu của $P$ trên các đường thẳng $BC, AC, AB$.

a) Chứng minh rằng $D, E, F$ cùng thuộc một đường thẳng. (Đường thẳng Simson của tam giác $ABC$ ứng với $P$.

b) Gọi $D’, E’,F’$ đối xứng của $P$ qua $BC, AC, AB$. Chứng minh rằng $D’, E’, F’$ cùng thuộc một đường thẳng và đường thẳng này qua trực tâm của tam giác $ABC$.

Hướng dẫn

Bài 3. (Bài toán về điểm humpty) Cho tam giác $ABC$, các đường cao $AD, BE, CF$ cắt nhau tại $H$, $M$ là trung điểm $BC$, $P$ là hình chiếu của $H$ trên $AM. Khi đó

a) $P$ là giao điểm của đường tròn đường kính $AH$ và đường tròn ngoại tiếp tam giác $BHC$. ($P$ được gọi là điểm $A-humpty$)

b) $MP \cdot MA = MB^2 = \dfrac{1}{4}BC^2$ và $BC$ là tiếp tuyến chung của $(ABP)$ và $(ACP)$

c) Vẽ $AQ$ vuông góc $MH$, thì $Q$ thuộc $(ABC)$.

d) $AQ, HP, BC$ đồng quy.

Hướng dẫn

a) Ta có các $AP \cdot AM = AH \cdot AD = AF \cdot AB$, suy ra $BFPM$ nội tiếp. Khi đó $\angle MPB = \angle MFB = \angle ABM$.

Chứng minh tương tự thì $\angle MPC = \angle ACB$

Suy ra $\angle BPC = \angle MPB + \angle MPC = \angle B + \angle C = 180^\circ – \angle A = \angle BHC$.

Suy ra $BHPC$ nội tiếp.

b) Từ câu a, ta có $\angle MPB = \angle ABM$, suy ra tam giác $MPB$ và $MBA$ đồng dạng, khi đó $MA \cdot MP = MB^2 = \dfrac{1}{4} BC^2$.

c) Ta xét tam giác $BHC$ với $A$ là trực tâm thì vai trò điểm $Q$ giống vai trò điểm $P$, nên $Q$ thuộc đường tròn ngoại tiếp tam giác $ABC$.

d) Xét tam giác $AHM$ thì $AQ, HP, DM$ là 3 đường cao nên đồng quy.

Bài 4. (Tứ giác điều hòa – Điểm Dumpty).  Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, tiếp tuyến tại $B, C$ cắt nhau tại $P$, $AP$ cắt $(O)$ tại $D$ khác $A$ và cắt $BC$ tại $I$. $OP$ cắt $BC$ tại $M$.

a) Chứng minh $OMDA$ nội tiếp và $\dfrac{IA}{ID} = \dfrac{PA}{PD}$

b) Chứng minh $\angle MDC = \angle ADB$ và $AD\cdot BC = 2 AC \cdot DB = 2 BD \cdot AC$.

c) Tiếp tuyến tại $A,D$ cắt nhau tại $Q$. Chứng minh $Q$ thuộc $BC$.

d) Gọi $X$ là giao điểm của $OQ$ và $AD$, chứng minh $\angle XBA = \angle XAC, \angle XAC = \angle XBA$. (Điểm $A-dumpty$ của tam giác $ABC$).

Hướng dẫn

a) $PM \cot PO = PB^2 = PA \cdot PD$.

$\angle PMD = \angle PAO = \angle ODA = \angle AMO$, suy ra $MP, MI$ là phân giác ngoài và phân giác trong của $\angle APD$.

b) $MO \cdot MP = MB^2 = MA \cdot MD$, suy ra $ABM$ và $BMD$ đồng dạng.

c) 5 điểm $A, P, M, D, Q$ cùng thuộc đường tròn, $QA = QD$ nên $MQ$ là phân giác $\angle AMD$.

d)  Chứng minh $BAX$ và $BCD$ đồng dạng, do $AX \cdot BC = AB \cdot CD$.

Bài 5. Cho tam giác $ABC$, có $O$ là tâm đường tròn ngoại tiếp tam giác. Một đường thẳng vuông góc với $OA$ cắt các cạnh $AB, AC$ tại $F, E$ và đường thẳng $BC$ tại $D$. 

a) Chứng minh $BFEC$ nội tiếp.

b) Đường tròn ngoại tiếp tam giác $AEF$ cắt $(O)$ tại điểm $P$ khác $A$. Chứng minh các tam giác $PEF$ và $PCB$ đồng dạng.

c) Chứng minh các tứ giác $BDPF, BCEP$ nội tiếp và $A, P, D$ thẳng hàng.

d) Gọi $O_a, O_b$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $AEF, BDF$ và $BCEF$. Chứng minh $O_a, O_b, O_c, O$ cùng thuộc một đường tròn.

Hướng dẫn

a) Vẽ tiếp tuyến tại $A$ là $Ax$, $\angle ACB = \angle xAB = \angle AEF$.

b) $\angle AFP = \angle AEP, \angle PBA = \angle BCA$.

c) $\angle PEF = \angle PAC = \angle PBD$

$\angle DPF + \angle APF = \angle ABC + \angle CEF = 180^\circ$.

d) $O_bO_c$ là trung trực $BF, $O_aO_c$ là trung trực $EF$.

Suy ra $\angle O_aO_cO_b = \dfrac{1}{2} \angle $ACB$.

Tương tự cũng có $\angle O_aOO_b$

Bài 6. (Tứ giác điều hòa) xem tại đây https://geosiro.com/?p=1185

One thought on “Một số định lý, mô hình hình học quan trọng hình học 9

Leave a Reply

Your email address will not be published. Required fields are marked *