Tag Archives: 2020 -2021

Đề ôn thi vào lớp 10 Chuyên Toán.

Thời gian làm bài 150 phút.

Bài 1. (1, 5 điểm) Cho phương trình $(\sqrt{x} – 1)(x^2 – (m^2+1)x + 1) = 0$
a) Giải phương trình khi $m = -2$.
b) Tìm $m$ để phương trình có 3 nghiệm phân biệt $x_1<x_2<x_3$ và thỏa $x_1^2 + 4x_2^2+x_3^2 = 27$.

Bài 2. (2 điểm) Cho các số dương $a, b, c$ thỏa $a+ b+ c = abc$.
a) Tìm $a, b, c$ nếu $a, b, c$ là các số nguyên dương.
b) Chứng minh $ab+ac+bc \geq 9$ và $ab+ac+bc\geq 3 + \sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}$.

Bài 3.  (1, 5 điểm) Số nguyên dương $n$ được gọi là số đẹp nếu tồn tại các số nguyên dương $x, y, z$ không nhất thiết phải khác nhau sao cho: $$n = \left[ {x;y} \right] + \left[ {y;z} \right] + \left[ {z;x} \right]$$ với $\left[ {a;b} \right]$ là bội chung nhỏ nhất của hai số $a, b$
a) Chứng minh rằng $n=2021$ là số đẹp.
b) Chứng minh rằng mọi số lẻ khác 1 đều là số đẹp.
c) Chứng minh rằng $n=2^{2021}$ không phải là số đẹp.

Bài 4. (3 điểm) Cho đoạn thẳng $BC$ cố định và điểm $A$ thay đổi sao cho $\angle BAC = \alpha < 60^\circ$ không đổi và $AB, AC >BC$. Trên $BC$ lấy các điểm $M, N$ sao cho $BM = MN = NC$. Đường tròn ngoại tiếp các tam giác $ABN$ và $ACM$ cắt nhau tại $D$ và cắt các cạnh $AC, AB$ lần lượt tại $E, F$.

a) Tìm vị trí của $A$ sao cho $AE \cdot AC + AF \cdot AB$ lớn nhất.

b) Chứng minh rằng $\dfrac{DB}{DC} = \dfrac{AC}{AB}$.

c) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh $I$ luôn thuộc một đường cố định.

Bài 5. (2 điểm) Một giải đấu bóng đá gồm 8 đội đá với nhau. Mỗi lượt, 8 đội chia làm 4 cặp đấu, thắng được 3 điểm, hòa 1 điểm và thua 0 điểm.
a) Giải đấu diễn ra hai lượt.
i)  Chứng minh rằng có 2 đội có điểm bằng nhau.
ii) Chứng minh rằng có thể tìm được 4 đội $A, B, C, D$ đôi một chưa đấu với nhau.
b) Kết thúc giải người ta thấy rằng không có trận nào kết thúc với tỉ số hòa. Chứng minh rằng có thể tồn tại 5 đội $A, B, C, D, E$ xếp thành một hàng sao cho đội đứng trước thắng đội đứng sau.

HẾT

Lời giải

Bài 1. 

a) Khi $m = -2$ ta có phương trình $(\sqrt{x}-1)(x^2-5x+1) = 0$.

Giải phương trình ta có nghiệm $x = 1, x = \dfrac{5+\sqrt{21}}{2}, x= \dfrac{5-\sqrt{21}}{2}$.

b) Điều kiện $x \geq 0$. Ta có $x = 1$ là một nghiệm của phương trình.

Phương trình (1) có ba nghiệm phân biệt khi và chỉ khi phương trình

$x^2-(m^2+1)x + 1 = 0$. (2) có hai nghiệm phân biệt không âm và khác 1.

  • $\Delta (m^2+1)^2 – 4 = (m^2-1)(m^2+3) > 0$.
  • $1^2 -(m^2+1)1 + 1 \neq 0 \Leftrightarrow m \neq \pm 1$.

Khi đó phương trình có hai nghiệm là $a<b$ thỏa $a+b = m^2+1 > 0, ab = 1$.

Do đó $a, b > 0$ và có tích bằng 1, nên một số nhỏ hơn 1, 1 số lớn hơn 1.

Từ đó ta có $x_2 = 1$, $x_1  =a, x_3 = b$. Khi đó

$x_1^2+4x_2^2 + x_3^2 = 27$

$(a+b)^2 – 2ab = 23$

$m^2 = 25$

$m = \pm 5$. (Nhận)

Bài 2.

a) Do vai trò $a, b, c$ như nhau nên giả sử $a \geq b geq c > 0$. Khi đó

$a + b+ c = abc \Leftrightarrow \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ac} = 1 \leq \dfrac{3}{c^2}$.

Suy ra $c = 1$. Khi đó $ab = a+b +1 \Leftrightarrow (a-1)(b-1) = 2$. Giải ra được $a = 3, b=2$.

Vậy phương trình có nghiệm $(3;2;1)$ và các hoán vị.

b)

Áp dụng bdt $(x+y+z)(\dfrac{1}{x} + \dfrac{1}{y}+ \dfrac{1}{z}) \geq 9$ và từ $\dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ac} = 1$.

Suy ra $ab+bc+ac \geq 9$.

Ta có bdt $3(x^2+y^2+z^2) \geq (x+y+z)^2 \geq 3(xy+yz+xz)$. (Tự chứng minh)

Ta có $P = (ab+bc+ac-3)^2 = (ab+bc+ac)^2 – 6(ab+bc+ac)+9$.

Mà $(ab+bc+ac)^2 \geq 3abc(a+b+c)$ và $abc = a+b+c$.

Suy ra $(ab+bc+ac)^2 \geq 3(a+b+c)^2$.

Do đó $P \geq 3(a^2+b^2+c^2) + 9 \geq (\sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2})^2$.

Từ đó

$ab+bc+ac-3 \geq \sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2}$

$ab+bc+ac \geq 3+\sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2}$.

Bài 3. 

a) $ 2021 = [1;1] + [1010;1] + [1010;1]$.

b) Nếu $ n = 2k + 1$ và $k \geq 1$. Chọn $x = y =1,z=k$ ta có $n = [1;1] + [k;1] + [k;1]$.

c) Chú ý các nhận xét sau:

  • Mọi số nguyên dương đều biểu diễn với dạng $p\cdot 2^n$ trong đó $p$ là số lẻ.
  • Bội chung nhỏ nhất của $p\cdot 2^n$ và $q\cdot 2^m$ với $n>m$ là $r\cdot 2^n$ với $r=[p;q]$ lẻ.

Giả sử $n =2^{2021}$ là số đẹp, tức là tồn tại $x, y, z$ nguyên dương sao cho $2^{2021} = [x;y] + [y;z] + [z;x]$.

Do $2^{2021}$ là số chẳn nên chỉ có hai trường hợp xảy ra, hoặc cả ba số $\left[ {x;y} \right],\left[ {y;z} \right],\left[ {z;x} \right]$ đều là số chẳn, hoặc trong ba số này có hai số lẻ và một số chẳn.

Nếu 3 số $x, y, z$ lẻ thì $[x;y] + [y;z] + [z;x]$ lẻ vô lý.

Nếu 1 số lẻ, hai số chẵn cũng tương tự.

Trường hợp 2 số chẵn. Giả sử $x, y$ chẵn. Ta xét các trường hợp sau:

  • Nếu $z$ lẻ. Khi đó ta có: $\left[ {x;y} \right] = {2^a}{m_1}$ với $m_1$ là số lẻ, $\left[ {y;z} \right] = {2^b}{m_2}$, với $m_2$ là số lẻ, $\left[ {z;x} \right] = {2^a}{m_3}$, với $m_2$ là số lẻ. Dễ thấy $a, b < 2021$.
    • Từ đó: ${2^a}{m_1} + {2^b}{m_2} + {2^a}{m_3} = {2^{2021}} \Leftrightarrow {2^b}\left( {{2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3}} \right) = {2^{2021}} \Leftrightarrow {2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3} = {2^{2021 – b}}$. Do vế trái của đẳng thức là một số lẻ, vế phải là một số chẳn. Từ đó ta có trường hợp này không thể xảy ra.
  • Nếu $z$ là số chẵn. Như vậy, $x, y, z$ đều là số chẳn, đặt: $z=2^{c}t_{3}$, với ($t_{3}$ là số tự nhiên lẻ) không mất tính tổng quát, giả sử: $2021 > a \ge b \ge c \ge 0$. Vậy: $\left[ {x;y} \right] = {2^a}{m_1}$, $\left[ {y;z} \right] = {2^b}{m_2}$, $\left[ {z;x} \right] = {2^a}{m_3}$ với $m_1, m_2, m_3$ là ba số tự nhiên lẻ.
    • Từ đó: ${2^a}{m_1} + {2^b}{m_2} + {2^a}{m_3} = {2^{2021}} \Leftrightarrow {2^b}\left( {{2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3}} \right) = {2^{2021}} \Leftrightarrow {2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3} = {2^{2021 – b}}$. Do vế trái của đẳng thức là một số lẻ, vế phải là một số chẳn. Từ đó ta có trường hợp này không thể xảy ra.

Bài 4. 

a) Ta có $BF\cdot BA = BM \cdot BC = \dfrac{1}{3}BC^2$ và $CE \cdot CA = \dfrac{1}{3}BC^2$.

Do $AB, AC > BC$ nên $F, E$ nằm giữa $AB$ và $AC$.

Khi đó $X = AF \cdot AB + AE \cdot AC = AB^2-BF \cdot BC + AC^2-CE \cdot CA = AB^2+AC^2-\dfrac{2}{3}BC^2$.

Do đó $X$ lớn nhất khi và chỉ khi $AB^2+AC^2$ lớn nhất.

Ta có $BC^2=BH^2+CH^2 = (AB\sin \alpha)^2+(AC – AB \cos \alpha)^2$

$= AB^2+AC^2-2AB\cdot AC \cos \alpha$

$\geq (AB^2+AC^2) – (AB^2+AC^2)\cos \alpha$.

$\geq (AB^2+AC^2)(1-\cos \alpha)$

Suy ra $AB^2+AC^2$ lớn nhất bằng $\dfrac{BC^2}{1-\cos\alpha}$ khi $AB = AC$.

Vậy $AF \cdot AB + AE \cdot AC $ lớn nhất khi và chỉ khi $AB = AC$.

b) Ta có $\angle DBF  = \angle DEC, \angle DFB = \angle DCE$.

Suy ra $\triangle DBF = \triangle DCE$, do đó $\dfrac{DB}{DC} = \dfrac{BF}{CE}$ (1)

Mà $BF \cdot AB = CE \cdot AC = \dfrac{1}{3}BC^2$.

Suy ra $\dfrac{BF}{CE} = \dfrac{AC}{AB}$. (2)

Từ (1) và (2) ta có $\dfrac{DB}{DC} = \dfrac{AC}{AB}$.

c) Gọi $K$ là giao điểm thứ hai của $(AEF)$ và $(ABC)$. Khi đó

$\triangle KFB \backsim \triangle KEC$, suy ra $\dfrac{KB}{KC} = \dfrac{BF}{CE}$.

Mà $\dfrac{BF}{CE} = \dfrac{AC}{AB}$. Suy ra $\dfrac{KB}{KC} = \dfrac{AC}{AB}$.

Do đó $\triangle KBC \backsim \triangle ACB$, suy ra $KB = AC, KC = AB$.

từ đó $AKCB$ là hình thang cân, nên trung trực của $AK$ và $BC$ trùng nhau.

Do đó tâm $I$ của đường tròn ngoại tiếp tam giác $AEF$ thuộc trung trực của $AK$ hay thuộc trung trực $BC$ cố định.

Bài 5.

a) Nếu mỗi đội đá nhau được 2 trận.

  • Thì số điểm mội đội có thể nhận là $0, 1, 2, 3, 4, 6$. Do đó theo nguyên lý Dirichlet cho ít nhất 2 đội có cùng số điểm.
  • Gọi 8 đội là $A, B, C, D, E, F, G, H$, sau hai vòng mỗi đội đá đúng hai trận.
    • Không có ba đội nào đôi một đá với nhau, vì giả sử $A, B, C$ đôi một đá với nhau, thì vòng 1, $A$ đá với $B$ thì $C$ không đá với ai, nên phải cần ít nhất 3 vòng để điều này xảy ra.
    • Giả sử $A$ đá với $B, C$ thì $BC$ không đá với nhau nên $B, C$ đá với đội khác.
      • Nếu $B, C$ đá cùng một đội $D$. Khi đó nhóm $E, F, G, H$ cũng có hai đội chưa đá với nhau và cũng không đá với nhóm $A, B, C, D$. Giả sử là $E, F$ chưa đá với nhau. Khi đó 4 đội $A, D, E, F$ đôi một chưa đá với nhau trận nào.
      • Nếu $B, C$ đá với hai đội khác nhau là $D, E$. Lý luận tương tự ta chỉ suy ra được là $E, D$ cùng đấu với $F, G$ và $G,F$ đấu với $H$. Khi đó $A – B  – D – F – H – G – E – C – A$. Chọn 4 đội $A, D, H, E$ thỏa đề bài.

b)  Xét đội $A$ thắng nhiều nhất trong đó thắng $B, C$, xét đội $B$ và $C$ thì nếu $B$ thắng $C$ ta có $A – B – C$ là dãy mà đội trước thắng đội sau, ngược lại ta có dãy $A – C – B$.

Vậy giả sử ta có $A$ thắng $B$,$B$ thắng $C$, ta kí hiệu $A -> B -> C$.

Xét tới đội $D$ nào đó. Có các trường hợp sau:

  • $D -> A$ hoặc $C -> D$. Khi đó ta có $D ->A->B->C$ hoặc $A-> B -> C-> D$.
  • Nếu không có điều này, thì $A ->D$ và $D->C$. Khi đó $B, D$.
    • Nếu $D->B$ thì ta có $A->D->B->C$.
    • Nếu $B ->D$ thì ta có $A -> B ->D ->C$.

Trong các trường hợp ta đều có dãy 4 người mà người này thắng người kia. Vậy ta đã có $A-> B-> C->D$.

Xét $E$, tương tự như $D$.

  • Nếu $E$ thắng $A$ hoặc $D$ thắng $E$ thì bài toán được chứng minh.
  • Ngược lại, $A$ thắng $E$ và $E$ thắng $D$. Khi đó ta xét mối quan hệ giữa $E$ và $B,C$.
    • Nếu $E$ thắng $B$. Khi đó ta có $A-E-B-C-D$.
    • Nếu $E$ thua $B, C$, khi đó $A-B-C-E-D$.
    • Nếu $E$ thua $B$ và thắng $C$, khi đó $A-B-E-C-D$.

Vậy lúc nào cũng tìm được 5 đội xếp thành một hàng mà đội trước thắng đội sau.