Ta bắt đầu với định lí 4 điểm, được sử dụng trong việc chứng minh các đường thẳng vuông góc.
Định lý 1. Cho các đoạn thẳng $AB$ và $CD$. Chứng minh rằng $AB$ vuông góc $CD$ khi và chỉ khi $$AC^2 – AD^2 = BC^2 – BD^2$$
Chứng minh. Chứng minh định lí ta có thể dụng định lí pitago hoặc có thể dùng trục đẳng phương (thực ra cũng tương đương như dùng pitago)
Xét các đường tròn $(C;CA)$ và $(D;DA)$ ta có $BC^2 – CA^2 = BD^2 – BD^2$
hay $P_{B/(C;CA)} = P_{B/(D;DA)}$.
Do đó $AB$ là trục đẳng phương của $(C)$ và $(D)$ nên $AB \bot CD$.
Định lý 2. (Định lý Carnot) Cho tam giác $ABC$, các điểm $M, N, P$ lần lượt thuộc các đường thẳng $BC, AC$ và $AB$. Khi đó đường thẳng qua $M, N, P$ lần lượt vuông góc $BC, AC$ và $AB$ đồng quy khi và chỉ khi $$MB^2 – MC^2 + NC^2 – NA^2 + PA^2 -PB^2 = 0$$
Chứng minh.
Gọi $X$ là giao điểm của đường thẳng qua $P$ vuông góc $AB$ và đường thẳng qua $N$ vuông góc $AC$. Theo định lí 4 điểm ta có
$XA^2 – XB^2 = PA^2 – PB^2$ và $XC^2 – XA^2= NC^2 – NA^2$
Khi đó $PA^2-PB^2 + NC^2- NA^2 = XC^2-XB^2$.\
Do đó $XM$ vuông góc với $BC$ khi và chỉ khi $XC^2-XB^2 = MC^2 -MB^2$\
hay $PA^2-PB^2 +NC^2+NA^2 = MC^2-MB^2 \Leftrightarrow MB^2 – MC^2 + NC^2 – NA^2 + PA^2 -PB^2 = 0$.