Ví dụ 1: Rút gọn các biểu thức sau:
a) $\left( \dfrac {\sqrt {x}-1}{\sqrt {x}+1} -\dfrac {\sqrt {x}+1}{\sqrt {x}-1}\right).\left( \sqrt {x} -\dfrac {1}{\sqrt {x}}\right) $ với $x> 0$, $x \ne 1$
b) $\dfrac {15\sqrt {x}-11}{x+2\sqrt {x}-3} +\dfrac{3\sqrt {x}-2}{1-\sqrt {x}}-\dfrac {3}{\sqrt {x}+3}$ với $x\ge 0$, $x\ne 1$
c) $\left( {\dfrac{\sqrt a }{\sqrt a – 1} – \dfrac{1}{a – \sqrt a }} \right):\left( {\dfrac{1}{\sqrt a + 1} + \dfrac{2}{a – 1}} \right)$ với $a>0$, $a\ne 1$
d) $\left( \dfrac{\sqrt x-\sqrt y}{1+\sqrt {xy}}+\dfrac{\sqrt x+\sqrt y}{1-\sqrt {xy}}\right) :\left( \dfrac{ x+y+2xy}{1-xy}+1\right) $ với $x\ge 0$, $y\ge 0$, $xy\ne 1$
Ví dụ 2: Chứng minh với mọi giá trị của $x$ để biểu thức có nghĩa thì giá trị của: $A=\left( \dfrac{\sqrt x+1}{2\sqrt x-2}+\dfrac{3}{x-1}-\dfrac{\sqrt x+3}{2\sqrt x+2}\right) .\dfrac{4x-4}{5}$ không phụ thuộc vào $x$. Ví dụ 3: Cho biểu thức $A=\left( 1:\dfrac{\sqrt {1+x}}{3}+\sqrt {1-x}\right) :\left( \dfrac {3}{\sqrt {1-x^2}}+1\right) $ a) Chứng minh $A=\sqrt {1-x}$. b) Tính $x$ khi $A=\dfrac{1}{2}$. Bài tập: Bài 1: Rút gọn các biểu thức sau: a) $\left( 2+\dfrac {a-\sqrt a}{\sqrt a-1}\right) \left( 2-\dfrac {a+\sqrt a}{\sqrt a+1}\right) $ với $a\ge 0$, $a\ne 1$ b) $\left( \dfrac {y}{\sqrt y}-\dfrac {\sqrt y}{\sqrt y+1}\right) :\dfrac {\sqrt y}{y+\sqrt y}$ với $y>0$ c) $\left( \dfrac {x\sqrt x+1}{x\sqrt x+x+\sqrt x+1}-\dfrac {\sqrt x}{x+1}\right) :\dfrac {\sqrt x-1}{x+1}$ với $x\ge 0$, $x\ne 1$ d) $\left( \dfrac {1}{\sqrt x}-\dfrac {1}{x}\right):\left( \dfrac {\sqrt x+1}{\sqrt x-2}-\dfrac {\sqrt x+2}{\sqrt x-1}\right) $ với $x>0$, $x\ne 1$, $x\ne 4$ e) $\dfrac {\sqrt x+7x+13}{x+3\sqrt x-10}+\dfrac {\sqrt x+5}{2-\sqrt x}-\dfrac {\sqrt x-4}{\sqrt x+5}$ với $x\ge 0$, $x\ne 4$ f) $\left( \dfrac {\left( 16-\sqrt a\right) \sqrt a}{a-4}+\dfrac {3+2\sqrt a}{2-\sqrt a}-\dfrac {2-3\sqrt a}{\sqrt a+2}\right) :\dfrac {1}{a+4\sqrt a+4}$ với $a\ge 0$, $a\ne 4$ Bài 2: Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của $x$, $y$ $A=\dfrac {\sqrt y}{\sqrt x-\sqrt y}-\dfrac {x\sqrt x-y\sqrt x}{x+y}.\left( \dfrac {\sqrt x}{\left( \sqrt x-\sqrt y \right)^2}-\dfrac {\sqrt y}{x-y}\right) $ Bài 3: Cho biểu thức $P=\left( \dfrac {\sqrt x+1}{\sqrt x-2}-\dfrac {2}{x-4}\right) \left( \sqrt x-1+\dfrac {\sqrt x-4}{\sqrt x}\right) $ a) Chứng minh $P=\sqrt x+3$. b) Tìm tất cả các giá trị của $x$ sao cho $P=x+3$. Bài 4: Cho biểu thức $P=\dfrac {3x+\sqrt x}{x+\sqrt x}+\dfrac{ 3\left( x-\sqrt x+1\right) }{x\sqrt x+1}$ với $x>0$ a) Rút gọn biểu thức $P$. b) Chứng minh $P<4$. Bài 5: Cho biểu thức $P=\left( \dfrac {\sqrt x}{2}-\dfrac {1}{2\sqrt x}\right) \left( \dfrac {x-\sqrt x}{\sqrt x+1}-\dfrac {x+\sqrt x}{\sqrt x-1}\right) $ Rút gọn biểu thức $P$. Tìm $x$ để $P>-6$.