Rút gọn căn thức đơn giản

Ví dụ: Rút gọn các biểu thức sau:

a) $3\sqrt 8 – \sqrt {48} – 2\sqrt {\dfrac{4}{3}} + 4\sqrt {\dfrac{9}{2}} $.

b) $10\sqrt {28a} + 2\sqrt {175a} – 3\sqrt {343a} + \sqrt {112a} $ với $a \ge 0$.

c) $\sqrt {20 + 2\sqrt {19} }  – \sqrt {30 + 2\sqrt {29} } $.

d) $\sqrt {17 – 4\sqrt {9 – 4\sqrt 5 } } $.

e) $\sqrt {6 – 2\sqrt 6 + 2\sqrt 2 – 2\sqrt 3 } $

Giải

a) $3\sqrt 8 – \sqrt {48} – 3\sqrt {\dfrac{4}{3}} + 4\sqrt {\dfrac{9}{2}}$

$= 3\sqrt {2^2.2} – \sqrt {4^2.3} – 3\dfrac{\sqrt {2^2} }{\sqrt 3 } + 4\dfrac{\sqrt {3^2} }{\sqrt 2 }$
$= 6\sqrt 2 – 4\sqrt 3 – 3\dfrac{2\sqrt 3 }{3} + 4\dfrac{3\sqrt 2 }{2} = 12\sqrt 2 – 6\sqrt 3 $

b) $10\sqrt {28a} + 2\sqrt {175a} – 3\sqrt {343a} + \sqrt {112a} $
$= 10\sqrt {{2^2}7a} + 2\sqrt {{5^2}7a} – 3\sqrt {{7^2}7a} + \sqrt {{4^2}7a} $
$= 20\sqrt {7a} + 10\sqrt {7a} – 21\sqrt {7a} + 4\sqrt {7a} = 13\sqrt {7a} $

c) $\sqrt {20 + 2\sqrt {19} } – \sqrt {30 + 2\sqrt {29} } = \sqrt {19 + 2\sqrt {19} + 1} – \sqrt {29 + 2\sqrt {29} + 1} $
$= \sqrt {\left( {\sqrt {19} + 1} \right)^2} – \sqrt {\left( {\sqrt {29} + 1} \right)^2} = \left| {\sqrt {19} + 1} \right| – \left| {\sqrt {29} + 1} \right|$
$= \sqrt {19} + 1 – \sqrt {29} – 1 = \sqrt {19} – \sqrt {29}$.

d) $\sqrt {17 – 4 \sqrt {9 – 4\sqrt 5 } } = \sqrt {17 – 4\sqrt {4 – 2.2\sqrt 5 + 5} } $

$= \sqrt {17 – 4\sqrt {\left( {2 – \sqrt 5 } \right)^2} } = \sqrt {17 – 4.\left| {2 – \sqrt 5 } \right|} $
$= \sqrt {17 – 4\left( {\sqrt 5 – 2} \right)} = \sqrt {25 – 4\sqrt 5 } $.

e)$\sqrt {6 – 2\sqrt 6 + 2\sqrt 2 – 2\sqrt 3 } = \sqrt {3 + 2 + 1 – 2\sqrt 6 + 2\sqrt 2 – 2\sqrt 3 } $
$= \sqrt {\left ( \sqrt 3  \right )^2 + \left ( \sqrt 2  \right )^2 + 1^2 – 2\sqrt 3 .\sqrt 2 + 2\sqrt 2 .1 – 2\sqrt 3 .1} $
$= \sqrt {\left ( \sqrt 3 – \sqrt 2 – 1 \right )^2} = \left | \sqrt 3 – \sqrt 2 – 1 \right | = \sqrt 2 + 1 – \sqrt 3$.

Bài tập :

Bài 1: Rút gọn các biểu thức sau:

a) $2\sqrt {24} – 2\sqrt {54} + 3\sqrt 6 – \sqrt {150} $.

b) $\dfrac{3}{2}\sqrt 6 + 2\sqrt {\dfrac{2}{3}} – 4\sqrt {\dfrac{3}{2}} $.

c) $10\sqrt {72} – \dfrac{5}{3}\sqrt {162} + \sqrt {128} – 2\sqrt {50} + \sqrt {98} $.

d) $5\sqrt {12} – 2\sqrt {48} + 6\sqrt {75} – \sqrt {108} $.

e) $\dfrac{3}{2}\sqrt {12} + \dfrac{7}{5}\sqrt {75} – \dfrac{9}{{10}}\sqrt {300} + \dfrac{{11}}{6}\sqrt {108} $.

Bài 2: Rút gọn các biểu thức sau:

a) $\sqrt {31 – 8\sqrt {15} } + \sqrt {24 – 6\sqrt {15} } $.

b)$\sqrt {49 – 5\sqrt {96} } – \sqrt {49 + 5\sqrt {96} } $.

c) $\sqrt {15 – 6\sqrt 7 } + \sqrt {43 – 12\sqrt 7 } $.

d) $\sqrt {8 – 2\sqrt {15} } – \sqrt {23 – 4\sqrt {15} } $.

Bài 3: Rút gọn các biểu thức sau:

a) $\sqrt {10 + 2\sqrt 6 + 2\sqrt {10} + 2\sqrt {15} } $.

b)$\sqrt {6 + 2\sqrt 2 + 2\sqrt 3 + 2\sqrt 6 } $.

c) $\sqrt {18 – 4\sqrt 6 – 8\sqrt 3 + 4\sqrt 2 } $.

d) $\sqrt {8 + \sqrt 8 + \sqrt {20} + \sqrt {40} } $.

e) $\sqrt {25 – 4\sqrt {10} – 4\sqrt {15} + 2\sqrt 6 } $.

Bài 4: Cho $x=\sqrt{3}-1$

a) Tính: $x^3-3x^2+x-1 $.

b) Chứng minh: $x^2+2x-2=0 $.

c) Tính: $P=\left( x^3+2x^2-x+1\right)^{2020} $.

Bài 5: Rút gọn các biểu thức sau:

a) $\sqrt {a+b+c+2\sqrt{ac+bc}}+\sqrt {a+b+c-2\sqrt {ac+bc}} $.

b) $\sqrt {a+b+9c+6\sqrt {ac+bc}}+\sqrt {a+b+9c-6\sqrt {ac+bc}} $.

c) $\sqrt {a-b+4c+4\sqrt {ac-bc}}+\sqrt {a-b+4c-4\sqrt {ac-bc}} $.

Leave a Reply

Your email address will not be published. Required fields are marked *